

# ANNUAL REPORT 2018-19



STATE POLLUTION CONTROL BOARD, ODISHA A/118, NILAKANTHA NAGAR, UNIT-VIII BHUBANESWAR

# ANNUAL REPORT

2018-2019



# STATE POLLUTION CONTROL BOARD, ODISHA A/118, Nilakantha Nagar, Unit-Viii Bhubaneswar

SPCB, Odisha (350 Copies)

Published By: State Pollution Control Board, Odisha Bhubaneswar – 751012

# **Printed By:**

Semaphore Technologies Private Limited 3, Gokul Baral Street, 1st Floor Kolkata-700012, Ph. No.- +91 9836873211

# S

# **Highlights of Activities**

| Chapter-I    |  |
|--------------|--|
| Introduction |  |

01

05

181

# Chapter-II Constitution of the State Board

| 07 | Chapter-III  | i  |            |
|----|--------------|----|------------|
| U/ | Constitution | of | Committees |

| 12  | <b>Chapter-IV</b> |  |
|-----|-------------------|--|
| 1 4 | Board Meeting     |  |

| 12 | <b>Chapter-V</b> |
|----|------------------|
| 13 | Activities       |

| 136 | Chapter-VI    |  |
|-----|---------------|--|
| 130 | Legal Matters |  |

| 127 | <b>Chapter-VII</b> | ۔        |
|-----|--------------------|----------|
| 137 | Finance and        | Accounts |

| 120 | Chapter-VIII_              |
|-----|----------------------------|
| 139 | Other Important Activities |

Annexures -

| iichui co            |
|----------------------|
| Organisational Chart |
|                      |

| 71    | (II) Rate Chart for Sampling & Analysis of |
|-------|--------------------------------------------|
| . / 1 | Env. Samples                               |

(III) Staff Strength



# Highlights of Activities of the State Pollution Control Board, Odisha

The State Pollution Control Board (SPCB), Odisha was constituted in July, 1983 and was entrusted with the responsibility of implementing the Environmental Acts, particularly the Water (Prevention and Control of Pollution) Act, 1974, the Water (Prevention and Control of Pollution) Cess Act, 1977, the Air (Prevention and Control of Pollution) Act, 1981 and the Environment (Protection) Act, 1986. Several Rules addressing specific environmental problems like Hazardous Waste Management, Bio-Medical Waste Management, Solid Waste Management, E-Waste Management, Plastic Waste Management, Construction & Demolition Waste Management, Environmental Impact Assessment etc. have been brought out under the Environment (Protection) Act. The SPCB also executes and ensures proper implementation of the environmental policies of the Union and the State Government. The activities of the SPCB broadly cover the following:

- > Planning comprehensive programs towards prevention, control or abatement of pollution and enforcing the environmental laws.
- Advising the State Government on any matter concerning prevention and control of water and air pollution.
- Environmental Monitoring and Research.
- Creating public awareness.

The achievements and activities of the Board during period of report are as follows.

# 1. Industrial Pollution Abatement and Control through Consent Administration

Improvement in compliance to pollution control norms, guidelines and regulations has been witnessed consistently through vigorous surveillance, regular inspections and monitoring, stipulation of a series of guidelines and directives. The Board has also taken the following measures/ activities:

- (i) The Board has constituted different technical committees for considering consent applications of various projects for establishment.
- (ii) Implementation of the on-line consent management system (from receipt of application to grant of consent order) for all industries, mines processes on-line authorization management for Hazardous Waste, Solid Waste and Bio-Medical Waste.
- (iii) Implementation of GPRS based real time data acquisition system with Y-Cable for online stack, ambient air quality and waste water monitoring network for highly polluting large scale industries and mines in order to keep the regulator and industries alert. So far online monitoring and data transmission system has been installed in 150 industries and 24 mines.
- (iv) The Fly Ash Resource Centre (FARC) has been setup in the State Pollution Control Board for promoting safe management and utilization of fly ash in the State. This center has prepared guidelines on utilization of fly ash in various sectors and it also co-coordinates between the Users and Thermal Power Plants. In addition, FARC is also organizing Workshops and Interaction meets among the stakeholders for enhancing fly ash utilization. The utilization of fly ash was 82.71%, during the reporting period, as against 80.74% the preceding year.
- (v) Initiatives have been made to facilitate bulk utilization of other industrial solid wastes like dolochar, phospho-gypsum, blast furnace slag, anode butt, ferro-manganese sludge in different sectors like brick making, road construction, cement manufacturing and power generation etc.
- (vi) The bedded health care establishments have been brought under the Consent administration as per the provisions of Water (Prevention & Control of Pollution) Act, 1974 in order to dispose highly contaminated waste water in an environmentally sound manner.



- (vii) To study the cause of high ambient temperature and design remedial measures, the Board has instituted Heat Island study for Angul-Talcher area through IIT, Delhi. Similar study for Ib Valley-Jharsuguda area has been instituted by DFID in association with SPCB. The study was conducted by TERI, Delhi. Both these studies have been completed.
- (viii)In order to augment the capacity of the Board in the area of coastal environmental monitoring, the World Bank assisted Integrated Coastal Zone Management Project (ICZMP) is being implemented. Office of the Pilot Executing Agency (PEA) of the Board has been operating in Central Laboratory Building, Patia, Bhubaneswar. The coastal water over a stretch of about 80 km from Paradeep to Dhamra is being monitored. 73 sampling locations have been selected for the entire monitoring area, out of which 32 are along the Mahanadi transect, 17 in Dhamra transect and 24 in Gahiramatha- Bhitarkanika transect. In total 1111 nos. of water samples and 77 nos. of sediment samples have been collected and analyzed during the reporting period.

# (ix) Blue Flag Beach Certification:

Twelve beaches in the country are being developed by the Society for Integrated Coastal Management (SICOM), an Environment Ministry's body working for the management of coastal areas, in accordance with the Blue Flag standards. The beach of Chandrabhaga (Konark), Paradeep and Puri in the coast of Odisha were the nominated sites on pilot basis among others, to be selected and one out of the three will be decided to get the Blue Flag certification-the tag given to environment-friendly and clean beaches, equipped with amenities of international standards for tourists.

As per the proposal of Govt. of Odisha and MoEF & CC, GoI, the OSPCB has been involved in conducting detail survey of environmental background of these coasts.

In total, 120 samples from Puri Sea beach at 10 different locations, 60 samples from Paradeep sea beach at 10 different locations and 246 samples from Chandrabhaga beach were collected and analyzed for 09 parameters.

- (x) The Sea Worthy Pollution Monitoring Vessel (Sagar Utkal) with an in-built Laboratory, procured under the ICZM Project has been registered with Mercantile Marine Department (MMD) of DG Shipping, Government of India. It would also cater services to other agencies like oceanographic researchers, universities etc. for survey and monitoring in coastal stretch of Odisha up to 12 nautical miles.
- (xi) The Board has granted consent with stipulations of appropriate pollution control measures to 949 industries, hotels, mineral stack yards, mineral processing units, railway sidings, stone crushers, brick kilns and DG Sets (as stand by) etc. for their establishment.
- (xii) Consent to operate has been granted to 2404 industries, mines, hotels, hospitals, mineral stack yards, mineral processing units, country liquor manufacturing units, railway sidings, stone crushers, brick kilns, DG Sets (as stand by), housing projects and mineral based industries etc. during the reporting period. Board has issued show cause notices to 401 units and closure direction to 200 units. Consent to operate of 79 units have been refused.
- (xiii)All the Urban Local Bodies have been directed to seek consent and submit time bound action plan for construction of sewage treatment plant. Show cause notice has been issued to 02 nos. of ULBs for non compliance of presceibed standards for discharge of sewage effluent.
- (xiv)The Board has conducted public hearings for 45 nos. of major industrial / mining / development of projects requiring environmental clearance from MoEF and CC, Govt. of India/ State Environment Impact Assessment Authority (SEIAA), Odisha.
- (xv) 2494 industrial wastewater samples, samples from 1013 stack emissions, 1921 ambient air samples and 48 solid waste/ hazardous waste/soil samples/plant samples have been collected and analyzed.



# (xvi)Launching of Star Rating Programme:

The Star Rating Programme has been launched by Honourable Chief Minister of Odisha on 17<sup>th</sup> September, 2018 by unveiling a new website (www.ospcb.info) where citizens can access the information. Also, Hon'ble Chief Minister appreciated the efforts of State Pollution Control Board, Odisha quoting this initiative as an excellent example of **3Ts-Technology**, **Teamwork and Transparency**.

# 2. Regulation of Hazardous Waste Management

The Board has granted authorization to 113 hazardous waste generating units for collection, storage, treatment and disposal of hazardous wastes whereas show cause notice has been issued to 03 nos. of units, authorization of 01 unit has been refused and authorization of 04 nos. of units has been suspended for violation under the said Rules. 26 nos. of actual users inside Odisha and 25 nos. of actual users outside Odisha have been authorized by the Board during the reporting period for utilization of hazardous wastes.

As per the provisions of Sec -23 of Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and CPCB guidelines on "Implementing Liabilities for Environmental Damages due to Handling and disposal of Hazardous Wastes and Penalty", the Board has recommended for levying of financial penalty against the industries for violation of different provisions of the Rule.

# 3. Management of Lead Acid Batteries

The Board has received 136 half yearly returns from Manufacturer, Re-conditioner, Assembler, Dealer, Bulk consumer, Auctioner, Importer and Recycler for smooth management and handling of batteries (Lead-Acid) from battery units under the Provisions of the said Rules.

# 4. Management of Bio-Medical Waste

The Board has granted authorization to 651 Health Care Facilities (HCF) under the provisions of the Bio-Medical Waste Management Rules, 2016 with conditions for proper management, segregation, handling, treatment and disposal of biomedical wastes. Show cause notice to 31 units, refusal of authorization to 01 HCF and direction to 07 units have been issued due to improper management of biomedical wastes.

# 5. Management of Plastic Waste

The Board is consistently vigilant on carry bag manufacturing units for their compliance with the statutory provisions of the Plastic Waste Management Rules. So far, 13 plastic product manufacturing units (08 producers, 04 brand owners and 01 re-processor) have been registered with the Board during the reporting period.

### 6. Management of Electronic Waste

The Board has issued authorization to 04 nos. of E-waste dismantling units during the reporting period.

# 7. Management of Municipal Solid Waste

The Board has issued show cause notice to 01 non-complying Urban Local Body during the reporting period. In total 29 ULBs are having valid authorization from the Board and rest ULBs have been instructed to apply for authorization.

# 8. Legal Activities

The Board has filed 331 cases in appropriate legal forum and 247 cases have been disposed during the reporting period.



# 9. Right to Information

Under the Right to Information Act, 2005, the Board has disposed 531 applications by providing information.

# 10. Disposal of Public Complaints

The Board has addressed 351 Public Complaints on various environmental issues during the reporting period.

# 11. Planning and Monitoring

For prevention and control of pollution, the Board has undertaken following activities:

• Board is regularly monitoring the river water quality at 129 stations on 11 major river systems of the State i.e., Mahanadi, Brahmani, Baitarani, Rushikulya, Subarnarekha, Nagavali, Budhabalanga, Kolab, Vansadhara, Indravati and Bahuda. Water quality is assessed in respect of 32 parameters under National Water Quality Monitoring Programme (NWMP). Besides these, water quality of Taladanda Canal at six locations, Puri canal at three locations, religious ponds such as Bindusagar (Bhubaneswar) at its four bathing ghats and five ponds in Puri town such as Narendra, Markanda, Indradyumna, Swetaganga and Parbati Sagar, one pond in Jeypore town, one pond in Angul town, lakes such as Chilika (two locations) & Anshupa (four locations), Tampara (one location) and coastal water quality at Puri, Gopalpur and Paradeep on the Bay of Bengal has also been monitored.

Monitoring of ground water quality at 48 stations of 11 towns i.e., Cuttack, Bhubaneswar, Puri, Berhampur, Sambalpur, Paradeep, Angul, Talcher, Ib valley-Jharsuguda area, Sukinda and Balasore has also been conducted in respect of 32 parameters.

- Bio-monitoring at 21 stations of 08 major rivers i.e. Mahanadi, Brahmani, Rushikulya, Subernarekha, Budhabalanga, Kolab, Vansadhara and Nagabali has been monitored to assess the biological health of these river systems.
- To assess the impact of mass bathing during Kartika Purnima on the water quality of Mahanadi and Kathajodi rivers, water quality monitoring at eight major bathing ghats of these rivers along Cuttack city was conducted.
- Surface water quality of 5 stations on Atharabanki creek and ground water quality at 3 stations in the peripherals of Phosphatic Fertiliser Units and water samples from 07 test wells as well as samples from 05 wastewater discharging points of the fertilizer producing units at Paradeep has been monitored on quarterly basis to assess fluoride contamination in the area.
- Water quality of Ganda Nallah and Kharasrota river has also been monitored at seven stations on regular interval to assess the impact of waste water discharge from the Industrial Units in Kalinganagar area to the Nallah.
- Water quality of Damasala river at nine stations in Sukinda Chromite Mine area has been monitored on regular interval to assess the hexavalent chromium content in river water.
- Surface water quality in and around M/s Vedanta Aluminium Limited, Jharsuguda has been monitored at fourteen locations to assess the fluoride contamination in the area.
- Impact of idol immersion after Durga puja on water quality of Kuakhai and Daya river (in Bhubaneswar city) and Kathajodi river (in Cuttack city) has been investigated. No significant impact due to immersion activities on the water bodies was observed.
- 4851nos. of water samples under National Water Quality Monitoring Programme (NWMP), National River Conservation Programme (NRCP), State Water Quality Monitoring Programme (SWMP) and different projects including other water samples and 69 nos. of Bio-monitoring samples have been analysed by the Board.



- Ambient air quality (AAQ) at 37 stations of 17 important towns and industrial areas of Angul, Balasore, Berhampur, Bhubaneswar, Bonaigarh, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rajgangpur, Rourkela, Sambalpur & Talcher has been monitored by the Board under National Ambient Air Quality Monitoring Programme (NAMP)/ State Ambient Air Quality Monitoring Programme (SAMP). Ambient air quality in 14 towns at 28 Stations has been assessed in respect of 04 parameters namely PM<sub>10</sub>, PM<sub>2.5</sub>, Sulphur Dioxide (SO<sub>2</sub>) and Nitrogen Oxides (NO<sub>x</sub>) whereas, at 09 stations in Bhubaneswar, Puri and Konark, ambient air quality has been assessed in respect of 08 parameters like PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>2</sub>, NO<sub>x</sub>, NH<sub>3</sub>, O<sub>3</sub>, Pb & Ni. In total, 1921 ambient air quality samples, 11,325 no. of AAQ samples under NAMP/SAMP projects have been collected and analysed by the Board. 1013 nos. of stacks have been monitored during the reporting period.
- Study on ambient noise levels in pre & during celebrations of Dashera in 13 towns /cities & during Deepawali at 14 towns/cities have been conducted in Industrial, Commercial, Residential and Silence Zones such as Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur.
- Technical support to Commissionerate of Police, Bhubaneswar has been provided for performance evaluation of 71 numbers of sound limiters of different Band parties in respect of noise [limited to 65 dB(A)].
- To assess the impact of bursting of fire crackers during Deepawali, the ambient air quality with respect to parameters like SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>10</sub> & PM<sub>2.5</sub> have been monitored in pre- and on the day of Deepawali at 53 locations in 14 towns/ cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur. In addition to this, ambient air quality monitoring was conducted at five municipal cities like Berhampur, Bhubaneswar, Cuttack, Rourkela & Sambalpur from 31st Oct, to 14th Nov, 2018 in compliance to the orders of Hon'ble Supreme Court.

# 12. Energy Policy Institute at the University of Chicago (EPIC) India and State Pollution Control Board, (SPCB), Odisha Partnership Project.

# Launching of Star Rating Programme:

The Star Rating Programme was launched by Honorable **Chief Minister of Odisha on 17**<sup>th</sup> **September 2018** at Odisha Secretariat by unveiling a new website (www.ospcb.info) where citizens can access the information. Hon'ble Chief Minister also appreciated the efforts of State Pollution Control Board, Odisha quoting this initiative as an excellent example of **3Ts- Technology, Teamwork and Transparency.** As on 31<sup>st</sup> March, 2019 a total of 100 industries falling under 17 categories of highly polluting industries have come on board for the Star Rating Programme.

### 13. Board's Publications

The Board has published the following Books & Reports during April, 2018 to March, 2019.

- Three volumes of Newsletters "Paribesh Samachar" i.e. (Jan-Mar. 2018, April-June, 2018, Iuly to December. 2018).
- ➤ "Environmental Status Report- 2015-2017" for the coastal stretches of Paradeep, Gahirmatha-Bhitarkanika and Dhamra in the Bay of Bengal, India by ICZMP, SPCB, Odisha.
- Report card on Paradeep-Gahirmatha-Dhamra Ecosystem-2017 by ICZMP, SPCB, Odisha
- ➤ "Mangroves Atlas of Bhitarkanika" by ICZMP, SPCB, Odisha in association with Department of Biotechnology & Bioinformatics, Sambalpur University, Odisha



# 14. Awareness Programmes

- For creation of awareness amongst general public, the Board regularly publishes advertisements carrying messages on various environmental issues in different periodicals / newspapers / souvenirs.
- The World Earth Day was celebrated on 22<sup>nd</sup> April, 2018 by Regional Offices of State Pollution Control Board, Odisha.
- The Board observed the World Environment Day on 5<sup>th</sup> June' 2018 through 12 Regional Offices to create awareness on environmental protection. Messages on protection of environment were propagated to the public through meetings, mass campaign, paintings, debates & planations programmes etc.
- The 35<sup>th</sup> Foundation Day of the Board was observed on 15<sup>th</sup> Sept, 2018 at Jaydev Bhawan, Bhubaneswar with release of newsletter and books. Prof. Satyaban Jena, Retd. Professor of Chemistry, Utkal University, Vanivihar delivered Prof. M.K. Rout Memorial Lecture on **Green Chemistry**.
- The International Coastal Clean-up Day was observed by the Board on the Sea Beaches of Puri, Konark, Chandipur, Gopalpur & Paradeep on 15<sup>th</sup> Sept, 2018 for creation of mass awareness on protection and management of environment involving District Administration, different NGOs & Volunteers.
- During Deepawali festival awareness campaign was organized in & around Bhubaneswar and Cuttack for creating awareness among the public on effect of crackers on air pollution & noise pollution.

# 15. Human Resource Development

- The Board has conducted various programmes for imparting training to various stakeholders on pollution control and environment protection and also deputed its officials on exposure training and to acquire knowledge in the above field.
- The Board has imparted training on "Monitoring and Analysis of Environmental Parameters from 8th to 30th November, 2018 to 20 numbers of participants under "Green Skill Development Programme (GSDP)" organized by the Centre for Environmental Studies (CES). The participants were given demonstration and hands-on training for sampling and analysis of water and wastewater samples, ambient air monitoring and analysis, source emission monitoring and analysis, noise monitoring, soil and hazardous waste sampling and analysis. Senior officers also contributed through class room teachings.
- Imparted training on "Ambient air pollutants, effect and its measurement" to 81 numbers of MBBS students of All India Institute of Medical Science, Bhubaneswar.
- Four numbers of 1<sup>st</sup> year M.Sc. (Environmental Science) Students of Pondicherry University were guided for conducting their summer-internship work in the Central Laboratory.
- Eight numbers of M.Sc (Environmental Science) Students of Utkal University were guided for conducting their Dissertation work in the Central Laboratory.
- Imparted training on "Prevention & control of Vehicular Pollution" to 541 numbers of Traffic personnel at Traffic Training Institute, Bhubaneswar.



# **CHAPTER - I**

# INTRODUCTION

# 1.1 CONSTITUTION OF THE BOARD

The Odisha State Prevention and Control of Pollution Board was constituted in pursuance of sub-section (1) of section 4 of the Water (Prevention and Control of Pollution) Act, 1974, vide Notification No. 1481-VII-HI-11/83 (Vol. II)-S.T.E., dt. 15.7.1983 in the erstwhile Department of Science, Technology & Environment, Government of Odisha. The Board was re-designated as State Pollution Control Board, Odisha vide Govt. Notification No. Env.-E (F)/8/89/1882 F&E, dt.16.07.1999.

# 1.2 FUNCTIONS AND RESPONSIBILITIES OF THE BOARD

The constitution and functions of the Board are clearly spelt out in the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981. The Board is entrusted with the responsibility of implementation of Environmental Laws, particularly the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981 and the Environment (Protection) Act, 1986 and a number of Rules and Notifications issued thereunder as amended from time to time.

Responsibilities of the Board, however, can broadly be classified into the following four main categories:

- 1. To plan a comprehensive programme for prevention, control or abatement of pollution and enforce the environmental laws
- 2. To advise the State Government on any matter concerning prevention and control of water and air pollution
- 3. To conduct Environmental Monitoring and Research
- 4. To create public awareness

In addition, the Board is also expected to execute and ensure proper implementation of the Environmental Policies of the Union and the State Government.

### 1.3 ENVIRONMENTAL LAWS

The major Acts and Rules / Notifications issued thereunder, with which the Board is entrusted for implementation and execution are as follows:

- 1. The Water (Prevention and Control of Pollution) Act, 1974
- 2. The Air (Prevention and Control of Pollution) Act, 1981
- 3. The Environment (Protection) Act, 1986
- 4. The Public Liability Insurance Act, 1991
- 5. The Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 amended as the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.
- 6. The Manufacture, Use, Import, Export and Storage of Hazardous Microorganisms, Genetically Engineered Organisms or Cells Rules, 1989
- 7. The Manufacture, Storage and Import of Hazardous Chemical Rules, 1989
- 8. The Chemical Accidents (Emergency Planning, Preparedness and Response) Rules, 1996



- 9. The Biomedical Waste (Management and Handling) Rules, 1998 amended as the Biomedical Waste Management Rules, 2016.
- 10. The Municipal Solid Waste (Management and Handling) Rules, 2000 amended as the Solid Waste Management Rules, 2016.
- 11. The Noise Pollution (Regulation and Control) Rules, 2000
- 12. The Ozone Depleting Substance (Regulation and Control) Rules, 2000
- 13. The Batteries (Management and Handling) Rules, 2001
- 14. The Environment Audit Notification, 1993
- 15. The Fly-ash Utilization Notification, 1999 and amended thereof
- 16. The Environment Impact Assessment Notification, 2006
- 17. The Plastic Waste (Management and Handling)(Amendment)Rules, 2011 amended as the Plastic Waste Management Rules, 2016
- 18. The E-Waste (Management and Handling) Rules, 2011 amended as the E-Waste (Management) Rules, 2016.
- 19. The Construction & Demolition Waste Rules, 2016.

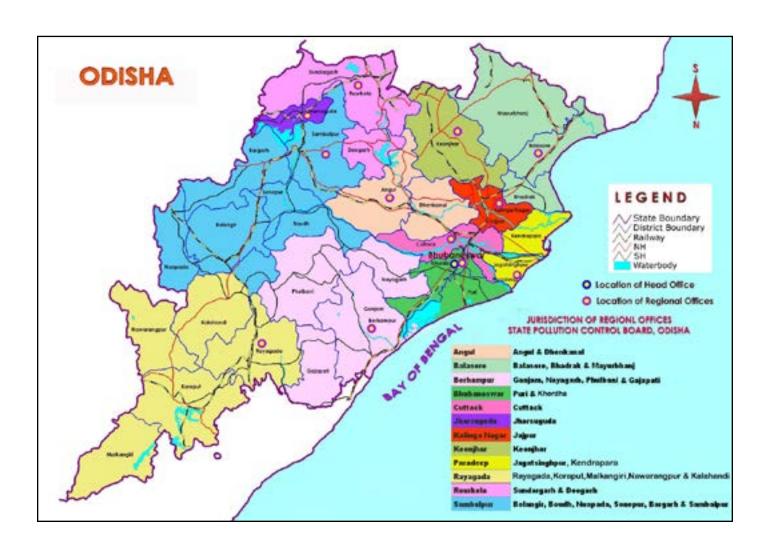
### 1.4 LOCATIONS AND MAILING ADDRESSES OF BOARD'S OFFICES

Headquarters of the State Pollution Control Board, Odisha is located at Paribesh Bhawan, A/118, Nilakantha Nagar, Bhubaneswar in Khordha District. The Board has established its state-of-art Central Laboratory at B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar.

The jurisdictions, functions, role, responsibilities and powers of Regional Officers of all the 12 Regional Offices have been defined vide Board's Office Order No. 16908, dtd.19.09.2013. The mailing addresses, Telephone/Fax Nos., E-mail/website and jurisdiction of the Head Office, the Central Laboratory and Regional Offices are given in Table-1. The locations of twelve Regional Offices of State Pollution Control Board are illustrated in Odisha Map in Fig. 1.

Table – 1: Address, Telephone / Fax, e-mail / Website and Jurisdiction of State Pollution Control Board, Odisha

| Sl.<br>No. | Address                                                                                                                           | Telephone / FAX /<br>e-Mail / Website                                                                                   | Jurisdiction (Districts)  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------|
|            |                                                                                                                                   | HEAD OFFICE                                                                                                             |                           |
| 1          | State Pollution Control Board, Odisha,<br>Paribesh Bhawan, A/118, Nilakantha<br>Nagar, Unit-8, Bhubaneswar-751 012                | (0674) 2561909, 2562847<br>Fax- (0674) 2562827, 2560955<br>E-Mail:paribesh1@ospcboard.org<br>Website: www.ospcboard.org | Whole of the Odisha State |
| 2          | Central Laboratory,<br>State Pollution Control Board, Odisha,<br>B-59/2 & 59/3, Chandaka Industrial<br>Estate, Patia, Bhubaneswar | E-Mail: centrallab@ospcboard.org<br>Website: www.ospcboard.org                                                          | Whole of the Odisha State |
|            | REGIONAL OFFICES                                                                                                                  |                                                                                                                         |                           |
| 1          | Regional Office, Angul<br>S-3/3, Industrial Estate, Hakimpada,<br>Angul- 759 143                                                  | Tel - (06764) 236389<br>Fax - (06764) 237189<br>E-mail:rospcb.angul@<br>ospcboard.org                                   | 1) Angul<br>2) Dhenkanal  |


2 — — — Annual Report 2018-19 –



| Sl.<br>No. | Address                                                                                                                                                                   | Telephone / FAX /<br>e-Mail / Website                                                                      | Jurisdiction (Districts)                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2          | Regional Office, Balasore, 160,<br>Sahadev Khunta,<br>Balasore - 756001                                                                                                   | Tel/Fax-(06782) 265110<br>Email:rospcb.balasore@<br>ospcboard.org                                          | <ol> <li>Balasore</li> <li>Bhadrak</li> <li>Mayurbhanj</li> </ol>                                                                             |
| 3          | Regional Office, Berhampur, New<br>Divisions Office, IDCO, Berhampur<br>Division, Industrial Estate,<br>Berhampur - 760008, Ganjam                                        | Tel- (0680) 2281075<br>Fax- (0680) 2280139<br>Email:rospcb.berhampur@<br>ospcboard.org                     | <ol> <li>Ganjam</li> <li>Gajapati</li> <li>Phulbani</li> <li>Nayagarh</li> </ol>                                                              |
| 4          | Regional Office,<br>Bhubaneswar, B-59/2 & 59/3,<br>Chandaka Industrial Estate, Patia,<br>Bhubaneswar                                                                      | R.O Tel - (Mob) 09438883947<br>E-mail : rospcb.bhubaneswar@<br>ospcboard.org<br>Website: www.ospcboard.org | 1) Puri<br>2) Khordha                                                                                                                         |
| 5          | Regional Office, Cuttack, Plot No. 586,<br>Surya Vihar, Link Road,<br>Cuttack - 753 012                                                                                   | Tel/Fax-(0671) 2335478<br>E-Mail: rospcb.cuttack@<br>ospcboard.org                                         | 1) Cuttack                                                                                                                                    |
| 6          | Regional Office, Keonjhar<br>At - Baniapat, College Road,<br>Keonjhar-758 001                                                                                             | Tel / Fax - (06766) 259077<br>E-Mail: rospcb.keonjhar@<br>ospcboard.org                                    | 1) Keonjhar                                                                                                                                   |
| 7          | Regional Office, Rayagada<br>287/A, Kasturi Nagar,<br>Rayagada - 765 001                                                                                                  | Tel-(06856) 223073<br>Fax-(06856) 224281<br>E-Mail: rospcb.rayagada@<br>ospcboard.org                      | <ol> <li>Rayagada</li> <li>Koraput</li> <li>Nawarangpur</li> <li>Malkangiri</li> <li>Kalahandi</li> </ol>                                     |
| 8          | Regional Office, Rourkela Town<br>Engineering Office Premises,<br>Sector - 5, Rourkela - 769 002                                                                          | Tel - (0661) 2646736<br>Fax - (0661) 2648999<br>E-Mail: rospcb.rourkela@<br>ospcboard.org                  | <ol> <li>Sundergarh except         Himgiri block of         Sundergarh district         (Basundhara mining areas)</li> <li>Deogarh</li> </ol> |
| 9          | Regional Office, Sambalpur, Plot<br>No.1070 Hospital Road, Modipara,<br>Sambalpur-768 002                                                                                 | Tel- (0663) 2541910<br>Fax - (0663) 2541978<br>E-Mail:rospcb.sambalpur@<br>ospcboard.org                   | <ol> <li>Sambalpur</li> <li>Bargarh</li> <li>Boudh</li> <li>Bolangir</li> <li>Nuapada</li> <li>Sonepur</li> </ol>                             |
| 10         | Regional Office, Jharsuguda, Plot No. 370/5971, At – Babubagicha (Cox Colony) St. Mary's Hospital Road, Po-Industrial Estate, DistJharsuguda- 768203                      | Tel- (06645) 273284<br>Fax - (06645) 2732294<br>E-Mail: rospcb.jharsuguda@<br>ospcboard.org                | <ol> <li>Jharsuguda</li> <li>Himgiri block of<br/>Sundergarh district</li> </ol>                                                              |
| 11         | Regional Office,<br>Kalinga Nagar, At - Dhabalagiri, Near<br>OMC office, J.K. Road, P.O: Ferro<br>Chrome Plant, Jajpur - 755019                                           | Mob-9438883955<br>E-mail: rospcb.kalinganagar@<br>ospcboard.org                                            | 1) Jajpur                                                                                                                                     |
| 12         | Regional Office, Paradeep,<br>At- Centre for Management of Coastal<br>Eco-system (CMCE), Plot No. 47,<br>Nuasandhakuda, Near Panthaniwas,<br>Marine Road, Paradeep-754142 | Mob-9438883963<br>E-Mail: rospcb.paradeep@<br>ospcboard.org                                                | <ol> <li>Jagatsinghpur</li> <li>Kendrapara</li> </ol>                                                                                         |



Fig. 1 Map Showing 12 Regional Offices of State Pollution Control Board, Odisha



4



# CHAPTER - II

# CONSTITUTION OF THE STATE BOARD

- **2.1** As per the provisions of sub-section 2 of section 4 of the Water (Prevention and Control of Pollution) Act, 1974 and under sub-section 2 of section 5 of the Air (Prevention and Control of Pollution) Act, 1981, the State Board shall consist of the following members, namely:
  - i. A Chairman (either whole-time or part-time as the State Government may think fit), being a person having special knowledge or practical experience in respect of matters relating to environment protection or a person having knowledge and experience in administrating institutions dealing with the matters aforesaid, to be nominated by the State Government;
  - ii. Such number of officials, not exceeding five, to be nominated by the State Government to represent that Government;
  - iii. Such number of persons, not exceeding five, to be nominated by the State Government from amongst the members of the local authorities functioning within the State;
  - iv. Such number of officials, not exceeding three, to be nominated by the State Government to represent the interest of agriculture, fishery or industry or trade or any other interest which, in the opinion of the State Government, ought to be represented;
  - v. Two persons to represent the companies or corporations owned, controlled or managed by the State Government, to be nominated by that Government;
  - vi. A full time Member Secretary, possessing qualifications, knowledge and experience of scientific, engineering or management aspects of pollution control, to be appointed by the State Government
- 2.2 In exercise of the powers conferred under Sub-Section (1) of Section 4 of the Water (Prevention & Control of Pollution) Act, 1974 and Section 5 of the Air (Prevention & Control of Pollution) Act, 1981, Government in the Forest & Environment Department, Odisha constituted the present Board vide Notification No. 25653-Env-II-39/2018-F&E dated 29.11.2018 for a period of three years with the following members.

### A. Chairman

# Chairman, State Pollution Control Board, Odisha.

Sri R.Balakrishnan, IAS (From 30.11.2015) to 30.11.2018)

Sri A. P.Padhi, IAS (From 01. 12.2018 to 31.3.2019 and contd.)

### **B.** Official Members

- 1. Secretary to Government, H & UD Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 2. Secretary to Government, Industries Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 3. Secretary to Government, Steel and Mines Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 4. Director (Environment), Forest & Environment Department, Government of Odisha or his nominee
- 5. Director, Factories & Boilers, Government of Odisha or his nominee



# C. Members Representating Local Authorities

- 1. Bhubaneswar Municipal Commissioner, Bhubaneswar Municipal Corporation, Bhubanewswar
- 2. Chairman / Executive Officer, Paradeep Municipality
- 3. Chairman / Executive Officer, Jharsuguda Municipality
- 4. Chairman / Executive Officer, Talcher Municipality
- 5. Chairman / Executive Officer, Barbil Municipality

### D. Non-Official Members

- 1. Prof. Atanu Kumar Pati, Presently Vice Chancellor, G M University, Sambalpur
- 2. Dr. Ajit Kumar Patnaik, IFS (Retd), Former PCCF, Chief Executive, Chilika Development Authority
- 3. Dr. G.K. Roy, Retired Professor of Chemical Engineering & Former Director, NIT, Rourkela.

# E. Members Representating Companies & Corporations

- 1. Managing Director, Odisha Mining Corporation Ltd., Bhubaneswar
- 2. Managing Director, Industrial Infrastructure Development Corporation (IDCO), Bhubaneswar

# F. Member Secretary

Member Secretary, State Pollution Control Board, Odisha.

Sri Debidutta Biswal, IFS (29.07.2016 contd.)

6



# **CHAPTER - III**

# CONSTITUTION OF COMMITTEES

# 3.1 CONSENT COMMITTEE

## 3.1.1 Constitution of Consent Committees

The Board has re-constituted consent committee vide office order No. 355 dt. 08.01.2019 in pursuance to partial modification of order no.12547,dt.20.07.2015 with the members enlisted in Table-3.1 for establishment of various projects mentioned below:

- 17 categories of highly polluting industries having investment of ₹50 crores or more.
- Coal, Bauxite, Iron Ore, Manganese, Limestone, Dolomite & Chromite Mines.
- All Sponge Iron Plants.
- Hazardous Waste recycling and re-processing unit including TSDF irrespective of any investment.
- Reclamation of low lyling area / abandoned quarries with ash outside the plant premises for land measuring more than 10 Acres (Consent to Establish to be granted with the approval of Member Secretary and same to be taken to the Consent Committee for ratification on case to case basis as per Office Order no. 11047 / IND-IV-PCP-FARC-120, dated. 21.08.2017).

Members of the Committee are given in Table 3.1.

Table - 3.1 Members of the Consent Committee

| 1. | Member Secretary, SPC Board, Odisha, Bhubaneswar                                                                                                                                                                                                                                                                                                                                | Chairman |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2. | One of the sectoral expert each of different Technical Committee constituted by the Board (such as Mining, Iron & Steel, Power, Chemical & Allied, Petroleum refinery, Aluminum Smelter and Port Projects) in case of large industrial projects whose investment is $\Box 1000$ crores or more or mining project with lease hold area $1000$ ha. or more. (As per Table No.3.2) | Member   |
| 3. | External Expert Members to be nominated by the Chairman, SPC Board in specific cases, if required.                                                                                                                                                                                                                                                                              | Member   |
| 4. | Secretary, Industries Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary                                                                                                                                                                                                                                                                  | Member   |
| 5. | Secretary, Steel & Mines Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary                                                                                                                                                                                                                                                               | Member   |
| 6. | Secretary, Water Resources Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary                                                                                                                                                                                                                                                             | Member   |
| 7. | Director -cum-Special Secretary to Govt. Forest & Env.Deptt. Govt. of Odisha or his representative                                                                                                                                                                                                                                                                              | Member   |
| 8. | Director, Factories & Boilers, Odisha, Bhubaneswar or his representative not below the rank of Deputy Director                                                                                                                                                                                                                                                                  | Member   |
| 9. | Chief Conservator of Forest (Nodal), Odisha or his nominee not below the rank of D.F.O. in the office of PCCF, Odisha, Bhubaneswar                                                                                                                                                                                                                                              | Member   |



| 10. | Concerned District Collectors or their nominees                                             | Member   |
|-----|---------------------------------------------------------------------------------------------|----------|
| 11. | Branch Head dealing the subject of Hazardous Waste SPC Board, Odisha, Bhubaneswar.          | Member   |
| 12. | Branch Head dealing with Consent to Operate, Mines, SPC Board, Bhubaneswar.                 | Member   |
| 13. | Branch Head dealing the subject of environmental monitoring, SPC Board, Odisha, Bhubaneswar | Member   |
| 14. | Branch Head of Consnet to Establish Cell, SPC Board, Odisha, Bhubaneswar                    | Convener |

The Technical Committee has been merged with Consent Committee vide Office Order No. 12547, dtd. 20.07.2015.

**Table - 3.2** Members of the Technical Committee

| Sl.<br>No. | Technical Committee constituted for                                                                  | Sectoral Experts                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.         | Mining Projects whose leasehold area is 1000 Ha or more. (vide Office Order No. 10729, dt. 03.05.07) | <ol> <li>Prof. S. Jayantu, Dept. of Mining Engineering, NIT Rourkela</li> <li>Sri B. N. Mishra, Ex-Director (T) MCL, CMD, EDL, Bhubaneswar</li> </ol>                                                                                                                                                                                                                                                      |  |  |
| 2.         | Iron and Steel Projects<br>(vide Office Order No. 27958,<br>dt. 16.11.06 & No. 10735 dt. 03.05.2007  | <ol> <li>Dr. Somanath Mishra, Ex- Principal, REC, Rourkela,</li> <li>Dr. R. C. Gupta, Professor and Head, Department of<br/>Metallurgical Engineering , Institute of Technology,<br/>Banaras Hindu University</li> </ol>                                                                                                                                                                                   |  |  |
| 3.         | Power Projects<br>(vide Office Order No. 10761,<br>dt. 03.05.07)                                     | <ol> <li>Sri B. C. Jena, Ex-CMD, Grid Corp. of Odisha Ltd,<br/>Bhubaneswar</li> <li>Mr. G. S. Panda, Ex. Head TTPS, Sailashree Vihar,<br/>Bhubaneswar</li> </ol>                                                                                                                                                                                                                                           |  |  |
| 4.         | Chemical and Allied industries<br>(vide Office Order No. 10850, dt.<br>05.05.07)                     | <ol> <li>Prof. G. K. Roy, Dept. of Chemical Engineering, NIT,<br/>Rourkela</li> <li>Sri R. K. Dash, Former Executive Director, PPL &amp; OCFL, VIM<br/>484 (near post office), Sailashree Vihar, Bhubaneswar</li> </ol>                                                                                                                                                                                    |  |  |
| 5.         | Petroleum Refineries<br>(vide Office Order No. 10761, dt. 03.05. 07)                                 | <ol> <li>Dr. M. O. Garg, Director, Institute of Petroleum,<br/>Dehradun</li> <li>Prof. P. Rath, HOD, Department of Chemical Engineering,<br/>NIT, Rourkela</li> </ol>                                                                                                                                                                                                                                      |  |  |
| 6.         | Aluminium Smelter (vide Office Order No. 14791, dt. 22.06.07)                                        | <ol> <li>Dr. R. K. Paramguru, Scientist - G, Head, Hydro &amp; Electrometallurgy Dept., Institute of Minerals &amp; Materials Technology (formerly known as Regional Research Laboratory), Bhubaneswar, Odisha</li> <li>Sri R. N. Jena, Ex-General Manager, NALCO Smelter Plant, Angul</li> </ol>                                                                                                          |  |  |
| 7          | Port Projects (vide office order No. 16387,dt. 05.07.2008)                                           | <ol> <li>Dr. R. Sundarvadivelu, Professor and Head, Department of Ocean Engineering, Indian Institute of Technology, Chennai - 600 036 Or</li> <li>Dr. Sannasi Raj, Associate Professor, Department of Ocean Engineering, Indian Institute of Technology, Chennai - 600 036</li> <li>Sri Dibakar Mohapatra, (Retd. Chief Engineer, Paradeep Port Trust), Plot No. 7A, Brahmeswar Bag, Tankapani</li> </ol> |  |  |

\_\_\_\_\_\_ Annual Report 2018-19 -



# 3.1.2. Consent Committee Meetings

Tweleve Consent Committee meetings were held for consideration of 112 proposals for establishment during the financial year 2018-19. The details are given in Table - 3.3.

Table - 3.3 Details of Consent Committee Meeting

| Sl. No. Date of Consent Committee meeting |            | No. of cases disposed |
|-------------------------------------------|------------|-----------------------|
| 1.                                        | 26.4.2018  | 07                    |
| 2.                                        | 29.5.2018  | 05                    |
| 3.                                        | 29.6. 2018 | 06                    |
| 4.                                        | 28.7.2018  | 15                    |
| 5.                                        | 31.08.2018 | 09                    |
| 6.                                        | 11.10.2018 | 09                    |
| 7.                                        | 14.11.2018 | 14                    |
| 8.                                        | 28.12.2018 | 19                    |
| 9.                                        | 31.1.2019  | 18                    |
| 10.                                       | 27.2.2019  | 10                    |
| Total                                     |            | 112                   |

# 3.1.3. Constitution of Internal Consent Committee

In pursuance of office order No.352 dt. 08.01.2019, an internal consent committee has been reconstituted with the members reflected in Table 3.4 to evaluate the applications for grant of consent to establish (NOC) for the following projects.

- 17 categories of highly polluting industries having investment of less than ₹ 50 crores.
- Other than 17 categories of polluting industries (Red and Orange Category) having investment of  $\P$  50 crores or more.

Table - 3.4 Members of the Internal Consent Committee

| 1. | Branch Head dealing with Consent to Establish, SPC Board, Odisha, Bhubaneswar                                                         |          |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| 2. | Senior Officer not below the rank of DEE & DES, SPC Board , Odisha, Bhubaneswar dealing with Consent to Establish.                    | Member   |  |  |
| 3. | Senior Officer not below the rank of DEE & DES, SPC Board , Odisha, Bhubaneswar dealing with Consent to Operate of Industry / Mines.  | Member   |  |  |
| 4. | Senior Officer not below the rank of DEE & DES, SPC Board , Odisha, Bhubaneswar dealing with the subject of Hazardous Waste.          | Member   |  |  |
| 5. | Senior Officer not below the rank of DEE & DES, SPC Board , Odisha, Bhubaneswar dealing with the subject of Environmental Monitoring. | Member   |  |  |
| 6. | Branch officer of Consnet to Establish Cell, SPC Board, Odisha, Bhubaneswar                                                           | Convenor |  |  |

No internal consent committee meeting was held during the financial year 2018-19.



# 3.1.4 Constitution of Technical Committee for issue of "No Increase in Pollultion Load" Certificate for Changes in Plant Configuration and Product Mix for the Project.

In pursuance to MoEF&CC, Govt.of India Notification vide So.3518(E) dtd.23.11.2016, State Pollution Control Board has constituted a Technical Committee with the following members to examine the application and to make recommendations for issue of "No Increase in pollution load" certificate for changes in plant configuration & product mix for the project.

Table - 3.5 Members of Technical Committee for issue of "No Increase in Pollultion Load" Certificate

| Sl. No. | Name                                                                                                                                              | Designation |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.      | Member Secretary, State Pollultion Control Baord, Odisha                                                                                          | Chairman    |
| 2.      | Dr. Sanjat Ku. Sahu, Professor, Dept. of Env. Science, Sambalpur University, Sambalpur (Nominated by F&E Department).                             | Member      |
| 3.      | Dr. Himanshu B. Sahu, Associate Professor, Dept. of Mining Engineering, NIT, Rourkela (Nominated by F&E Department).                              | Member      |
| 4.      | Dr. Chitta Ranjan Mohanty, Associate Professor, Dept. of Civil Engineering SSUT, Burla (Nominated by F&E Department).                             | Member      |
| 5.      | Dr. Abhaya Ku Dalai, Former Reader in Botany, Ravenshaw University, 6GH/1150, C-15, Sector-9, CDA, Cuttack-753014, (Nominated by F&E Department). | Member      |
| 6.      | Sri R.C. Saxena, Regional Director, CPCB, Kolkata or his nominee not below the rank of Addl. Director.                                            | Member      |
| 7.      | Sr. Env. Scientist, L-I/Sr. Env.Engineer, L-I, SPC Board, dealing with Consent to Establish of Industries / Mines                                 | Member      |
| 8.      | Sr. Env. Scientist, L-I/Sr. Env. Enginer, L-I,<br>SPC Board,dealing with Consent to Operate of Industries                                         | Member      |
| 9.      | Sr. Env. Scientist, L-I/Sr. Env.Engineer, L-I,<br>SPC Board, dealing with Consent to Operate of Mines                                             | Member      |
| 10.     | Sr. Env.Engineer, L-II, SPC Board, dealing with Consent to Establish of Industries & Mines.                                                       | Member      |

### 3.2 PURCHASE COMMITTEE FOR SCIENTIFIC STORE

# 3.2.1 Constitution of the Purchase Committee

In pursuance of the provision Under Section 9 of the Water (Prevention & Control of Pollution) Act, 1974 and Under Section 11 of the Air (Prevention & Control of Pollution) Act, 1981, a purchase committee has been constituted for the financial year 2018-19 with the following members for the purchase and maintenance jobs of scientific items of the Central Laboratory as well as Regional Offices laboratories of the Board valuing ₹ 15,000.00 and above is given in Table 3.6.

**Table - 3.6 Members of the Purchase Committee for ₹** 15,000.00 and above.

| 1. | Member Secretary, State Pollution Control Board, Odisha                                                    | Chairman |
|----|------------------------------------------------------------------------------------------------------------|----------|
| 2. | Dr. B.S.Jena, Sr. Principal Scientist, Institute of Materials and Minerals Technology (IMMT), Bhubaneswar. | Member   |

0 — Annual Report 2018-19 —



| 3. | Financial Adviser-cum-Addl.Secretary to Govt., Forest & Environment Dept., Govt. of Odisha, Bhubaneswar  | Member             |
|----|----------------------------------------------------------------------------------------------------------|--------------------|
| 4. | Director or his representative, Directorate of Export Promotion & Marketing, Bhubaneswar                 | Member             |
| 5. | Senior Environmental Scientist (L-I), Central Lab.,State Pollution Control Board,<br>Odisha, Bhubaneswar | Member             |
| 6. | Accounts Officer, State Pollution Control Board, Odisha, Bhubaneswar                                     | Member             |
| 7. | Env. Scientist, (Purchase),<br>State Pollution Control Board, Odisha, Bhubaneswar                        | Member<br>Convenor |

Technical Committee has been constituted vide order No. 924 dt.28.06.2018 for the specification of various equipments & instruments and to study the nature of requirement of different chemicals, glass wares, plastic wares, filtration products etc. required by the laboratory in Table - 3.7.

Table - 3.7- Members of the Technical Committee

| 1. | Senior Environmental Scientist (L-I), State Pollution Control Board, Odisha                                                     | Chairman           |
|----|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2. | Dr. S.G. Kumar,Senior Scientist, Regional Plant Resource Centre, Bhubaneswar                                                    | Member             |
| 3. | Administrative Officer, State Pollution Control Board, Odisha, Bhubaneswar                                                      | Member             |
| 4. | Env. Scientist, (In charge of Chemical and Biological Laboratory),<br>State Pollution Control Board, Odisha, Bhubaneswar        | Member             |
| 5. | Deputy Env. Scientist, (In charge of Air, Soil and Hazardous Laboratory),<br>State Pollution Control Board, Odisha, Bhubaneswar | Member             |
| 6. | Accounts Officer, State Pollution Control Board, Odisha, Bhubaneswar.                                                           | Special Invitee    |
| 7. | Env. Scientist, (Purchase),<br>State Pollution Control Board, Odisha, Bhubaneswar                                               | Member<br>Convenor |

# 3.3 LIBRARY PURCHASE COMMITTEE

In pursuance of Section 9 of the Water (Prevention & Control of Pollution) Act, 1974 and Section 11 of the Air (Prevention & Control of Pollution) Act, 1981 an Internal Purchase Committee has been constituted vide office order No. 11994 dt. 23.07.2014 and amended vide office order No. 2235/Estt. (Misc.) 60/2010 dt. 28.02.2019 for examining and recommending purchase of Books, Journals, Reports, Non-book materials, furniture and other requisites for the Library. Members of the committee are given in Table - 3.8.

Table - 3.8 Members of the Library Purchase Committee

| 1. | Member Secretary, State Pollution Control Board, Odisha                                                                                                       | Chairman           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2. | Senior Environmental Engineer- L-I (N), State Pollution Control Board, Odisha                                                                                 | Member             |
| 3. | Senior Environmental Engineer- L-I (C), State Pollution Control Board, Odisha                                                                                 | Member             |
| 4. | Senior Environmental Scientist - L-I (P), State Pollution Control Board, Odisha                                                                               | Member             |
| 5. | Administrative Officer, State Pollution Control Board, Odisha                                                                                                 | Member             |
| 6. | Sr. Law Officer, State Pollution Control Board, Odisha                                                                                                        | Member             |
| 7. | SES, In-Charge of Library upto 27.02.2019 (Order No.15332, dtd.23.11.2017) and SEE, In-Charge of Library (Order No. 2235/Estt. (Misc)60/2010 dtd. 28.02.2019) | Member<br>Convener |



# **CHAPTER - IV**

# **BOARD MEETING**

**4.1** In the year 2018-19 two Board Meetings were held.

The 117<sup>th</sup> & 118<sup>th</sup> Board meetings of the State Pollution Control Board, Odisha were held on 5<sup>th</sup> September, 2018 & 29<sup>th</sup> January,2019 respectively.

# 4.2 IMPORTANT DECISIONS OF THE 117th BOARD MEETING ARE AS FOLLOWS:

- i. Approval of the proposal for re-constitution of Internal Consent committee and consent committee.
- ii. The Board perused the "Policy report on proposed mitigation strategies for Angul-Talcher Industrial Area" submitted by Centre for Atmospheric Sciences (CAS), Indian Institute of Technology, Delhi and also the policy brief report on Heat Island Study of the Ib Valley, Jharsuguda conducted by The Energy Reseach Institute (TERI), New Delhi.
- iii. The Board approved the proposal for strengthening of cadre of Laboratory officer.

# 4.3 IMPORTANT DECISIONS OF THE 118th BOARD MEETING ARE AS FOLLOWS:

- i. The Board approved the proposal for revision of budget for the financial year 2018-19 to Rs. 6,275.47 lakh as against the anticipated receipt of Rs. 6,980.21 lakh.
- ii. The Board approved the budget estimate for the financial year 2019-20 at Rs. 5,556.00 lakh as against the anticipated receipt of Rs. 6,290.01 lakh.
- iii. The Board approved the proposal for modicication of office order No.2186, dtd.31.01.2018 issued on delegation of power to the officers of the Board in the matter of grant of Consent to Establish, Consent to Operate and grant of Authorization for Bio-mecical Waste Management.
- iv. The Board approved the proposal of delegation of power to Chief Environmental Engineer & Chief Environmental Scientist.
- v. The Board decided to constitute a committee under the Chairmanship of the Member Secretary, SPC Board, Odisha to examine the Service Regulations of the Board and recommend for amendment of different provisions.
- vi. The Board approved the classification of additional industrial units under Red/Orange/Green/White categories.
- vii. The Board ratified the constitution of the 'Technical Committee' and the 'Purchase Committee' constituted for procurement of scientific equipments/instruments/ accessories etc.

2 — Annual Report 2018-19 —

# SEITHA

# CHAPTER - V

# **ACTIVITIES**

# 5.1 CONSENT TO ESTABLISH (CTE)

# 5.1.1 Projects related to Manufacturing and Service Sectors

Board received 1030 applications from different manufacturing and service sectors for consent to establish during 2018-19 and 492 pending proposals were carried forward from the year 2017-18.

Consent to establish was granted to 949 units. The detailed status of 1522 Consent to Establish applications processed during 2018-19 is given in Table-5.1 and 5.2.

**Table - 5.1 Status of Consent to Establish (CTE)** 

| Sl. No. | Status                                           | Head office<br>(H.O.) | Regional Office<br>(R.O) | Total |
|---------|--------------------------------------------------|-----------------------|--------------------------|-------|
| 1.      | No. of applications received during 2018-19      | 124                   | 906                      | 1030  |
| 2.      | No. of applications carried forward from 2017-18 | 54                    | 438                      | 492   |
|         | Total applications                               | 178                   | 1344                     | 1522  |
|         | i) Consent to establish granted                  | 82                    | 867                      | 949   |
|         | ii) Consent to establish refused                 | 02                    | 44                       | 46    |
|         | iii) No.of applications rejected                 | 04                    | 00                       | 04    |
|         | iv) No. of applications under evaluation         | 90                    | 433                      | 523   |

Table - 5.2 Details of Consent to Establish Status by Regional Offices

| Regional<br>Office | No. of<br>applications<br>received<br>during 2018-<br>19 | No. of<br>applications<br>carried<br>forward from<br>year 2017-18 | Total no. of applications received | No. of<br>units<br>granted | No. of<br>units<br>refused | No. of<br>cases<br>disposed<br>off | Under<br>evalua-<br>tion |
|--------------------|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|----------------------------|----------------------------|------------------------------------|--------------------------|
| 1                  | 2                                                        | 3                                                                 | 4<br>(2+3)                         | 5                          | 6                          | 7<br>(5+6)                         | <b>8</b> (4-7)           |
| Angul              | 61                                                       | 33                                                                | 94                                 | 66                         | 00                         | 66                                 | 28                       |
| Balasore           | 85                                                       | 01                                                                | 86                                 | 83                         | 00                         | 83                                 | 03                       |
| Berhampur          | 183                                                      | 61                                                                | 244                                | 138                        | Oo                         | 138                                | 106                      |
| Bhubaneswar        | 83                                                       | 154                                                               | 237                                | 111                        | 00                         | 111                                | 126                      |
| Cuttack            | 98                                                       | 23                                                                | 121                                | 80                         | 00                         | 80                                 | 41                       |
| Jharsuguda         | 45                                                       | 01                                                                | 46                                 | 23                         | 21                         | 44                                 | 02                       |
| Kalinga Nagar      | 30                                                       | 35                                                                | 65                                 | 53                         | 01                         | 54                                 | 11                       |
| Keonjhar           | 37                                                       | 03                                                                | 40                                 | 30                         | 02                         | 32                                 | 08                       |
| Paradeep           | 21                                                       | 07                                                                | 28                                 | 20                         | 01                         | 21                                 | 07                       |
| Rayagada           | 69                                                       | 68                                                                | 137                                | 53                         | 19                         | 72                                 | 65                       |



| Regional<br>Office | No. of<br>applications<br>received<br>during 2018-<br>19 | No. of<br>applications<br>carried<br>forward from<br>year 2017-18 | Total no. of applications received | No. of<br>units<br>granted | No. of<br>units<br>refused | No. of<br>cases<br>disposed<br>off | Under<br>evalua-<br>tion |
|--------------------|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|----------------------------|----------------------------|------------------------------------|--------------------------|
| Rourkela           | 98                                                       | 11                                                                | 109                                | 94                         | 00                         | 94                                 | 15                       |
| Sambalpur          | 96                                                       | 41                                                                | 137                                | 116                        | 00                         | 116                                | 21                       |
| Total              | 906                                                      | 438                                                               | 1344                               | 867                        | 44                         | 911                                | 433                      |

# 5.1.2 Mines and Minor Minerals

The detailed status of 154 applications processed for consent to establish mining and Minor Minerals operations during 2018-19 is given in Table-5.3.

Table - 5.3 Status of Consent to Establish Mines & Minor Minerals

| Sl. No. | Status                                    | Mines & Minor<br>Minerals |
|---------|-------------------------------------------|---------------------------|
| 1.      | Applications received during 2018-19      | 105                       |
| 2.      | Applications carried forward from 2017-18 | 49                        |
| 3.      | Total number of applications              | 154                       |
|         | Consent to Establish granted              | 110                       |
|         | No. of applications under evaluation      | 44                        |

# 5.1.3 Status of Consent to Establish of Brick Manufacturing Units

Details of consent to establish of brick manufacturing units during 2018-19 are given in Table-5.4.

Table - 5.4 Status of Consent to Establish Brick Manufacturing Units

| Sl. No. | Status                                           | Number of Cases |
|---------|--------------------------------------------------|-----------------|
| 1.      | No. of applications received during 2018-19      | 06              |
| 2.      | No. of applications carried forward from 2017-18 | 15              |
| 3.      | Total number of complete applications            | 21              |
| 4.      | Consent to Establish granted                     | 03              |
| 5.      | No. of applications under evaluation             | 18              |

# 5.1.4 Status of Consent to Establish of Stone Crushers and Mineral Beneficiation Units

Consent to establish status of stone crushers and mineral beneficiation units and mineral stack yard during 2018-19 is given in Table-5.5.

**Table - 5.5 Status of Consent to Establish Stone Crushers and Mineral Benefication Units** 

| Sl. No. | Status                                           | Number of Cases |
|---------|--------------------------------------------------|-----------------|
| 1.      | No. of applications received during 2018-19      | 100             |
| 2.      | No. of applications carried forward from 2017-18 | 89              |

14 — Annual Report 2018-19 —



| Sl. No. | Status                                | Number of Cases |
|---------|---------------------------------------|-----------------|
| 3       | Total Number of complete applications | 189             |
| 4.      | Consent to Establish granted          | 139             |
| 5.      | No. of applications under evaluation  | 50              |

# 5. 2 CONSENT TO OPERATE (CTO)

# 5.2.1 Status of Consent to Operate

Board has received 2599 applications from industries, mines, stone crushers, iron ore crushers, brick kilns, hotels, hospitals, ceramic and refractories, telecom services, urban local bodies / townships and country liquor manufacturing units etc. and 755 pending cases were carried forward from 2017-18 and disposed 2483 applications for consent to operate during the year 2018-19. The details are given in Table-5.6.

Table - 5.6 Status of Consent to Operate

| Name of the office | No. of<br>complete<br>appli-<br>cations<br>received<br>2018-19 | No. of<br>cases<br>carried<br>forward<br>from<br>2017-18 | Total<br>no. of<br>complete<br>appli-<br>cations | No. of<br>units<br>granted<br>CTO | No. of<br>units<br>refused | No. of<br>cases<br>disposed | Under<br>evalua-<br>tion | No. of<br>Show<br>Cause<br>Notices<br>Issued |
|--------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------|-----------------------------|--------------------------|----------------------------------------------|
| 1                  | 2                                                              | 3                                                        | 4<br>(2+3)                                       | 5                                 | 6                          | 7<br>(5+6)                  | 8<br>(4-7)               | 9                                            |
| Angul R.O.         | 302                                                            | 114                                                      | 416                                              | 267                               | 00                         | 267                         | 149                      | 24                                           |
| Balasore R.O.      | 186                                                            | 31                                                       | 217                                              | 198                               | 03                         | 201                         | 16                       | 00                                           |
| Berhampur R.O.     | 437                                                            | 66                                                       | 503                                              | 351                               | 00                         | 351                         | 152                      | 96                                           |
| BBSR, R.O          | 265                                                            | 147                                                      | 412                                              | 224                               | 00                         | 224                         | 188                      | 00                                           |
| Cuttack R.O.       | 155                                                            | 43                                                       | 198                                              | 155                               | 00                         | 155                         | 43                       | 06                                           |
| Keonjhar R.O.      | 62                                                             | 25                                                       | 87                                               | 62                                | 00                         | 62                          | 25                       | 03                                           |
| Rayagada R.O.      | 223                                                            | 142                                                      | 365                                              | 221                               | 04                         | 225                         | 140                      | 112                                          |
| Rourkela R.O.      | 60                                                             | 56                                                       | 116                                              | 68                                | 00                         | 68                          | 48                       | 22                                           |
| Sambalpur R.O.     | 446                                                            | 73                                                       | 519                                              | 423                               | 16                         | 439                         | 80                       | 56                                           |
| Kalinga Nagar      | 129                                                            | 03                                                       | 132                                              | 121                               | 01                         | 122                         | 10                       | 26                                           |
| Jharsuguda RO      | 83                                                             | 25                                                       | 108                                              | 56                                | 50                         | 106                         | 02                       | 06                                           |
| Paradeep RO        | 42                                                             | 07                                                       | 49                                               | 47                                | 00                         | 47                          | 02                       | 16                                           |
| Head office        | 209                                                            | 23                                                       | 232                                              | 211                               | 05                         | 216                         | 16                       | 34                                           |
| Total              | 2599                                                           | 755                                                      | 3354                                             | 2404                              | 79                         | 2483                        | 871                      | 401                                          |

Category wise consent to operate status during 2018-19 is given in Table-5.7 (a),(b)&(c)



# **Table - 5.7 Categorywise Consent to Operate Status**

# (a) Mines & Minor Minerals

| Name of the office | No. of<br>complete<br>appli-<br>cations<br>received | No. of<br>cases<br>carried<br>forward<br>from<br>2017-18 | Total<br>no. of<br>complete<br>appli-<br>cations | No. of<br>units<br>granted<br>CTO | No. of<br>units<br>refused | No. of<br>cases<br>disposed | Under<br>evalua-<br>tion | No. of<br>Show<br>Cause<br>Notices<br>Issued |
|--------------------|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------|-----------------------------|--------------------------|----------------------------------------------|
| 1                  | 2                                                   | 3                                                        | 4(2+3)                                           | 5                                 | 6                          | 7(5+6)                      | 8(4-7)                   | 9                                            |
| Angul R.O.         | 35                                                  | 16                                                       | 51                                               | 45                                | 00                         | 45                          | 06                       | 00                                           |
| Balasore R.O.      | 85                                                  | 00                                                       | 85                                               | 85                                | 00                         | 85                          | 00                       | 00                                           |
| Berhampur R.O.     | 60                                                  | 00                                                       | 60                                               | 57                                | 00                         | 57                          | 03                       | 00                                           |
| Bhubaneswar<br>R.O | 01                                                  | 00                                                       | 01                                               | 00                                | 00                         | 00                          | 01                       | 00                                           |
| Cuttack R.O.       | 04                                                  | 09                                                       | 13                                               | 13                                | 00                         | 13                          | 00                       | 00                                           |
| Jharsuguda         | 03                                                  | 00                                                       | 03                                               | 03                                | 00                         | 03                          | 00                       | 00                                           |
| Kalinga Nagar      | 35                                                  | 00                                                       | 35                                               | 33                                | 00                         | 33                          | 02                       | 00                                           |
| Keonjhar R.O.      | 11                                                  | 01                                                       | 12                                               | 09                                | 00                         | 09                          | 03                       | 00                                           |
| Paradeep RO        | 00                                                  | 00                                                       | 00                                               | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Rayagada R.O.      | 07                                                  | 13                                                       | 20                                               | 15                                | 00                         | 15                          | 05                       | 00                                           |
| Rourkela R.O.      | 15                                                  | 10                                                       | 25                                               | 16                                | 00                         | 16                          | 09                       | 00                                           |
| Sambalpur R.O.     | 19                                                  | 10                                                       | 29                                               | 27                                | 00                         | 27                          | 02                       | 00                                           |
| Head office        | 57                                                  | 00                                                       | 57                                               | 47                                | 01                         | 48                          | 09                       | 05                                           |
| Total              | 332                                                 | 59                                                       | 391                                              | 350                               | 01                         | 351                         | 40                       | 05                                           |

# (b) Status of Consent to Operate (Stone Crusher & Mineral Beneficiation Unit)

| Name of the office | No. of<br>complete<br>appli-<br>cations<br>received | No. of cases<br>carried<br>forward<br>from<br>2017-18 | Total no. Of complete applications | No. of<br>units<br>granted<br>CTO | No. of<br>units<br>refused | No. of<br>cases<br>disposed | Under<br>evalua-<br>tion | No. of<br>Show<br>Cause<br>Notices<br>Issued |
|--------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------|-----------------------------------|----------------------------|-----------------------------|--------------------------|----------------------------------------------|
| 1                  | 2                                                   | 3                                                     | <b>4</b> (2+3)                     | 5                                 | 6                          | 7<br>(5+6)                  | 8<br>(4-7)               | 9                                            |
| Angul R.O.         | 169                                                 | 56                                                    | 225                                | 128                               | 00                         | 128                         | 97                       | 14                                           |
| Balasore R.O.      | 32                                                  | 00                                                    | 32                                 | 31                                | 01                         | 32                          | 00                       | 00                                           |
| Berhampur<br>R.O.  | 60                                                  | 02                                                    | 62                                 | 36                                | 00                         | 36                          | 26                       | 12                                           |
| Bhubaneswar<br>R.O | 96                                                  | 15                                                    | 111                                | 81                                | 00                         | 81                          | 30                       | 00                                           |
| Cuttack R.O.       | 03                                                  | 00                                                    | 03                                 | 00                                | 00                         | 00                          | 03                       | 01                                           |
| Jharsuguda         | 04                                                  | 00                                                    | 04                                 | 04                                | 00                         | 04                          | 00                       | 00                                           |
| Kalinga<br>Nagar   | 30                                                  | 01                                                    | 31                                 | 26                                | 00                         | 26                          | 05                       | 06                                           |
| Keonjhar<br>R.O.   | 06                                                  | 00                                                    | 06                                 | 05                                | 00                         | 05                          | 01                       | 02                                           |

\_\_\_\_\_\_ Annual Report 2018-19 —



| Name of the office | No. of<br>complete<br>appli-<br>cations<br>received | No. of cases<br>carried<br>forward<br>from<br>2017-18 | Total no. Of<br>complete<br>applications | No. of<br>units<br>granted<br>CTO | No. of<br>units<br>refused | No. of<br>cases<br>disposed | Under<br>evalua-<br>tion | No. of<br>Show<br>Cause<br>Notices<br>Issued |
|--------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------|-----------------------------------|----------------------------|-----------------------------|--------------------------|----------------------------------------------|
| Paradeep           | 00                                                  | 00                                                    | 00                                       | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Rayagada<br>R.O.   | 19                                                  | 07                                                    | 26                                       | 18                                | 01                         | 19                          | 07                       | 03                                           |
| Rourkela<br>R.O.   | 04                                                  | 15                                                    | 19                                       | 05                                | 00                         | 05                          | 14                       | 01                                           |
| Sambalpur<br>R.O.  | 14                                                  | 30                                                    | 44                                       | 30                                | 00                         | 30                          | 14                       | 08                                           |
| Total              | 437                                                 | 126                                                   | 563                                      | 364                               | 02                         | 366                         | 197                      | 47                                           |

# (c) Brick Manufacturing Units

| Name of the office | No. of<br>complete<br>appli-<br>cations<br>received<br>2018-19 | No. of<br>cases<br>carried<br>forward<br>from<br>2017-18 | Total<br>no. of<br>complete<br>appli-<br>cations | No. of<br>units<br>granted<br>CTO | No. of<br>units<br>refused | No. of<br>cases<br>disposed | Under<br>evalua-<br>tion | No. of<br>Show<br>Cause<br>Notices<br>Issued |
|--------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------|-----------------------------|--------------------------|----------------------------------------------|
| 1                  | 2                                                              | 3                                                        | 4<br>(2+3)                                       | 5                                 | 6                          | 7<br>(5+6)                  | 8<br>(4-7)               | 9                                            |
| Angul R.O.         | 06                                                             | 04                                                       | 10                                               | 00                                | 00                         | 00                          | 10                       | 04                                           |
| Balasore R.O.      | 00                                                             | 00                                                       | 00                                               | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Berhampur<br>R.O.  | 00                                                             | 00                                                       | 00                                               | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Bhubaneswar<br>R.O | 02                                                             | 01                                                       | 03                                               | 03                                | 00                         | 03                          | 00                       | 00                                           |
| Cuttack R.O.       | 00                                                             | 06                                                       | 06                                               | 00                                | 00                         | 00                          | 06                       | 00                                           |
| Jharsuguda         | 00                                                             | 00                                                       | 00                                               | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Kalinga<br>Nagar   | 01                                                             | 00                                                       | 01                                               | 01                                | 00                         | 01                          | 00                       | 06                                           |
| Keonjhar<br>R.O.   | 00                                                             | 00                                                       | 00                                               | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Paradeep RO        | 01                                                             | 00                                                       | 01                                               | 01                                | 00                         | 01                          | 00                       | 11                                           |
| Rayagada<br>R.O.   | 00                                                             | 00                                                       | 00                                               | 00                                | 00                         | 00                          | 00                       | 00                                           |
| Rourkela R.O.      | 00                                                             | 06                                                       | 06                                               | 00                                | 00                         | 00                          | 06                       | 00                                           |
| Sambalpur<br>R.O.  | 00                                                             | 01                                                       | 01                                               | 00                                | 00                         | 00                          | 01                       | 00                                           |
| Total              | 10                                                             | 18                                                       | 28                                               | 05                                | 00                         | 05                          | 23                       | 21                                           |



# 5.2.2 Status of Consent to Operate for Wastewater Treatment Facility by the Urban Local Bodies/ Townships under Water (Prevention & Control of Pollution) Act, 1974

The Urban Local Bodies (ULBs) and the industrial townships are required to be regulated under consent administration for disposal of sewage effluent as per provisions under Section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974.

The Board has issued directions to all Municipal authorities as per the CPCB direction dtd. 21.04.2015 to seek Consent under Water (PCP) Act,1974 and submit the detail compliance with time bound action plan for setting up sewerage system/septage management covering proper collection, treatment & disposal of sewage generated in the local / urban area. The Board intimated all the ULBs to improve sanitary conditions of open drain carrying sewage/sullage as per the CPCB guidelines. The new standards formulated by CPCB, Delhi for treated sewage effluent has been intimated to all the ULBs and concerned departments with instruction that the treated effluent shall meet the new prescribed standard.

The Board has issued show cause notice 02 nos. of ULBs for non compliance of prescribed standards for discharge of sewage effluent

The Hon'ble High Court has initiated leagal action against ULBs which is continuing.

# 5.2.3 Status of Installation of GPRS based Real Time Data Acquisition System (RT-DAS) from the Online Monitoring Stations of the Industries in Odisha

The Board has implemented online monitoring system as a tool for self-regulation for the industries and at the same time, maintain transparency with the regulators i.e, SPCBs and CPCB. The CPCB advised all the SPCBs to install central server and software for acquisition of real time data. The system has been introduced with an objective to receive online monitoring data from all the States and to maintain a central data base by CPCB for the whole country.

The State Pollution Control Board, Odisha has developed a GPRS based Real Time Data Acquisition System (RT-DAS) using 'Y' cable to receive tamper proof data directly from online Stack, AAQ & Effluent monitoring systems installed by the industries. The central RT-DAS server has been installed in the Computer Cell of State Pollution Control Board, Odisha at its Head Office, Bhubaneswar. This RT-DAS server is receiving data from 150 industries and 24 mines operating in the State. The status of RT-DAS for the online is given in Table -5.8.

Table - 5.8 Status of Real Time Data Acquisition from the Online Continuous Monitoring Stations of Industries & Mines in Odisha

### **INDUSTRIES**

| Sl. No. | Name & Address                                                                  | No. of Online Monitoring Stations<br>Connected to RT-DAS Server of the SPC<br>Board, Odisha till 31.03.2019 |      |      |  |
|---------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|--|
|         |                                                                                 | AAQMS                                                                                                       | CEMS | EQMS |  |
| 1       | Aarti Steels Ltd, Athagarh, Cuttack, Odisha,                                    | 4                                                                                                           | 7    | 0    |  |
| 2       | ACC Limited, Baragarh                                                           | 3                                                                                                           | 4    | 0    |  |
| 3       | Action Ispat and Power (P) Ltd, Jharsuguda                                      | 4                                                                                                           | 4    | 0    |  |
| 4       | Adhunik Metaliks Ltd., Chadrihariharpur,Sundargarh                              | 4                                                                                                           | 11   | 0    |  |
| 5       | Aditya Aluminium (A Unit of Hindalco Industries<br>Limited), Lapanga, Sambalpur | 4                                                                                                           | 14   | 1    |  |



| Sl. No. | Name & Address                                                  | Connected<br>Board, | to RT-DAS<br>Odisha til | toring Stations<br>Server of the SPC<br>1 31.03.2019 |
|---------|-----------------------------------------------------------------|---------------------|-------------------------|------------------------------------------------------|
|         |                                                                 | AAQMS               | CEMS                    | EQMS                                                 |
| 6       | Aditya Kraft & Papers Pvt. Ltd., Athagarh, Cuttack              | 0                   | 2                       | 2                                                    |
| 7       | Agrasen Sponge Private Limited., Chungimati,<br>Sundargarh      | 0                   | 3                       | 0                                                    |
| 8       | Aryan Ispat and Power Pvt Ltd., Lapanga, Sambalpur              | 3                   | 2                       | 0                                                    |
| 9       | Aska CO-OP.Sugar Industries Ltd., Aska                          | 0                   | 2                       | 1                                                    |
| 10      | B.R. Sponge and Power Ltd Bonai, Sundargarh                     | 0                   | 2                       | 0                                                    |
| 11      | Bhagawati Steels Pvt. Ltd., Jharsuguda                          | 0                   | 1                       | 0                                                    |
| 12      | Bhaskar Steel and Ferro Alloy Limited, Bonaigarh,<br>Sundargarh | 0                   | 1                       | 0                                                    |
| 13      | Bhubaneshwar Power Pvt. Ltd., Cuttack,                          | 4                   | 2                       | 0                                                    |
| 14      | Bhushan Energy Limited , Angul                                  | 1                   | 3                       | 0                                                    |
| 15      | Bhushan Power and Steel Limited, Rengali,<br>Sambalpur          | 2                   | 35                      | 4                                                    |
| 16      | Bhushan Steel Limited, Meramundali, Dhenkanal                   | 7                   | 35                      | 7                                                    |
| 17      | BILT Graphics Paper Products Ltd., Jaypore, Korapur             | 4                   | 3                       | 1                                                    |
| 18      | Birla Tyres, Chhanpur, Balasore                                 | 1                   | 3                       | 0                                                    |
| 19      | Boudh Distillery Pvt. Ltd., (Ramvikata)                         | 0                   | 1                       | 1                                                    |
| 20      | Brand Steel and Power Pvt. Ltd., Keonjhar                       | 0                   | 1                       | 0                                                    |
| 21      | BRG Iron and Steel Co. Pvt. Ltd.,Dhenkanal                      | 4                   | 3                       | 0                                                    |
| 22      | Concast Steel and Power Ltd., Badmal, Jharsuguda,               | 0                   | 7                       | 0                                                    |
| 23      | Cosboard Industries Limited , Jagatpur, Cuttack                 | 0                   | 2                       | 1                                                    |
| 24      | Cracker India Alloys Limited, Barbil,Keonjhar                   | 0                   | 1                       | 0                                                    |
| 25      | Emmami Paper Mills Limited, Balasore                            | 3                   | 3                       | 1                                                    |
| 26      | Essar Power (Odisha) Ltd., Paradeep, Jagatsinghpur              | 3                   | 2                       | 1                                                    |
| 27      | Essar Steel India Limited, Paradeep, Jagatsinghpur              | 3                   | 1                       | 0                                                    |
| 28      | FACOR Power Limited, Randia, Bhadrak,                           | 2                   | 1                       | 0                                                    |
| 29      | Ferro Manganese Plant, Joda of Tata Steel (Joda)                | 0                   | 4                       | 0                                                    |
| 30      | Ganesh Sponge Pvt. Ltd.,Angul                                   | 0                   | 1                       | 0                                                    |
| 31      | GMR Kamalanga Energy Ltd., Kamalanga, Dhenkanal                 | 4                   | 3                       | 1                                                    |
| 32      | Goa Carbon Limited, Paradeep, Jagatsinghpur                     | 2                   | 1                       | 0                                                    |
| 33      | Govindam Projects Pvt Ltd., Kuarmunda, Sundargarh               | 0                   | 1                       | 0                                                    |
| 34      | Grasim Industries Limited, Ganjam                               | 0                   | 3                       | 1                                                    |
| 35      | Green Waves Pvt Ltd., Bali, Cuttack                             | 0                   | 0                       | 1                                                    |
| 36      | Grewal Associates Pvt. Ltd., Barbil, Keonjhar                   | 0                   | 2                       | 0                                                    |
| 37      | HINDALCO Ltd., FRP Plant, Hirakud, Sambalpur                    | 0                   | 3                       | 2                                                    |
| 38      | HINDALCO Ltd.,CPP, Hirakud, Sambalpur                           | 3                   | 5                       | 1                                                    |
| 39      | HINDALCO Ltd.,Smelter Plant, Hirakud, Sambalpur                 | 1                   | 7                       | 5                                                    |
| 40      | Hindustan CocaCola Beverages Pvt. ltd., Khurda                  | 0                   | 0                       | 1                                                    |



| Sl. No. | Name & Address                                                               | No. of Online Monitoring Stations<br>Connected to RT-DAS Server of the SPC<br>Board, Odisha till 31.03.2019 |      |      |
|---------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|
|         |                                                                              | AAQMS                                                                                                       | CEMS | EQMS |
| 41      | Indian Farmers Fertilizer Co-operative Ltd.,<br>Paradeep, Jagatsinghpur      |                                                                                                             | 8    | 1    |
| 42      | Indian Metal and Ferro Alloys Ltd (120 MW Power Plant), Choudwar, Cuttack    | 0                                                                                                           | 2    | 0    |
| 43      | Indian Metal and Ferro Alloys Ltd (Charge Chrome<br>Plant, Choudwar, Cuttack | 0                                                                                                           | 3    | 0    |
| 44      | Indian Metal and Ferro Alloys Ltd., Choudwar,<br>Cuttack                     | 4                                                                                                           | 6    | 0    |
| 45      | Indian Oil Corpation Limited, Paradeep,<br>Jagatsinghpur                     | 7                                                                                                           | 22   | 1    |
| 46      | Jai Balaji Jyoti Steels Limited, Tainser, Sundargarh                         | 0                                                                                                           | 2    | 0    |
| 47      | Jai Hanuman Udyog Ltd., Kolabira, Jharsuguda                                 | 0                                                                                                           | 1    | 0    |
| 48      | Jalan Carbon and Chemicals Pvt. Ltd., Talcher, Angul                         | 1                                                                                                           | 0    | 0    |
| 49      | Jay Iron & Steels Ltd., Rourkela, Sundargarh                                 | 0                                                                                                           | 1    | 0    |
| 50      | Jay Jagannath Steel and Power Limited Sambalpur                              | 0                                                                                                           | 2    | 0    |
| 51      | Jindal India Thermal Power Ltd., Talcher, Angul                              | 4                                                                                                           | 2    | 1    |
| 52      | Jindal Stainless Ltd.,Jajpur                                                 | 4                                                                                                           | 7    | 2    |
| 53      | Jindal Steel and Power Limited, Angul                                        | 6                                                                                                           | 38   | 3    |
| 54      | Jindal Steel and Power Ltd., Barbil, Keonjhar                                | 2                                                                                                           | 2    | 0    |
| 55      | JK Paper Ltd.,Jaykaypur, Rayagada                                            | 3                                                                                                           | 3    | 0    |
| 56      | K. J. Ispat Limited, Duburi, Jajpur                                          | 0                                                                                                           | 1    | 0    |
| 57      | Kalinga Calciner Limited (Udayabata)                                         | 0                                                                                                           | 2    | 0    |
| 58      | Kalinga Sponge Iron Ltd., (Kalunga)                                          | 0                                                                                                           | 1    | 0    |
| 59      | Kamal Jeet Singh Ahluwalia, Keonjhar                                         | 0                                                                                                           | 3    | 0    |
| 60      | Kapilas Cement Manufacturing Works (A unit of OCL India Ltd., Tangi, Cuttack | 3                                                                                                           | 1    | 0    |
| 61      | Kasvi International, formerly known as Patnaik<br>Mineral                    | 0                                                                                                           | 2    | 0    |
| 62      | Kaushal Ferrometals Pvt. Ltd., Sundargarh                                    | 0                                                                                                           | 1    | 0    |
| 63      | Khedaria Ispat Ltd., Nikenbahal, Sundrgarh                                   | 0                                                                                                           | 1    | 0    |
| 64      | L N Metallics Ltd.,Sripura, Jharsuguda                                       | 0                                                                                                           | 1    | 0    |
| 65      | Ores Ispat Pvt. Limited, (Bonaigarh)                                         | 0                                                                                                           | 1    | 0    |
| 66      | Maa Manasha Devi Alloys Pvt. Ltd., (Lahunipada)                              | 0                                                                                                           | 1    | 0    |
| 67      | Maa Samleswri Industries (P) Ltd., (Rengali)                                 | 0                                                                                                           | 1    | 0    |
| 68      | Maa Shakumbari Sponge Pvt. Ltd., Rourkela,<br>Sundargarh                     | 0                                                                                                           | 1    | 0    |
| 69      | Mahakali Ispat Pvt. Ltd., Bonaigarh, Sundargarh                              | 0                                                                                                           | 1    | 0    |
| 70      | Maithan Ispat Limited, Jakhapura, Jajpur                                     | 0                                                                                                           | 2    | 0    |
| 71      | Mayur Electro Ceramics Pvt. Ltd., Baripada,<br>Mayurbhanj                    | 0                                                                                                           | 2    | 0    |

Annual Report 2018-19 —



| Sl. No. | Name & Address                                                       | No. of Online Monitoring Stations<br>Connected to RT-DAS Server of the SPC<br>Board, Odisha till 31.03.2019 |      |      |
|---------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|
|         |                                                                      | AAQMS                                                                                                       | CEMS | EQMS |
| 72      | Meta Sponge Pvt. Ltd., Sundargarh                                    | 0                                                                                                           | 1    | 0    |
| 73      | MGM Minerals Limited (Steel Division), Nimidha,<br>Dhenkanal         | 0                                                                                                           | 1    | 0    |
| 74      | Mideast Integrated Steels Ltd., Jajpur                               | 5                                                                                                           | 3    | 0    |
| 75      | MSP Metalics Limited, Jharsuguda                                     | 1                                                                                                           | 8    | 0    |
| 76      | MSP Sponge Iron Limited, Keonjhar                                    | 0                                                                                                           | 3    | 1    |
| 77      | N. K. Bhojani Pvt. Ltd., Keonjhar                                    | 0                                                                                                           | 1    | 0    |
| 78      | NALCO Ltd.,Captive Power Plant, Angul                                | 4                                                                                                           | 10   | 1    |
| 79      | NALCO Ltd.,Refinery, Damanjodi, Koraput                              | 4                                                                                                           | 9    | 1    |
| 80      | NALCO Ltd.,Smelter Plant, Angul                                      | 4                                                                                                           | 11   | 1    |
| 81      | Narbheram Power and Steel Pvt. Ltd., Dhenkanal                       | 0                                                                                                           | 1    | 0    |
| 82      | Nava Bharat Ventures Ltd., Dhenkanal                                 | 3                                                                                                           | 3    | 1    |
| 83      | Neelachal Ispat Nigam Limited, Duburi, Jajpur                        | 3                                                                                                           | 4    | 2    |
| 84      | New Laxmi Steel and Power Pvt. Ltd., Khordha                         | 0                                                                                                           | 2    | 0    |
| 85      | NTPC Limited (TSTPS), Deepshikha, Angul                              | 4                                                                                                           | 6    | 1    |
| 86      | NTPC Limited (TTPS) Talcher Thermal, Angul 4 6                       |                                                                                                             | 6    | 1    |
| 87      | NTPC-SAIL Power Company Private Limited,<br>Rourkela, Sundargarh,    | 4                                                                                                           | 2    | 0    |
| 88      | OCL India Ltd,Cement Unit, Rajgangpur, Sundargarh                    | 4                                                                                                           | 10   | 1    |
| 89      | OCL Iron and Steel Limited, Rajgangpur, Sundargarh                   | 0                                                                                                           | 4    | 0    |
| 90      | Odisha Power Generation Corporation Ltd.,<br>Banaharpali, Jharsuguda | 4                                                                                                           | 2    | 1    |
| 91      | Paradeep Phosphate Ltd., Paradeep, Jagatsinghpur                     | 4                                                                                                           | 9    | 3    |
| 92      | Patnaik Steels and Alloys Ltd., Keonjhar                             | 0                                                                                                           | 1    | 0    |
| 93      | Pawanjay Sponge Iron Limited, Bijabahal,<br>Sundargarh               | 0                                                                                                           | 1    | 0    |
| 94      | Pooja Sponge Pvt. Ltd., Kalunga, Sundargarh                          | 0                                                                                                           | 2    | 0    |
| 95      | Prabhu Sponge(p) Limited, Rajgangpur, Sundargarh                     | 0                                                                                                           | 2    | 0    |
| 96      | R. B. Sponge Pvt. Ltd., Jayantpur, Sambalpur                         | 0                                                                                                           | 1    | 0    |
| 97      | Reliable Sponge Pvt. Ltd. (Bonai Unit), Bonaigarh,<br>Sundargarh     | 0                                                                                                           | 1    | 0    |
| 98      | Reliable Sponge Pvt. Ltd.,(KALUNGA), Sundergarh                      | 0                                                                                                           | 3    | 0    |
| 99      | Rexon Strips Ltd., Rourkela, Sundargarh                              | 0                                                                                                           | 1    | 0    |
| 100     | Rourkela Sponge LLP (Kalunga)                                        | 0                                                                                                           | 2    | 0    |
| 101     | Rourkela Steel Plant, Rourkela, Sundargah                            | 4                                                                                                           | 20   | 8    |
| 102     | Rungta Mines Limited, Koira, Sundargarh                              | 4                                                                                                           | 5    | 0    |
| 103     | Rungta Mines Ltd., Karakola (Barbil)                                 | 0                                                                                                           | 2    | 0    |
| 104     | Sakthi Sugars Limited (Distillery), Haripur,<br>Dhenkanal            |                                                                                                             | 1    | 2    |



| Sl. No. | Name & Address                                                  | No. of Online Monitoring Stations<br>Connected to RT-DAS Server of the SPC<br>Board, Odisha till 31.03.2019 |      |      |  |
|---------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|--|
|         |                                                                 | AAQMS                                                                                                       | CEMS | EQMS |  |
| 105     | Sakthi Sugars Limited, Haripur, Dhenkanal                       |                                                                                                             | 1    | 3    |  |
| 106     | Samaleswari Ferro Metals Ltd., Bishalkhinda,<br>Sambalpur,      | 0                                                                                                           | 1    | 0    |  |
| 107     | Sani Clean Pvt. Ltd., Khordha                                   | 0                                                                                                           | 1    | 0    |  |
| 108     | Scan Steels Limited (Unit-2), Budhakata, Sundargarh             | 0                                                                                                           | 3    | 0    |  |
| 109     | Scan Steels Limited (Unit-I), Rajgangpur, Sundargarh            | 0                                                                                                           | 1    | 0    |  |
| 110     | Seeta Integrated Steel and Energy Ltd., Sundargarh              | 0                                                                                                           | 2    | 0    |  |
| 111     | Seven Star Steels Ltd., Jharsuguda                              | 0                                                                                                           | 2    | 0    |  |
| 112     | Shiv Mettalicks (P) Ltd., Rourkela, Sundargarh,<br>Odisha       | 0                                                                                                           | 2    | 0    |  |
| 113     | Shiva Cement Ltd., Rourkela, Sundargarh                         | 0                                                                                                           | 4    | 0    |  |
| 114     | Shree Ganesh Metalics(Kuarmunda), Rourkela,<br>Sundargarh       | 0                                                                                                           | 3    | 0    |  |
| 115     | Shree Hari Sponge Pvt. Ltd., Bonaigarh, Sundargarh,             | 0                                                                                                           | 1    | 0    |  |
| 116     | Shri Hardev Steels Pvt. Ltd., Athagarh, Cuttack                 | 0                                                                                                           | 3    | 0    |  |
| 117     | Shri Jagannath Steels and Power Ltd., Barbil,<br>Keonjhar       | 0                                                                                                           | 3    | 0    |  |
| 118     | Shri Mahavir Ferro Alloys Pvt. Ltd., Rourkela,<br>Sundargarh    | 0                                                                                                           | 4    | 0    |  |
| 119     | Shyam Metalics and Energy Ltd., Lapanga, Sambalpur              | 4                                                                                                           | 9    | 1    |  |
| 120     | SMC Power Generation Limited, Hirma, Jharsuguda                 | 4                                                                                                           | 2    | 0    |  |
| 121     | Sponge Udyog Pvt. Ltd., Kalunga, Sundargarh                     | 0                                                                                                           | 1    | 0    |  |
| 122     | Sree Metaliks Ltd., Rugudihi, Keonjhar                          | 0                                                                                                           | 5    | 0    |  |
| 123     | Sri Balaji Metallics Pvt. Ltd., Birkela, Sundargarh             | 0 1                                                                                                         |      | 0    |  |
| 124     | Sumrit Metaliks Pvt. Ltd., Barbil, Keonjhar                     | 0                                                                                                           | 1    | 0    |  |
| 125     | Suraj Products Pvt. Ltd., Rajgangpur, Sundargarh                | 0                                                                                                           | 3    | 0    |  |
| 126     | Surendra Mining Industries (P) Ltd., Bonai,<br>Sundargarh       | 0                                                                                                           | 2    | 0    |  |
| 127     | Swastik Ispat Pvt. Ltd., Kuarmunda, Sundargarh                  | 0                                                                                                           | 4    | 0    |  |
| 128     | Tata Sponge Iron Ltd., Joda, Keonjhar                           | 3                                                                                                           | 3    | 0    |  |
| 129     | TATA STEEL Kalinganagar, Keonjhar                               | 4                                                                                                           | 18   | 3    |  |
| 130     | TATA Steel Limited (Joda)                                       | 0                                                                                                           | 1    | 0    |  |
| 131     | Thakur Prasad Sao and Sons Pvt. Ltd., Lahandabud,<br>Jharsuguda | 0                                                                                                           | 2    | 0    |  |
| 132     | The Bargarh Co-operative Sugar Mills Ltd., Bargarh              | 0                                                                                                           | 1    | 0    |  |
| 133     | Times Steel and Power Pvt. Ltd., Rourkela,<br>Sundargarh        | 0                                                                                                           | 1    | 0    |  |
| 134     | Toshali Cement Private Limited, Ampavalli, Koraput              | 0                                                                                                           | 3    | 0    |  |
| 135     | T R Chemicals Ltd., Rajgangpur, , Sundargarh                    | 0                                                                                                           | 1    | 0    |  |
| 136     | TRL Krosaki Refactories Ltd., Belpahar, Jharsuguda              |                                                                                                             | 4    | 0    |  |

Annual Report 2018-19 ——



| Sl. No. | Name & Address                                            | No. of Online Monitoring Stations<br>Connected to RT-DAS Server of the SPC<br>Board, Odisha till 31.03.2019 |      |      |  |
|---------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|--|
|         |                                                           | AAQMS                                                                                                       | CEMS | EQMS |  |
| 137     | UltraTech Cement Ltd., Arda, , Jharsuguda                 | 4                                                                                                           | 2    | 0    |  |
| 138     | Utkal Alumina International Ltd., Doraguda,<br>Rayagada   | 4                                                                                                           | 5    | 1    |  |
| 139     | Utkal Metallics Limited, Rourkela, Sundargarh             | 0                                                                                                           | 1    | 0    |  |
| 140     | Vasundhara Metaliks Pvt Ltd., Sundargarh                  | 0                                                                                                           | 1    | 0    |  |
| 141     | Vedanta Limited (Smelter & CPP) Bhurkamunda               | 4                                                                                                           | 29   | 3    |  |
| 142     | Vedanta Ltd., (IPP) Jharsuguda                            | 4.                                                                                                          | 4    | 1    |  |
| 143     | Vedanta Ltd., Lanjigarh, Kalahandi                        | 2                                                                                                           | 3    | 0    |  |
| 144     | Vikram Pvt. Ltd., Bonai, Sundargarh                       | 0                                                                                                           | 1    | 0    |  |
| 145     | Viraj Steel and Energy Ltd., Lapanga, Sambalpur           | 0                                                                                                           | 2    | 0    |  |
| 146     | Viraja Steel & Power Private Limited, Athgarh,<br>Cuttack | 0                                                                                                           | 2    | 0    |  |
| 147     | Visa Steel Limited, Kalinganagar, Jajpur                  | 4                                                                                                           | 5    | 1    |  |
| 148     | VISA SunCoke Limited, Kalinganagar, Jajpur                | 0                                                                                                           | 2    | 0    |  |
| 149     | Vishal Metallics Pvt Ltd., Bonai, Sundargarh              | 0                                                                                                           | 1    | 0    |  |
| 150     | Yazdani Steel and Power Limited, Kalinga Nagar,<br>Jajpur | 0                                                                                                           | 2    | 0    |  |
|         | Total 191 496                                             |                                                                                                             | 67   |      |  |

# **MINES**

| Sl. No. | Name of the Mine                                                                 |   | CEMS | EQMS |
|---------|----------------------------------------------------------------------------------|---|------|------|
| 1       | Barsuan-Taldih-Kalta Iron Ore Mines of SAIL,<br>Sundargarh                       |   | 0    | 0    |
| 2       | Balda Block Iron Mines of Serajuddin & Co, Keonjhar                              | 4 | 0    | 0    |
| 3       | Bolani Iron Ore Mines of SAIL, Keonjhar                                          | 4 | 0    | 0    |
| 4       | Jajang Iron and Manganese Mines of Rungta Mines<br>Ltd., Keonjhar                |   | 0    | 0    |
| 5       | Joda East Iron Mines of Tata Steel Ltd, Keonjhar                                 | 3 | 0    | 0    |
| 6       | Kamarda Chromite Mines of B. C. Mohanty & Sons Pvt. Ltd., Jajpur                 |   | 0    | 2    |
| 7       | Kalarangiatta Chromite Mines of FACOR Ltd., Jajpur                               |   | 0    | 2    |
| 8       | Kaliapani Chromite Mines of Balasore Alloys Ltd.,<br>Jajpur                      |   | 0    | 2    |
| 9       | Katamati Iron Ore Mines of TATA Steel Ltd., Keonjhar                             | 3 | 0    | 0    |
| 10      | Koira Iron Ore Mine of M/s. Essel Mining Industries Ltd, Sundargarh              |   | 0    | 0    |
| 11      | Nadidih Iron and Manganese Ore Mines of Bonai<br>Industrial Co. Ltd., Sundargarh |   | 0    | 0    |
| 12      | Nadidih Iron and Manganese Ore Mines of Feegrade & Co. Pvt. Ltd., Sundargarh     |   | 0    | 0    |



| Sl. No. | o. Name of the Mine                                                  |   | CEMS | EQMS |
|---------|----------------------------------------------------------------------|---|------|------|
| 13      | Nuagaon Iron Ore Mines of KJS Alhuwalia, Keonjhar                    |   | 0    | 0    |
| 14      | Oraghat Iron Ore Mines of Rungta Sons (P) Ltd.,<br>Sundargarh        |   | 0    | 0    |
| 15      | Ostapal Chromite Mines of FACOR, Jajpur                              | 0 | 0    | 2    |
| 16      | Saruabil Chromite Mines of Mishrilal Mines (P) Ltd.,<br>Jajpur       |   | 0    | 2    |
| 17      | Serenda Bhadrasahi Iron & Manganese Mine of M/s. OMC Ltd, , Keonjhar |   | 0    | 0    |
| 18      | South Kaliapani Chromite Mines of OMC Ltd., Jajpur                   |   | 0    | 5    |
| 19      | Sukinda Chromite Mines                                               | 0 | 0    | 3    |
| 20      | Mahagiri Chromite Mines of M/s IMFA, Jajpur                          | 0 | 0    | 2    |
|         | Sukinda Chromite Mines of TATA Steel Ltd, Jajpur                     | 0 | 0    | 3    |
| 21      | Tailangi Chromite Mines of IDCOL, Jajpur                             | 0 | 0    | 2    |
| 22      | Thakurani Iron Ore Mines of Kaypee Enterprises,<br>Keonjhar          |   | 0    | 0    |
| 23      | Jillinga Mines of Essel Mining Corporation, Keonjhar                 |   | 0    | 0    |
| 24      | Kahandbondh Iron ore mines of Tata Steel , Keonjhar                  |   | 0    | 0    |
|         | Total                                                                |   | 0    | 25   |

## **5.3 CLOSURE DIRECTIONS**

As a part of the Board's regulatory role, all units brought under consent administration, if found defaulting the prescribed standards, are allowed reasonable time to comply with the standards. On persistent non-compliance, the defaulting units are served with Show Cause Notices (Table 5.6) followed by personal hearing and are generally prescribed time bound action plan for compliance. Consistent non-compliances lead to issue of closure directions. Table-5.9 shows the status of closure directions, issued by the Board.

Table - 5.9 Status of Closure Directions Issued during 2018-19.

| No. of directions issued | No of industries under closure | No. of revocations after due compliance |
|--------------------------|--------------------------------|-----------------------------------------|
| 200                      | 143                            | 57                                      |

### 5.4 PUBLIC HEARING

The State Pollution Control Board has been entrusted with the responsibility of conducting public hearing for the projects requiring environmental clearance from the Ministry of Environment and Forests with the assistance from the District Administration as per EIA Notification No. S.O.-1533 (E), dt. 14.09.2006.

Details of public hearings conducted during the period 2018-19 are given in Table-5.10 and 5.11.

4 — Annual Report 2018-19 —



# **Table - 5.10 Status of Public Hearings**

| 1 | Number of projects received by the Board for public hearing during the financial year 2018-19. | 42 |
|---|------------------------------------------------------------------------------------------------|----|
| 2 | Number of projects carried forward from previous financial year 2017-18                        | 10 |
| 3 | Total Number of projects received for public hearing                                           | 52 |
| 4 | Number of projects for which public hearing have been conducted                                | 45 |
| 5 | Number of cases wherein Collectors were requested to fix up date                               | 07 |

Table - 5.11 Details of Projects for which Public Hearings Conducted

| Sl No. | Name & Address of the project                                                                                                                   | Purpose                                                                                                                                                                 | Date       | Category |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 1      | Dhamraport Company Ltd,<br>Bhadrak.                                                                                                             | Revised master plan for<br>Development of Dhamra port                                                                                                                   | 11.4.2018  | A        |
| 2      | Khairbandha Barrage Project,<br>Mayurbhanj.                                                                                                     | Construction of Barrage across<br>Khairibandha river                                                                                                                    | 13.4.2018  | В        |
| 3      | Damadara rope way & infra<br>Ltd, Nandankanan Zoological<br>park,BBSR ,Khordha.                                                                 | Pulsated Monocable System<br>Passenger Ropeway                                                                                                                          | 18.5.2018  | A        |
| 4      | Bhaskar Steel & Ferro alloys Pvt.<br>Ltd,<br>Badatumkela ,Sundargarh.                                                                           | Modification cum Expansion of existing steel plant capacity from 0.1 MTPA billet to 0.26 MTPA billet out of which 0.132 MTPA to be converted to TMT rods                | 25.5.2018  | A        |
| 5      | Bharat Petroleum Corporation Ltd.<br>Baulsingha,Bhatli, Bargarh.                                                                                | Establishment of 100 KLPD<br>Lignocellulosic 2G Ethanol Plant                                                                                                           | 27.6.2018  | В        |
| 6      | Indian Oil Corporation<br>Ltd,Somnathpur,<br>Khordha.                                                                                           | Construction of LPG Bulk<br>Storage (1800MT) and Bottling<br>Facility (Indane Bottling Plant)                                                                           | 20.7.2018  | В        |
| 7      | Paradeep Port Trust,<br>Paradeep,Jagatsinghpur                                                                                                  | Development of Outer<br>Harbour, Inner Harbour<br>including Western Dock and<br>Mechanization of existing<br>operational berths                                         | 29.09.2018 | A        |
| 8      | Paradeep Municipality,Paradeep,<br>Jagatsinghpur                                                                                                | Municipal Solid Waste<br>Management (Landfill) Project                                                                                                                  | 11.09.2018 | В        |
| 9      | Lanjiberna Lime stone Mines,<br>M/s OCL<br>Rajgangpur,Sundargarh.                                                                               | Expansion of production capacity from 4.2 MTPA Limestone and 0.08 MTPA Dolomite to 9.5 MTPA Limestone and 0.08 MTPA Dolomite (17.0 MTPA ROM) over an area of 873.057 Ha | 03.10.2018 | A        |
| 10     | Nadidih Iron and Manganese Mines<br>of M/s Bonai Industrial Company<br>Ltd. at villages Nadikasira<br>& Rengalbeda, Koira, Dist-<br>Sundargarh. | Expansion of production of iron ore from 5.3 MTPA to 9.0 MTPA,M.L-73.855 ha.                                                                                            | 10.10.2018 | A        |
| 11     | Badampahar Iron Ore Mines of M/s. Lal Trade & Agencies Pvt.Ltd, Dhangrimuta,Budhijharan and Badampahar RF, Dist- Mayurbhanj                     | Enhancement in Iron ore production from 0.72 MTPA to 1.5 MTPA over an area of 129.61 ha                                                                                 | 10.10.2018 | A        |



| Sl No. | Name & Address of the project                                                                                                                                | Purpose                                                                                                                                                                                            | Date        | Category |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| 12     | Narayanposi Iron and Manganese<br>Ore Mines<br>M/s Aryan Mining &Trading<br>Corporation Pvt Ltd,<br>At- Koira&Kashira and Kathamala<br>R.F,Dist- Sundargarh. | Expansion of iron ore from 3.0 MTPA to 6.0 MTPA, existing Mn-0.036 MTPA, Beneficiatio plant-2.0 MTPA, M.L-349.254 Ha.                                                                              | 15.10.2018  | A        |
| 13     | Nadidih Iron and Manganese Mines<br>of M/s Feegrade& Co. (P) Ltd. at<br>villages Nadikasira & Rengalbeda,<br>Tehsil Koira in Sundargarh district             | Enhancement in production capacity of ROM Iron ore 6.0 MTPA and reduction in dry processing (crushing and screening) of low grade iron ore (Total handling 7.451 MTPA) over an area of 121.405 Ha. | 25.10. 2018 | A        |
| 14     | M/s. Jajpur Cements Pvt. Ltd, at<br>Kalinganagar Industrial Complex,<br>Dist- Jajpur.                                                                        | Establishment of 1.5 MTPA capacity Cement Grinding unit                                                                                                                                            | 26.10. 2018 | В        |
| 15     | Oraghat Iron Ore Mines of M/s.<br>Rungta Sons Pvt. Ltd, at Orghat<br>and Sanindpur, Sundargarh                                                               | Enhancement of production<br>capacity of Iron Ore from 5.0<br>MTPA 8.35 MTPA (7.35 MTPA<br>iron ore (ROM) over an area of<br>82.961 Ha                                                             | 26.10. 2018 | В        |
| 16     | M/s. Essel Mining & Industries<br>Ltd, Koira Iron Ore Mines, Koira,<br>Kadodihi & Harischandrapur,<br>Sundargarh                                             | Enhancement of iron ore<br>production from 4.0 MTPA<br>to 6.0 MTPA over an area of<br>90.143 Ha                                                                                                    | 30.10. 2018 | В        |
| 17     | Sukrangi Chromite mines,M/s OMC<br>Ltd, Jajpur                                                                                                               | Enhancement in chromite ore<br>production from 1.3 LTPA<br>to 3.0 LTPA over an area of<br>382.709 Ha                                                                                               | 09.11. 2018 | A        |
| 18     | Roida - II Iron Mines of M/s.<br>KhatauNarbheram & Co.<br>at - Roida and Tanto villages,<br>Barbil tehsil ,Dist- Keonjhar                                    | Expansion in iron ore production from Production of 2.2 MTPA to 3.5 MTPA over an area of 74.867 ha                                                                                                 | 9.11. 2018  | В        |
| 19     | M/s. Balasore <i>A</i> lloys Ltd. at<br>Nizigarh, Tahasil- Sukinda,<br>Dist- Jajpur                                                                          | Ferro alloys plant along with a zigging plant (20TPH),Briquetting plant (35TPH) and installation of COB(1,98,000TPA)                                                                               | 9-11-2018   | A        |
| 20     | M/s. Bharat Petroleum Corporation<br>Ltd At- Sadashivpur,Meramandali,<br>Dist-Dhenkanal                                                                      | Construction of Common User<br>Facility (CUF)for storage of<br>around 54742 KL of petroleum<br>products                                                                                            | 14.11. 2018 | В        |
| 21     | M/s Jindal United Steel Ltd,<br>Kalinganagar Industrial Complex,<br>Dangadi, Dist- Jajpur                                                                    | Expansion of Hot strip mill capacity from 1.6 MTPA to 3.2 MTPA and installing 0.3 MTPA CRM                                                                                                         | 14.11. 2018 | A        |
| 22     | M/s Jindal Stainless Ltd ,at<br>Dangadi, Dist- Jajpur                                                                                                        | Expansion of Crude Stainless<br>Steel Production from 0.8 MTPA<br>to 2.2 MTPA and Cold Rolling<br>Mill(CRM) from 0.8 MTPA to 1.6<br>MTPA                                                           | 14.11. 2018 | A        |
| 23     | M/s Sanjukta Gems,<br>Pipalpadar Gem Stone<br>Deposit, Pipalpadar&Sirjapalli,<br>Kesinga,Kalahandi                                                           | Production of Cat's Eye over an area of 17.122 Ha                                                                                                                                                  | 20.11. 2018 | В        |

26 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_\_



| Sl No. | Name & Address of the project                                                                                                 | Purpose                                                                                                                                                                            | Date        | Category |
|--------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| 24     | M/s. Kapilash Cement<br>Manufacturing Works ( A unit of<br>OCL India Ltd. village- Biswali, Po-<br>Barunia,(Cuttack)          | Expansion of Cement Grinding<br>Unit from 1.70 MTPA to 4.20<br>MTPA by installation of a new<br>Cement Mill of capacity 2.5<br>MTPA                                                | 27.11. 2018 | В        |
| 25     | M/s. Kapilash Cement<br>Manufacturing Works ( A unit of<br>OCL India Ltd. village- Biswali, Po-<br>Barunia,(Jajpur)           | Expansion of Cement Grinding<br>Unit from 1.70 MTPA to 4.20<br>MTPA by installation of a new<br>Cement Mill of capacity 2.5 MTPA                                                   | 28.11. 2018 | В        |
| 26     | M/s Hindustan Petroleum<br>Corporation located at- Pitamahal,<br>tahasil Seskhal, Dist-Rayagada .                             | To set up LPG Bottling Plant of storage capacity 3x300 MT                                                                                                                          | 28.11. 2018 | В        |
| 27     | M/s Starlight Pvt Ltd,<br>GoudSargiguda,Taluka-Junagarh,<br>Dist- Kalahandi                                                   | Establish of Grain based distillery 2x45KLD and Co-generation Power plant 1x3.0 MW along with 2x800 cases /Day of IMFL/IMIL bottling unit at village GoudSariguda, Taluka-Junagarh | 1.11. 2018  | A        |
| 28     | Odisha Waste Management<br>Project (Division of RamkyEnviro<br>EngineersLtd.),Sukinda At-<br>Kanchichuan, Sukinda Dist-Jajpur | Common Biomedical Waste<br>Treatment Facility by Odisha<br>Waste Management Project                                                                                                | 6.11. 2018  | В        |
| 29     | Gorumahisani iron minesM/s.<br>GhanashyamMisra& Sons Pvt.<br>Ltd at Kuliesilla, , Nodhabani and<br>Gorumahisani, Mayurbhanj   | Enhancement of Iron Ore production from 0.75 MTPA to 1.1 MTPA over an area of 349.50 ha.                                                                                           | 02.11. 2018 | A        |
| 30     | Samalewari OCP (Phase - IV), M/s.<br>MCL IB Valley Aea,<br>Brajrajnagar                                                       | Expansion of Coal production (Phase -IV) of 15 MTPA with increase in ML area from 928.264 Ha. to1334.912 Ha.                                                                       | 14.12. 2018 | В        |
| 31     | Mediaid Marketing Services<br>Amsranga, Sundargarh                                                                            | Proposed Common Bio Medical<br>Waste Treatment Facility                                                                                                                            | 26.12. 2018 | A        |
| 32     | Sanindpur iron & Bauxite<br>Mines, M/s Rungta Sons pvt ltd,<br>Sanindpur & Oraghat village, Koira,<br>Sundargarh              | Expansion In Production from 4.5 MTPA to 8.06 MTPA over an area of 147.10 Ha.                                                                                                      | 28.12. 2018 | A        |
| 33     | Anjira Stone Quarry BSQ No.1<br>of Sri Tapan Kumar Nayak,<br>Dharmasal, Dist- Jajpur                                          | Production of 29200 cum black<br>stone over an area of 18.41 Ha.<br>(Cluster area of 36.82 Ha.)                                                                                    | 29.12. 2018 | В        |
| 34     | Western Integrated Waste<br>management Facility ,<br>Banjori, Deogarh                                                         | Common Hazardous waste treatment ,storage and disposal facility                                                                                                                    | 24.1.2019   | В        |
| 35     | Siarmal OCP<br>M/s. MCL, Basudhara Area, IB Valley<br>Coalfields, Sundargarh                                                  | Production of 50.0MTPA coal over<br>an area of 2580.45 Ha(project<br>area),M.L.area-2290.45 Ha.                                                                                    | 3.1.2019    | A        |
| 36     | Basundhara (W) OCP<br>M/s. MCL , IB Valley Coalfield<br>Basundhara Area,<br>At/Po- Balinga, Sundargarh                        | Extension of OCP for production of 8.75 MTPA coal over lease area of 323.92 ha.                                                                                                    | 14.02.2019  | A        |
| 37     | Patabeda Iron Ore Mines<br>M/s. MGM Minerals Ltd,<br>Patabeda, KoiraTahsil, Sundargarh                                        | Expansion of iron ore production from 0.8 MTPA to 1.5 MTPA (ROM) along with Crusher and Screening Plants over lease area of 28.397 Ha.                                             | 05.02.2019  | В        |



| Sl No. | Name & Address of the project                                                                                                                      | Purpose                                                                                                                                                                                                                                                                        | Date       | Category |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 38     | Jagannath Colliery<br>M.s. MCL<br>At- Jagannath Area, Angul                                                                                        | Expansion of coal production from 6.0 MTPA to 7.5 MTPA with increase in mine lease area from 430.736 ha. to 553.946 ha                                                                                                                                                         | 19.02.2019 | A        |
| 39     | Chilika Distilleries, Kanaka,<br>Dist- Ganjam                                                                                                      | Proposed 110 KLPD Grain<br>based Distillery and 5 MW Co-<br>generation Power Plant                                                                                                                                                                                             | 23.2.2019  | A        |
| 40     | Mediaid Marketing Services,<br>Arakhapada, Sergada,Dist-Ganjam                                                                                     | Development of Common<br>Biomedical Waste Treatment<br>and disposal facility at<br>Arakhapada                                                                                                                                                                                  | 26.2.2019  | В        |
| 41     | M/s Ardent Steel Limited, village<br>Phuljhar, Block Bansapal,<br>Dist- Keonjhar.                                                                  | Expansion of Iron Ore<br>Pelletisation Plant (0.6 MTPA to<br>1.8 MTPA), Iron ore Benefication<br>Plant (3.0 MTPA), DRI Plant (0.6<br>MTPA), Pig Iron BF (0.6 MTPA),<br>Sinter Plant (0.8 MTPA), SMS (1.2<br>MTPA), Rolling Mills (1.2 MTPA)<br>and CaptivePower Plant (125 MW) | 28.2.2019  | A        |
| 42     | Chettinad Cement Corporation Pvt Ltd,<br>Kalinganagar I/C,Jakhapura,Jajpur.                                                                        | Proposed cement grinding unit of 2x1.0MTPA                                                                                                                                                                                                                                     | 06.03.2019 | В        |
| 43     | Nuagaon Iron ore Mines of M/s Kamaljeet Singh Ahluwalia, in Nuagaon, Guali, Topadihi, Barapada and Katasahi villages BarbilTahsil, Dist- Keonjhar. | Expansion of Iron ore production<br>from 5.62 MTPA to 7.99 MTPA<br>(ROM) along with existing 2.00<br>MTPA Beneficiation Plant and<br>Crushing and Screening Plants<br>over lease area of 767.284 ha                                                                            | 08.03.2019 | A        |
| 44     | Dhenkanal Steel Plant<br>M/s. Rungta Mines Ltd<br>Jharbandh ,Galpada and Tarkabeda<br>villages, Dist- Dhenkanal                                    | Steel plant capacity 2.85 MTPA                                                                                                                                                                                                                                                 | 07.03.2019 | A        |
| 45     | Thakurani Iron Ore Mines of M/s<br>Kaypee Enterprises, Thakurani<br>village Barbil Tahsil,<br>Dist- Keonjhar.                                      | Expansion of Iron ore<br>production from 5.5 MTPA to<br>7.99 MTPA (ROM) along with<br>Crushing and Screening Plants<br>over lease area of 228.04 ha                                                                                                                            | 09.03.2019 | A        |

### 5.5 STATUS OF WATER CESS

Status of Water Cess Assessment, Collection, Remittance and Reimbursement for the Year 2018-19 is given in Table-5.12.

**Table - 5.12 Status of Water Cess** 

| Sl.No | Water Cess Assessment         | Amount in Rupees ( 🛭 ) |
|-------|-------------------------------|------------------------|
| 1     | Total Assessment of Industry  | 2,54,57,970            |
| 2     | Arrear water cess Received    | 26,85,734.00           |
| 3     | Remittance to MoEF (20% only) | 5,37,147.00            |
| 4     | Retained by the Board         | 21,48,587.00           |

The Water Cess Act,1977 has been abolished with effect from 01.07.2017. The above water cess details pertain to arrears when the Act was in force.

28 — — — Annual Report 2018-19 —



### 5.6 ENFORCEMENT UNDER THE ENVIRONMENT (P) ACT, 1986

### 5.6.1 Implementation of the Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016.

Ministry of Environment, Forest and Climate Change, Govt. of India in supersession of Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2008 has notified the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 on 4<sup>th</sup> April, 2016. These rules apply to the management of hazardous and other waste as specified in the Schedules to these rules.

### 5.6.1.1. Authorisation

The Authorization status of hazardous waste generating industries during 2018-19 is given in Table 5.13.

Table 5.13 Authorization Status of Hazardous Waste

| Sl. No. | Authorization status                 | Number |
|---------|--------------------------------------|--------|
| 1       | Total no. of applications received   | 139    |
| 2       | No. of units granted authorisation   | 113    |
| 3       | No. of units refused                 | 01     |
| 4       | Total No. of applications disposed   | 114    |
| 5       | No. of applications under evaluation | 25     |

### 5.6.1.2 Utilization and Disposal of Hazardous Waste

### **Utilisation of Aluminium Dross Rejects / Residues:**

Aluminium Dross is a Hazardous Waste generated from the Aluminium Smelters. Although, a good numbers of actual users have been established and operating for reprocessing of the Aluminium Dross, there is no reprocessing unit in Odisha for utilisation of dross rejects / residue generated from Aluminium Dross reprocessing activities. As such rejects / residues constitute about 80% of dross, its disposal in Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF) becomes very uneconomical. In the meantime, an entrepreneur, M/s A. K. Enterprises, Plot No. 45, Mouza - Brahmapur, Dist - Khordha has developed a technology in consultation with M/s Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, a CSIR laboratory for production of non-Ferric Alum by utilisation of Aluminium Dross rejects/residues. The unit has already been established with Consent of the Board. Trial permission has been accorded by CPCB and trial run has been witnessed by officials of Central Pollution Control Board (CPCB) and State Pollution Control Board (SPCB), Odisha in the presence of the Scientist of the IMMT and the report has been sent to CPCB for consideration.

### (A) Authorisation Status of Actual Users of Hazardous Wastes:

During the period 2018-19, 26 Nos. of Actual Users (inside Odisha) and 25 Nos. of Actual Users (Outside Odisha) have been authorised by the Board for recycling / reprocessing of different hazardous wastes (Used Oil, Waste Oil, Used Anode Butt, Aluminium Dross, Spent Pot Lining, Used Lead Acid Battery, Zinc Skimming / Zinc Ash / Zinc Dross, Flue Gas Dust / Gas Cleaning Plant (GCP) Sludge, Vanadium Sludge, etc.) under Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.



### List of Actual users (Processor / Recyclers) having valid authorization of SPCB (Inside Odisha)

| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                                                                              | Quantity of Hazardous Waste                         | Validity               |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|
| 1          | Hindalco Industries Ltd., Smelter Unit, (In-house Dross Recycling Plant) At/Po- Hirakud, Dist - Sambalpur, Odisha - 768016 E-mail: ak.agarwala@adityabirla.com hirakud.e@adityabirla.com jagannath.p.nayak@adityabirla.com Mobile: 9090060015 | Aluminium Dross - 4,000 T/A                         | 31.03.2023             |
| 2          | Aditya Aluminium Limited,<br>(A Unit of Hindalco Industries Limited),<br>(In-house Dross Recycling Plant)<br>At/Po - Lapanga, Beside SH - 10,<br>Dist - Sambalpur, Odisha - 768212<br>E-mail: ranjan.j@adityabirla.com<br>Mobile: 8018043156  | Aluminium Dross - 3,060 T/A<br>&<br>Used Anode Butt | 31.03.2023             |
| 3          | National Aluminium Company Ltd.,<br>Smelter Plant, NALCO Nagar,<br>Dist-Angul-759145<br>E-mail: abhijit.sinha@nalcoindia.co.in<br>Mobile: 9437155606                                                                                          | Used Anode Butt                                     | 31.03.2021             |
| 4          | Vedanta Limited, (Smelter and CPP)<br>At - Bhurkamunda, PO - Siripura,<br>Dist - Jharsuguda, Odisha - 768202<br>E-mail : ASP.Mishra@vedanta.co.in<br>Mobile : 9937285045                                                                      | Used Anode Butt                                     | 31.03.2020             |
| 5          | A. K. Enterprises Plot No A/29, Sarua Industrial Area, Khurda, Odisha - 752057 E-mail: enterprisesake@yahoo.co.in Mobile: 9437199846 / 9238444846                                                                                             | Aluminium Dross - 1,125 T/M                         | 31.03.2020             |
| 6          | A. K. Enterprises,<br>Plot No. 45, Mouza - Brahmapur,<br>Dist - Khordha, Odisha<br>E-mail : enterprisesake@yahoo.co.in<br>Mobile : 9437199846 / 9238444846                                                                                    | Aluminium Dross Rejects to<br>manufacture Alum      | Trial Run<br>Conducted |
| 7          | Murugappa Enterprises<br>At - Beherapat, Po - H. Kantapali,<br>Dist - Jharsuguda, Odisha<br>E-mail : khanmoinuddin927@gmail.com<br>Mobile : 9824711777                                                                                        | Aluminium Dross<br>- 750 T/M                        | 31-03-2020             |
| 8          | Shri Sai Metallik<br>At – Jamunalia, PO - Badaposhi<br>VIA – Naranpur, Dist - Keonjhar, Odisha<br>E-mail : shrisaimetalik@gmail.com<br>Mobile : 977601244                                                                                     | Aluminium Dross<br>- 640 T/M                        | 30-09-2019             |
| 9          | Shree Shyam Minerals,<br>At/Po - Hirma, Dist - Jharsuguda, Odisha<br>E-mail : lalitpoddar@gmail.com<br>Mobile : 9437559511                                                                                                                    | Aluminium Dross<br>- 1500 T/M                       | 31-03-2020             |

80 — Annual Report 2018-19 —



| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                 | Quantity of Hazardous Waste                                                                                                                                                                                | Validity   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 10         | Metacast International,<br>At/Po - Katapali,<br>Dist - Sambalpur, Odisha<br>E-mail : mci1990@hotmail.com<br>Mobile : 9437052973                                                  | Used Anode Butt<br>- 28 T/Day                                                                                                                                                                              | 27-07-2019 |
| 11         | Omm Cee Business, At- IDCO Plot No. 3,<br>Sanabramanitarang, Industrial Estate,<br>Kalunga,<br>Dist - Sundargarh, Odisha<br>E-mail: ocb.rkl@gmail.com<br>Phone: 0661-2505135     | Used Anode Butt<br>- 275 T/A                                                                                                                                                                               | 31-03-2020 |
| 12         | Green Energy Resources,<br>At - Shanti Nagar Road, Near Furniture<br>Point, Budharaja,<br>Dist - Sambalpur, Odisha - 768004<br>E-mail: gerodisha@gmail.com<br>Mobile: 9437045555 | Spent Pot Lining<br>(Carbon Portion)<br>- 43,200 T/A                                                                                                                                                       | 31-03-2023 |
| 13         | ECO Resource Solutions<br>At - Kuradhamalla, Dalaiput,<br>Dist - Khurda, Odisha<br>E-mail : swayamprakashj@gmail.com<br>Mobile : 9178764604                                      | Decontamination of Empty Barrels / Containers / Liners used for handling of hazardous wastes/chemicals as per SOPs of CPCB - 700Nos./Day                                                                   | 31.03.2022 |
| 14         | Suraj Products Ltd., At - Barapali,<br>Post - Kesharmal, Rajgangpur,<br>Dist - Sundargarh, Odisha<br>E-mail : suproduct@gmail.com<br>Mobile : 9437049074                         | Flue Gas Dust / Gas Cleaning Plant (GCP) Sludge of LD Furnace / Electric Arc Furnace (EAF) / Blast Furnace of Steel Plant / Captive Blast Furnace - 68,500 T/A GCP Sludge of Ferro Alloy Plant - 2,400 T/A | 31.03.2024 |
| 15         | Asian Petro Chemicals,<br>At- Asanabahali, PoBarada,<br>Gundichapada,<br>Dist-Dhenk<br>Mobile : 9040181849                                                                       | Used Oil - 960 KL/A                                                                                                                                                                                        | 31.03.2021 |
| 16         | Chemical & Metallurgical Co., Shed No.<br>S/III-24, Industrial Estate, Kalunga,<br>Rourkela<br>E-mail: chemical_042@yahoo.com                                                    | Used Oil - 720 KL/A                                                                                                                                                                                        | 31.03.2021 |
| 17         | Jay Maa Durga Industries, Plot No A/6,<br>Industrial Estate , Kalunga-770031,<br>Dist- Sundargarh<br>E-mail : felixkumar007@yahoo.com<br>Mobile : 9439231461                     | Used Oil - 80 T/A                                                                                                                                                                                          | 31.03.2023 |
| 18         | N. S. Chemicals, Plot NoE/72, Chhend<br>Colony,<br>Rourkela, Sundargarh<br>E-mail: nschemical_2902@yahoo.in<br>Mobile: 9437220798                                                | Used Oil - 936 KL/A                                                                                                                                                                                        | 31.03.2020 |
| 19         | Ratna Industries,<br>At- Jamunanki, Po - Kuarmunda,<br>Dist - Sundargarh -770039<br>E-mail : ratnaindustries.rkl@gmail.com<br>Mobile : 9437047775                                | Used Oil - 750 KL/A                                                                                                                                                                                        | 31.03.2020 |



| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                                                 | Quantity of Hazardous Waste                          | Validity   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|
| 20         | Raj Lubricants, At/P.O - Januganj,<br>Dist - Balasore, Odisha<br>E-mail : rajlubricants2012@gmail.com<br>Mobile : 9437054893                                                                                     | Used Oil - 1,500 KL/A                                | 31.03.2020 |
| 21         | Shree Durga Petrochemicals, Plot No. 89A,<br>New Industrial Estate, Phase-II, Jagatpur,<br>Dist - Cuttack, Odisha - 754021<br>E-mail : sdpetrochem.103@gmail.com<br>Mobile : 9437021103                          | Used oil - 2,160 KL/A                                | 31.03.2022 |
| 22         | Purbanchal Petroleum Private Limited,<br>At - Kalagada, Po - Jadupur,<br>Dist - Kendrapara, Odisha - 754213<br>E-mail : purbanchalpetroleum@yahoo.in<br>Mobile : 9439002563                                      | Used Oil - 3,650KL/A<br>&<br>Waste Oil - 12,045 KL/A | 31-03-2021 |
| 23         | Swaraj Lubricants,<br>At - Gobinda, Po - Haldipada,<br>Dist - Balasore, Odisha<br>E-mail : swarajlubricants@gmail.com<br>Mobile : 9777076006                                                                     | Used Oil - 1,500 KL/A &<br>Waste Oil - 6,000 KL/A    | 31.03.2023 |
| 24         | N. C. Oil Refinery Pvt. Ltd.,<br>Vill- Sova, Po - Osakana, Balikuda,<br>Dist - Jagatsinghpur, Odisha<br>E-mail: ncoil2010@gmail.com<br>Mobile: 7978386334                                                        | Waste Oil - 5,000 KL/A                               | 31.03.2023 |
| 25         | Omm Sai Refinery, 58/263, Kochilagadia,<br>Po Darpanigarh, Dist - Jajpur, Odisha<br>E-mail : prafulla_raj@yahoo.com<br>Mobile : 9437108545                                                                       | Waste Oil - 10,400 KL/A                              | 31-03-2021 |
| 26         | Shriya Metals & Chemicals,<br>At - Khairbandh, PO - Ranto Birkera, PS-<br>Bramhanitarang,<br>Dist - Sundargarh, Odisha - 770037<br>E-mail : shriya.<br>engineersandchemicals001@gmail.com<br>Mobile : 9438245981 | Waste Oil - 7,350 KL/A                               | 31.03.2023 |

### List of Actual users (Processor / Recyclers) having valid authorization of SPCB (Outside Odisha) $\,$

| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                       | Capacity of Re-processing    | Validity of<br>Authorisation |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|
| 1          | Ashirwad Enterprise, Plot No. 17,<br>Jalaram Industrial Estate, B/H RUDA Trans port,<br>Sonkhada, NavagamTa & Di: Rajkot - 360003<br>E-mail: dmjethava@gmail.com<br>Mobile: 9998953184 | Aluminium Dross<br>- 500 T/M | 31-03-2020                   |
| 2          | Shivam Metallurgicals Pvt. Ltd., At - 16/1, CSIDC Phase - 2, Siltara Raipur, Chhattisgarh E-mail: shivammetal123@gmail.com Mobile: 8435011000                                          | Aluminium Dross<br>1,000 T/M | 31.07.2019                   |

32 — — — Annual Report 2018-19 —



| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                                     | Capacity of Re-processing                                                                         | Validity of<br>Authorisation |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|
| 3          | Green Living, Sy. No. 24/3, D-2 of Chimalapalli (V),<br>Porlupalem Gram Panchayat, Visakhapatnam,<br>Dist. (Andhra Pradesh)<br>E-mail: greenliving.vizag@gmail.com<br>Mobile: 8142323683             | Spent Anode Butt<br>- 15 T/Day                                                                    | 31.03.2021                   |
| 4          | Arth Metallurgicals Pvt. Ltd., At-215, Ambuja City Centre, Vidhan Sabha Road, Saddu, Raipur, Chhattisgarh E-mail: arthmetals@gmail.com Mobile: 7771034441 / 7771034442                               | Vanadium Sludge<br>- 200 T/M                                                                      | 31.08.2019                   |
| 5          | Rover Ferro-Tech Private Limited,<br>At - 5G/A, Heavy Industrial Area, Hotkhoj, Bhilai,<br>Chhattisgarh<br>E-mail: roverferrotech@gmail.com<br>Mobile: 9425234231                                    | Vanadium Sludge -<br>100 T/M                                                                      | 01-09-2019                   |
| 6          | Star Alloys & Chemicals Pvt. Ltd., Plot No. 68,69 & 70<br>Industrial Area, Rajgamar Road, Korba,<br>Chhattisgarh - 495677<br>E-mail : staralloyskorba@gmail.com<br>Mobile : 9425532292 / 7759 221292 | Vanadium Sludge –<br>417 T/A                                                                      | 04.05.2019                   |
| 7          | Gurushree Industries Private Limited,<br>At - Delari, Po - Gerwani, Dist - Raigarh,<br>Chhattisgarh<br>E-mail : gsi.alloys@gmail.com<br>Mobile : 7008481581                                          | Vanadium Sludge -<br>46.66 T/M                                                                    | 13.08.2019                   |
| 8          | Cosmo Agromet Industries, At – Plot No. – 409,<br>Industrial Area, Phase – 1, Panchkula – 134113, Haryana<br>E-mail : cosmoagromet@yahoo.com<br>Mobile : 9814334856                                  | Zinc Dross /Ash /<br>Skimmings<br>- 11,724 T/A<br>Brass Dross<br>- 5,400 T/A                      | 06-02-2022                   |
| 9          | G M Admixtures, At-Plot No. 189,<br>Industrial Area, Phase-I, Panchkula, Haryana-134109<br>E-mail: gmadmixtures@gmail.com<br>Mobile: 9816631328                                                      | Zinc Dross / Ash /<br>Skimming - 6,000<br>T/A                                                     | 05-02-2022                   |
| 10         | Neelam Metal Products , At – F-40, RIICO Industrial Area,<br>Odela Road, Dholpur, Rajasthan-21<br>E-mail : neelammetalproducts@gmail.com<br>Mobile : 98370251                                        | Zinc Dross /Ash /<br>Skimmings / Scrap<br>900 T/A<br>Copper Scrap /<br>Copper wire - 39.96<br>T/A | 31.03.2021                   |
| 11         | R K Products,<br>Village -Mahishrekha, PS - Uluberia, Dangadi,<br>Dist - Howrah, West Bengal<br>E-mail : banerjee.shiv1@gmail.com<br>Mobile : 8910302315                                             | Zinc Dross / Ash /<br>Skimming - 7,200<br>T/A                                                     | 31-12-2020                   |



| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                                      | Capacity of Re-processing                                                | Validity of<br>Authorisation |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|
| 12         | Bachhelal Metal Industries,<br>At/Po - 22G Shiv Krishna Daw Lane,<br>Kolkata, West Bengal – 700054<br>E-mail : bachhelalmetalindustries2015@rediffmail.com<br>Mobile : 9830836045                     | Lead acid battery<br>plates / ashes /<br>residue / scraps -<br>4,320 T/A | 31-10-2020                   |
| 13         | OM Industries,<br>7 K. M. Stone, VPO- Titoli, Jind Road, Rohtak,<br>Haryana-124001, India<br>E-mail: happykumarkamra@ymail.com<br>Mobile: 8076652698                                                  | Used Oil - 1,000<br>KL/A                                                 | 31-03-2021                   |
| 14         | Bharat Petro Industries, At - Khasra No. 2, Plot No - 3A, Khodamatand Area, Udaipur, Madanganj, Dist - Ajmer, Rajasthan - 305801 E-mail: bharatpetroind@gmail.com Mobile: 9269166829                  | Used Oil - 2,000<br>KL/A<br>Waste Oil - 800<br>KL/A                      | 31.03.2023                   |
| 15         | Haryana Petro Oils, At - Plot No. 31, Phase - III <sup>rd</sup> , Industrial area, Sirsa, Haryana E-mail: sachin_love82@yahoo.com / haryanapetrooil@yahoo.com Mobile: 9215655572/76                   | Used Oil / Waste<br>Oil<br>- 500 KL/A                                    | 29.06.2019                   |
| 16         | JMR Petro Industries,<br>At - Plot No EE - 24, AIE Pedagantyada, Gajuwaka,<br>Visakhapatnam, A.P<br>E-mail : jmrpetro@gmail.com<br>Mobile : 9866678645 / 9963487854                                   | Used Oil - 250<br>KL/A<br>Waste Containing<br>Oil - 2,000 KL/A           | 30-11-2019                   |
| 17         | K M Oils Pvt. Ltd.,<br>Plot No-75, 76, 77(A-Part) 2 <sup>nd</sup> Phase, Kapnoor Industrial Area,<br>Kalaburagi, Banagalore<br>Mobile: 9886927866                                                     | Used Oil - 1,500<br>KL/A<br>Waste Oil - 3,000<br>KL/A                    | 30-06-2020                   |
| 18         | Lakhdata Petro Chemicals,<br>At-Ramsara, Near GGS Refinery Main Gate,<br>Bhatinda, Punjab<br>E-mail: lakhdatachemical@gmail.com<br>Mobile: 9810015932                                                 | Used Oil - 200<br>KL/A<br>Waste Oil - 1,000<br>KL/A                      | 30-09-2022                   |
| 19         | Lubrina Recycling Pvt. Ltd., Joy Chandipur,<br>PO- Bakrahat, PS- Bishnupur,<br>Dist - 24 Parganas (South), West Bengal – 743377<br>E-mail : aashish@lubrinare.com<br>Mobile : 9874290909 / 9831151692 | Used Oil - 4,800 KL<br>Waste Oil - 1,800<br>KL                           | 10.08.2019                   |
| 20         | National Lubricants, At - Gut No 495/498 (P), Plot No 29, Vill - Kondale, Tal Wada, Dist - Palghar, Maharashtra - 421312 E-mail: info@nationallubricants.in Mobile: 9820520853                        | Used Oil - 1,500<br>KL/A<br>Waste Oil - 1,500<br>KL/A                    | 31-03-2020                   |

34 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_\_



| Sl.<br>No. | Name & Address of the Actual Users<br>Authorized by SPCB, Odisha                                                                                                                                   | Capacity of<br>Re-processing                          | Validity of<br>Authorisation |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|
| 21         | Plus Lubricants, Gvt No228, Survey No43, Satepada Road, City-Abhitghar-421303, Thane, Maharashtra E-mail: pluslubricants@pluslubricants.in Mobile: 9867421136 / Ph: 022-2666-5151                  | Used Oil -1000<br>KL/A<br>Waste Oil - 3000<br>KL/A    | 19-05-2019                   |
| 22         | R. S. Oil Industries, Junglepur, Jalan Industrial Complex,<br>Baniyara, Begri (G.P.), Domjur,<br>Howrah - 711 411<br>E-mail : rsoilind90@gmail.com<br>Phone : 033 - 24598574 / 8576                | Used Oil - 100 KL<br>Waste Oil - 1500 KL              | 31.03.2020                   |
| 23         | Sri Lakshmi Narayana Industries<br>At - Pidimgoyyi (V), Rajahmundry,<br>Dist - East Godavari, Andhra Pradesh<br>E-mail : krishna.nsr111@gmail.com<br>Mobile : 9396622208                           | Used Oil - 500<br>KL/A<br>Waste Oil - 1,000<br>KL/A   | 11-01-2020                   |
| 24         | Tanu Petrochem Products Private Limited, Plot No - 238, Phase - II, I.D.A, Pashamylarm, Dist - Medak, Andhra Pradesh - 502307 E-mail: tanu_petrochem@yahoo.com Mobile: 9885082850                  | Used Oil - 1,000<br>KL/A<br>Waste Oil - 3,000<br>KL/A | 30-09-2022                   |
| 25         | Premier Petrochem, Plot No - 01, G No -185,<br>KIDC Industrial Estate, Vill - Dheku, Taluka - Khalapur,<br>Dist - Raigad, Maharashtra<br>E-mail: premierpetrochem8@gmail.com<br>Mobile:09869024008 | Waste Oil - 1,500<br>KL/A                             | 31-03-2020                   |

### (B) Common Facility for Disposal of Hazardous Wastes

A Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF) has been established during financial year 2010-11 at Kanchichuan, Jajpur, Odisha operated by M/s Ramky Enviro Engineers Ltd., Hyderabad with consented capacity of 75,000 T/A. So far, 179 no. of Industries / Mines have taken membership agreement with Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF).

### The status of disposal of hazardous waste at CHWTSDF is as follows:

Hazardous waste received from various Industries/Mines by CHWTSDF -59,098.32 T

i. Landfill after treatmentii. Direct Landfill44,613.49 T14,484.83 T

### 5.6.2. Implementation of Manufacture, storage and Import of Hazardous Chemical Rules, 1989 and amendments thereof

The Board has not received any application for import of Hazardous Chemicals to the State during 2018-19.

### 5.6.3. Implementation of Public Liability Insurance Act, 1991

As per provisions of the Public Liability Insurance Act, 1991, the industries handling hazardous substances above the regulatory quantity are required to take insurance policy



for providing immediate relief to the victims in case of chemical accidents. Efforts have been made to create awareness among the concerned industries to take such insurances. During this period 15 nos. of industries handling hazardous chemicals have renewed their insurance policies under the PLI Act, 1991.

### 5.6.4. Implementation of Batteries (M & H) Rule, 2001

The Board has received 101 nos. of half yearly returns from April' 2018 to Sep' 2018 and 35 nos. of half yearly returns from Oct' 2018 to March' 2019 from battery units. These returns have been received from Manufacturer, Re-conditioner, Assembler, Dealer, Bulk Consumer, Auctioneer, Importer & Recycler.

### 5.6.5 Implementation of the Biomedical Waste Management Rules, 2016

It is the prime responsibility of every occupier of the **Health Care Establishments** (HCE) generating Biomedical Wastes (BMWs) to ensure requisite management and disposal of wastes as per the Biomedical Waste Management Rules, 2016. Biomedical wastes generated in different HCEs are required to be disposed off safely without causing any adverse impacts on the environment and human health.

### 5.6.5.1 Inventorisation of Health Care Establishments (HCE)

The Board has brought 3431 nos. of HCEs under the authorization administration under the Biomedical Waste Management Rules 2016 and the district wise distribution of such HCEs with respect to bed strength is given in Table- 5.14.

Table - 5.14 Districtwise Distribution of Health Care Establishment under Authorization Administration.

| Sl. No. | District      | < 50 beds | 50 beds and < 200 beds | 200 beds<br>and <500<br>beds | 500 beds<br>and above | Other<br>Category* | Total |
|---------|---------------|-----------|------------------------|------------------------------|-----------------------|--------------------|-------|
| 1       | Angul         | 49        | 09                     | 01                           | 0                     | 75                 | 134   |
| 2       | Balangir      | 39        | 02                     | 0                            | 0                     | 55                 | 96    |
| 3       | Balasore      | 63        | 03                     | 01                           | 0                     | 114                | 181   |
| 4       | Bargarh       | 43        | 03                     | 0                            | 0                     | 72                 | 118   |
| 5       | Bhadrak       | 23        | 03                     | 01                           | 0                     | 50                 | 77    |
| 6       | Boudh         | 05        | 01                     | 0                            | 0                     | 09                 | 15    |
| 7       | Cuttack       | 235       | 22                     | 02                           | 01                    | 244                | 504   |
| 8       | Deogarh       | 09        | 01                     | 0                            | 0                     | 01                 | 11    |
| 9       | Dhenkanal     | 43        | 04                     | 0                            | 0                     | 25                 | 72    |
| 10      | Gajapati      | 15        | 03                     | 0                            | 0                     | 1                  | 19    |
| 11      | Ganjam        | 118       | 07                     | 0                            | 01                    | 102                | 228   |
| 12      | Jagatsinghpur | 27        | 03                     | 0                            | 0                     | 45                 | 75    |
| 13      | Jajpur        | 40        | 0                      | 01                           | 0                     | 62                 | 103   |
| 14      | Jharsuguda    | 30        | 03                     | 0                            | 0                     | 44                 | 77    |
| 15      | Kalahandi     | 26        | 03                     | 0                            | 0                     | 101                | 130   |
| 16      | Kandhamal     | 10        | 02                     | 0                            | 0                     | 48                 | 60    |
| 17      | Kendrapara    | 26        | 01                     | 0                            | 0                     | 55                 | 82    |
| 18      | Keonjhar      | 50        | 05                     | 0                            | 0                     | 91                 | 146   |
| 19      | Khordha       | 143       | 16                     | 10                           | 05                    | 135                | 309   |



| Sl. No.            | District          | < 50 beds    | 50 beds and<br>< 200 beds | 200 beds<br>and <500<br>beds | 500 beds<br>and above | Other<br>Category* | Total |
|--------------------|-------------------|--------------|---------------------------|------------------------------|-----------------------|--------------------|-------|
| 20                 | Koraput           | 23           | 04                        | 0                            | 0                     | 59                 | 86    |
| 21                 | Malkangiri        | 28           | 01                        | 0                            | 0                     | 21                 | 50    |
| 22                 | Mayurbhanj        | 46           | 05                        | 01                           | 0                     | 58                 | 110   |
| 23                 | Nawarangpur       | 12           | 02                        | 0                            | 0                     | 53                 | 67    |
| 24                 | Nayagarh          | 36           | 03                        | 01                           | 0                     | 56                 | 96    |
| 25                 | Nuapada           | 08           | 03                        | 0                            | 0                     | 04                 | 15    |
| 26                 | Puri              | 50           | 01                        | 01                           | 0                     | 32                 | 84    |
| 27                 | Rayagada          | 27           | 03                        | 01                           | 0                     | 63                 | 94    |
| 28                 | Sambalpur         | 60           | 02                        | 01                           | 01                    | 42                 | 106   |
| 29                 | Sonepur           | 09           | 01                        | 0                            | 0                     | 10                 | 20    |
| 30                 | Sundargarh        | 68           | 10                        | 04                           | 01                    | 183                | 266   |
|                    | Total             | 1361         | 126                       | 25                           | 9                     | 1910               | 3431  |
| N.B: * Pathologica | l Laboratories an | d Diagnostic | Centers etc.              |                              |                       |                    |       |

### 5.6.5.2 Management of Biomedical Waste

- As per the provisions of the Biomedical Waste Management Rules, 2016 all the HCEs are required to treat and dispose different types of biomedical waste properly. Most of the Health Care Units in Odisha have taken up inhouse biomedical waste segregation, treatment and disposal method as specified in the rule.
- Three important Govt. Medical Colleges and Hospitals namely, S.C.B Medical College and Hospital (SCB MCH), Cuttack, M.K.C.G Medical College and Hospital (MKCG MCH), Berhampur and V.S.S Medical College and Hospital (VSS MCH), Burla, Sambalpur have developed their own infrastructures such as incinerator, shredder, microwave etc. which are being operated by engaging private agencies for the treatment of Biomedical Wastes. The agencies are: M/s. Medi-Aid Marketing Services engaged by SCB MCH, MKCG MCH and M/s. Biotech Solution- engaged by VSS MCH. In addition, M/s. Medi-Aid Marketing Services is operating the biomedical waste management facility of Rourkela Govt. Hospital campus, Rourkela on Public Private Partnership mode. These two facilities are also being shared by other nearby small Government HCEs.
- The Common Biomedical Waste Treatment Disposal Facility (CBWTDF) namely M/s Saniclean Pvt. Ltd., at Tangiapada, Khordha is taking care of segregated biomedical waste of hospitals in Cuttack city, Bhubaneswar city, Jagatpur, Choudwar, Duburi, Jatni, Paradeep & Khordha town.
- Out of 3431 HCEs, 609 units are utilizing the services of aforesaid common facilities.

### 5.6.5.3 Status of Authorisation Application of Health Care Establishments

The authorisation application status of the HCEs during 2018-19 is presented in Table-5.15

Table - 5.15 Authorisation Status of HCEs During 2018-19

| Sl. No. | Status of HCEs                              |      |
|---------|---------------------------------------------|------|
| 1       | No. of applications received during 2018-19 | 578  |
| 2       | No. of cases carried over from year 2017-18 | 652  |
| 3       | Total no. of applications received          | 1230 |



| Sl. No. | Status of HCEs                                     |     |
|---------|----------------------------------------------------|-----|
| 4       | No. of HCEs granted authorisation                  | 651 |
| 5       | No. of HCEs refused authorisation                  | 01  |
| 6       | Total no. of applications disposed                 | 652 |
| 7       | No. HCEs under evaluation / Incomplete application | 578 |
| 8       | No. of HCEs violating the Rules                    | 07  |
| 9       | No. of HCEs issued show cause notices              | 31  |
| 10      | No. of inspection conducted                        | 786 |

### 5.6.6. Implementation of the Solid Waste Management Rules, 2016

As per the Solid Waste Management Rules, 2016 the Urban Local Bodies (ULBs) are required to take action for proper management of municipal solid wastes, seek authorization for setting up and operation of waste processing and disposal facilities from the Board and submit the annual report in Form-II every year to the State Pollution Control Board, Odisha. The Board has been pursuing this matter with all urban local bodies since the enactment of the Rules.

29 ULBs of the State are having valid authorization. Though 07 nos. of ULBs have applied for authorization but those were not considered due to incomplete applications. The Board has issued show cause notice to 01 ULB.

### 5.6.7. Implementation of Plastic Waste Management Rules, 2016

As per the provision of Plastic Waste Management Rules, 2016, the Board has been declared as prescribed authority to issue or renew registration to manufacturer of plastic products, multilayered packaging and plastic waste recycling & processing units. Brand owners who sell their commodity/products using multilayered plastics for packaging need to obtain registration from the Board for managing the plastic waste. During the reporting period Board has issued registration to 13 plastic product manufacturing units (08 producer, 04 brand owner and 01 reprocessor).

### 5.6.8 Implementation of the E-Waste Management Rules, 2016.

After enforcement of E-waste Management Rules, 2016 i.e. on 01.10.2016, no individual E-waste collection centre is allowed to collect E-waste. However, the captive collection centres of Producer / Dismantler/ Recycler/ Refurbishers are only allowed to collect E-waste. The Board has granted authorization to 04 nos. E-waste dismantling units.

### 5.6.9. Construction and Demolition Waste Management Rules, 2016

- Ministry of Environment, Forest and Climate Change, Govt. of India has notified Construction and Demolition Waste Management Rules, 2016 on 29<sup>th</sup> March, 2016. This Rule shall be applicable to every waste resulting from construction, re-modeling, repair and demolition of any civil structure of individual or organisation or authority who generates construction and demolition waste such as building materials, debris & rubble etc.
- The authorities of Revenue Department, Housing & Urban Development Department, Works Department and Town Planning, Government of Odisha have been requested to take appropriate action for wide publicity of the Rules to create awareness amongst the local authorities and sensitize the general public about their responsibilities in handling such type of waste.

8 — Annual Report 2018-19 –



All the construction and demolition waste generators have been requested through
public notice in Daily News Papers to go through the aforesaid Rules which is available
at the SPC Board website <a href="www.ospcboard.org">www.ospcboard.org</a> and Ministry website <a href="www.moef.nic.in.">www.moef.nic.in.</a>
Furthermore, the operators of the waste processing facilities have been asked to apply
for authorization from State Pollution Control Board.

### 5.7 MONITORING NETWORK FOR WATER AND AIR QUALITY

### 5.7.1 National Water Quality Monitoring Programme (NWMP)

### **Inland Surface Water**

The Board is monitoring the water quality of eleven river systems viz. Mahanadi, Brahmani, Baitarani, Rushikulya, Nagavali, Subarnarekha, Budhabalanga, Kolab, Vansadhara, Indravati and Bahuda at 127 stations under the CPCB assisted National Water Quality Monitoring Programme (NWMP); one station on Brahmani river and one station on Baitarani river under National River Conservation Programme (NRCP).

Board is also monitoring the water quality of other surface water bodies such as canals (Taladanda and Puri canals), ponds in Puri, Bhubaneswar, Angul and Jeypore, Lakes (Chilka, Anshupa and Tampara lakes), Atharabanki Creek and coastal water at Puri, Gopalpur and Paradeep under NWMP. Details of monitoring stations are given in Table-5.16.

The following water quality parameters are determined on monthly basis at all locations.

- (a) Physical parameters: Temperature, pH, Alkalinity, Total suspended solids (TSS)
- (b) *Indicators of Organic pollution*: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Free ammonia Nitrogen, Ammonical (Ammonium + ammonia) Nitrogen, Total Kjeldahl Nitrogen (TKN)
- (c) Bacteriological parameters: Total Coliform (TC) and Fecal Coliform (FC)
- (d) *Mineral constituents*: Electrical Conductivity (EC), Total Dissolved Solids (TDS), Boron, Sodium Absorption Ratio (SAR), Total Hardness (TH), Chloride, Sulphate, Fluoride.
- (e) Nutrients: Nitrate (Nitrate + Nitrite) Nitrogen, Phosphate Phosphorous.
- (f) Metals: Chromium (Cr) (total and hexavalent), Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), Cadmium (Cd), Mercury (Hg), Lead (Pb) are determined only during lean period, that is, in the month of April or May.
- (g) *Biological Indices*: Saprobic Index (SI) and Diversity Index (DI) are monitored only in the months of January, April and October.



### Table-5.16 Surface Water Quality Monitoring Stations conducted by the Board under NWMP and NRCP $\,$

| Sl. | Source of monitoring | Total N<br>Stati |      | NWMP Sampling Locations                                                                                                                                                                                                                                                                                     |
|-----|----------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | momtoring            | NWMP             | NRCP | Monthly                                                                                                                                                                                                                                                                                                     |
| (A) | River system         |                  |      |                                                                                                                                                                                                                                                                                                             |
| 1.  | Mahanadi             | 55               | -    | <b>Ib</b> : (1) Sundargarh, (2) Jharsuguda,                                                                                                                                                                                                                                                                 |
|     |                      |                  |      | (3) Brajarajnagar U/s, (4) Brajarajnagar D/s;                                                                                                                                                                                                                                                               |
|     |                      |                  |      | Bheden: (5) Jharsuguda;                                                                                                                                                                                                                                                                                     |
|     |                      |                  |      | Hirakud reservoir : (6) Hirakud;                                                                                                                                                                                                                                                                            |
|     |                      |                  |      | <b>Power Channel:</b> (7) Power Channel U/s (8), Power Channel D/s;                                                                                                                                                                                                                                         |
|     |                      |                  |      | <b>Mahanadi</b> : (9) Sambalpur U/s, (10) Sambalpur D/s, (11) Sambalpur FD/s at Shankarmath, (12) Sambalpur FD/s at Huma, (13) Sonepur U/s, (14) Sonepur D/s, (15) Tikarpada, (16) Narasinghpur, (17) Mundali, (18) Cuttack U/s, (19) Cuttack D/s, (20) Cuttack FD/s, (21) Paradeep U/s, (22) Paradeep D/s; |
|     |                      |                  |      | Ong: (23) Dharuakhaman;                                                                                                                                                                                                                                                                                     |
|     |                      |                  |      | Tel: (24) Monmunda;                                                                                                                                                                                                                                                                                         |
|     |                      |                  |      | <b>Kathajodi:</b> (25) Cuttack U/s, (26) Cuttack D/s, (27) Cuttack FD/s at Mattagajpur, (28) Cuttack FFD/s at Kamasasan;                                                                                                                                                                                    |
|     |                      |                  |      | Serua: (29) Cuttack FD/s at Sankhatrasa;                                                                                                                                                                                                                                                                    |
|     |                      |                  |      | <b>Kuakhai:</b> (30) Bhubaneswar FU/s, (31) Bhubaneswar U/s;                                                                                                                                                                                                                                                |
|     |                      |                  |      | Daya: (32) Gelapur, (33) Bhubaneswar D/s, (34) Bhubaneswar FD/s, (35) Kanas;                                                                                                                                                                                                                                |
|     |                      |                  |      | Gangua: (36) Near Rajdhani Engg. College, (37) Hanspal, (38) Samantarpur,                                                                                                                                                                                                                                   |
|     |                      |                  |      | (39) Vadimula;                                                                                                                                                                                                                                                                                              |
|     |                      |                  |      | <b>Birupa:</b> (40) Choudwar D/s;                                                                                                                                                                                                                                                                           |
|     |                      |                  |      | Kushabhadra: (41) Bhingarpur, (42) Nimapara, (43) Gop;                                                                                                                                                                                                                                                      |
|     |                      |                  |      | Bhargavi: (44) Chandanpur;                                                                                                                                                                                                                                                                                  |
|     |                      |                  |      | Mangala: (45) Malatipatpur, (46) Golasahi;                                                                                                                                                                                                                                                                  |
|     |                      |                  |      | <b>Devi</b> : (47) Machhagaon;                                                                                                                                                                                                                                                                              |
|     |                      |                  |      | <b>Gobari</b> : (48) Kendrapada U/s, (49) Kendrapada D/s;                                                                                                                                                                                                                                                   |
|     |                      |                  |      | Nuna : (50) Bijipur ;                                                                                                                                                                                                                                                                                       |
|     |                      |                  |      | Kusumi: (51) Tangi;                                                                                                                                                                                                                                                                                         |
|     |                      |                  |      | Kansari: (52) Banapur ;                                                                                                                                                                                                                                                                                     |
|     |                      |                  |      | Badasnkha: (53) Langaleswar;                                                                                                                                                                                                                                                                                |
|     |                      |                  |      | Sabulia: (54) Rambha; and                                                                                                                                                                                                                                                                                   |
|     |                      |                  |      | Ratnachira : (55) Kumardihi                                                                                                                                                                                                                                                                                 |



| Sl. | Source of    | Total N<br>Statio |      | NWMP Sampling Locations                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|-----|--------------|-------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| No. | monitoring   | NWMP              | NRCP | Monthly                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 2.  | Brahmani     | 40                | 1    | Sankh: (1) Sankh U/s;                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|     |              |                   |      | Koel: (2) Koel U/s;                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|     |              |                   |      | <b>Brahmani</b> : (3) Panposh U/s, (4) Panposh D/s, (5) Rourkela D/s, (6) Rourkela FD/s at Attaghat, (7) Rourkela FD/s at Biritola, (8) Bonaigarh, (9) Rengali, (10) Samal, (11) Talcher FU/s, (12) Talcher U/s, (13) Mandapal, (14) Talcher D/s, (15) Talcher FD/s, (16) Dhenkanal U/s, (17) Dhenkanal D/s, (18) Bhuban, (19) Kabatabandha, (20) Dharmasala U/s, (21) Dharmasala D/s *, (22) Pottamundai; |  |  |  |  |  |  |  |
|     |              |                   |      | Nandira: (23) Nandira U/s, (24) Nandira D/s ;                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|     |              |                   |      | Kisindajhor : (25) Kisinda jhor;                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|     |              |                   |      | Kharasrota : (26) Khanditara, (27) Binjharpur, (28) Aul;                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|     |              |                   |      | Guradih nallah: (29) Guradih nallah;                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|     |              |                   |      | Badajhor: (30) Badajhor;                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|     |              |                   |      | Damsala: (31) Dayanabill;                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|     |              |                   |      | Gonda nallah: (32) Marthapur;                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|     |              |                   |      | Lingira : (33) Angul U/s, (34) Angul D/s;                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|     |              |                   |      | Ramiala: (35) Kamakhyanagar;                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|     |              |                   |      | Banguru nallah : (36) Bangurunallah;                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|     |              |                   |      | Singada jhor : (37) Singadajhor;                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|     |              |                   |      | a: (38) Kaniha U/s, (39) Kaniha D/s;                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|     |              |                   |      | gurusingada jhor : (40) Bangrusingada jhor ; and                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|     |              |                   |      | Karo: (41) Barbil                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| 3.  | Baitarani    | 13                | 1    | Kundra: (1) Joda;                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|     |              |                   |      | Kusei: (2) Deogaon;                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|     |              |                   |      | <b>Baitarani</b> : (3) Naigarh, (4) Unchabali, (5) Champua, (6) Tribindha, (7) Joda, (8) Anandpur, (9) Jajpur, (10) Chandbali U/s and (11) Chandbali D/s*;                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|     |              |                   |      | Salandi: (12) Bhadrak U/s, (13) Bhadrak D/s; and                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|     |              |                   |      | <b>Dhamra</b> : (14) Dhamra                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 4.  | Rushikulya   | 6                 |      | Russelkunda reservoir : (1) Russelkunda;<br>BadaNadi : (2) Aska;<br>Rushikulya : (3) Aska, (4) Nalabanta, (5) Madhopur and (6) Potagarh                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 5.  | Nagavali     | 3                 | -    | Nagavali: (1) Penta U/s, (2) Jaykaypur D/s and (3) Rayagada D/s                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 6.  | Subarnarekha | 1                 | -    | Subarnarekha : (1) Rajghat                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 7.  | Budhabalanga | 4                 | -    | <b>Budhabalanga</b> : (1) Baripada D/s, (2) Balasore U/s, (3) Balasore D/s; and <b>Sone</b> : (4) Hatigond                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 8.  | Kolab        | 1                 | -    | Kerandi : (1) Sunabeda                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 9.  | Vamsadhara   | 2                 | -    | ansadhara: (1) Muniguda and (2) Gunupur                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 10. | Indravati    | 1                 | -    | dravati : (1) Nawarangpur                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| 11. | Bahuda       | 1                 | -    | huda: (1) Damodarpally                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|     | Sub Total    | 127               | 2    |                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| (B) | Canal        | 9                 | -    | <b>Taladanda canal</b> : (1) Jobra, (2) Ranihat, (3) Chatrabazar, (4) Nuabazar (5) Biribati, (6) Atharabanki; <b>Puri Canal</b> : (7) Hansapal, (8) Jagannathpur and (9) Chandanpur                                                                                                                                                                                                                        |  |  |  |  |  |  |  |



| Sl.  | Source of    | Total No. of<br>Stations |      | NWMP Sampling Locations                                                                                                                                                                                                                 |  |  |  |  |  |  |
|------|--------------|--------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| No.  | monitoring   | NWMP                     | NRCP | Monthly                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| (C)  | Ponds        | 8                        | -    | Bhubaneswar: (1) Bindusagar; (4 bathing ghats on each side of the pond) Puri: (2) Narendra pokhari, (3) Markanda Pokhari, (4) Indradyumna tank, (5) Swetaganga, (6) Parvati sagar; Angul: (7) Raniguda; and Jeypore: (8) Jagannathsagar |  |  |  |  |  |  |
| (D)  | Lakes        | 7                        | -    | Chilka lake: (1) Rambha, (2) Satapada;<br>Anshupa lake: (3) Kadalibari, (4) Sarandagarh, (5) Subarnapur, (6) Bishnupur<br>Tampara lake: (7) Tampara lake                                                                                |  |  |  |  |  |  |
| (E)  | Sea          | 3                        | -    | (1) Puri, (2) Gopalpur and (3) Paradeep                                                                                                                                                                                                 |  |  |  |  |  |  |
| (F)  | Creek        | 1                        | -    | (1) Atharabanki creek                                                                                                                                                                                                                   |  |  |  |  |  |  |
| (G)  | STP          | 3                        | -    |                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|      | Total        | 160                      |      |                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| ** N | RCP stations |                          |      |                                                                                                                                                                                                                                         |  |  |  |  |  |  |

### **River Water Quality Monitoring**

The annual average and range values of the criteria parameters such as pH, DO, BOD and TC, obtained during the year 2018 for the river water quality monitoring stations listed under Table-5.16 are given in Table-5.18. Water quality in respect of other parameters is given in Table-5.19.

From the point of view of assessment of the river water quality on the basis of its use to which the river is put by the community, the water quality should conform to either Class-B (outdoor bathing) or Class-C (drinking water source with conventional treatment followed by the disinfection). Comparison of the water quality has been made with respect to the tolerance limits stipulated for Class-C surface water bodies (IS: 2296-1982). Water quality data given in Table-5.18 indicate that out of the four critical parameters such as pH, DO, BOD and TC, parameters like pH and DO at most of the stations remained within the criteria limits, whereas BOD and/or TC have exceeded the criteria limits at several places. Non-compliance has been observed at 22 stations for TC alone, 2 stations for BOD alone, and 17 stations for both BOD & TC (Table-5.17). The probable cause of downgrading the water quality from its desired use, are of organic origin. A major contribution towards this is from the discharge of untreated domestic water from the townships to the nearby water bodies. Out of 129 stations, one station is monitored on drain.

Table-5.17 Water quality status of river monitoring stations during 2018

| SL. | DIVED CYCTEM | TOTAL NO. OF           | CONFORMING | NON-CONFORMING STATIONS |           |          |  |  |  |
|-----|--------------|------------------------|------------|-------------------------|-----------|----------|--|--|--|
| NO. | RIVER SYSTEM | MONITORING<br>STATIONS | STATIONS   | Both BOD & TC           | BOD alone | TC alone |  |  |  |
| 1   | MAHANADI     | 55                     | 33         | 13                      | -         | 9        |  |  |  |
| 2   | BRAHMANI     | 41*                    | 29         | 4                       | 1         | 6        |  |  |  |
| 3   | BAITARANI    | 14                     | 9          | -                       | -         | 5        |  |  |  |
| 4.  | RUSHIKULYA   | 6                      | 5          | -                       | 1         | -        |  |  |  |
| 5.  | NAGAVALI     | 3                      | 3          | -                       | -         | -        |  |  |  |
| 6.  | SUBARNAREKHA | 1                      | 1          | -                       | -         | -        |  |  |  |

\_\_\_\_\_\_ Annual Report 2018-19 -



| SL.    | DIVED SYSTEM   | TOTAL NO. OF           | CONFORMING | NON-CONFORMING STATIONS |           |          |  |  |
|--------|----------------|------------------------|------------|-------------------------|-----------|----------|--|--|
| NO.    | RIVER SYSTEM   | MONITORING<br>STATIONS | STATIONS   | Both BOD & TC           | BOD alone | TC alone |  |  |
| 7.     | BUDHABALANGA   | 4                      | 2          | -                       | -         | 2        |  |  |
| 8      | KOLAB          | 1                      | 1          | -                       | -         | -        |  |  |
| 9.     | VAMSADHARA     | 2                      | 2          | -                       | -         | -        |  |  |
| 10.    | INDRAVATI      | 1                      | 1          | -                       | -         | -        |  |  |
| 11.    | BAHUDA         | 1                      | 1          | -                       | -         | -        |  |  |
|        | TOTAL          | 129                    | 17         | 2                       | 22        |          |  |  |
| * 1 st | ation is Drain |                        |            |                         |           |          |  |  |

Water quality with respect to other parameters at all the monitoring stations except at Paradeep D/s, Devi at Macchagaon, Potagarh, Chandbali U/s, Chandbali D/s and Dhamra remain within the criteria limit for Class - C water quality as laid down under IS : 2296-1982 (Tolerance limits for inland surface water bodies). Water quality at Paradeep D/s, Devi at Macchagaon, Potagarh, Chandbali U/s, Chandbali D/s and Dhamra are greatly influenced by the tidal effect as these stations are very close to the river muhans.

Table-5.18 Annual Average and Range values of Four Criteria Parameters (January-December, 2018)

(A) Mahanadi River System (2018)

|         | Sampling Location    | No.<br>of<br>Obs. | Annual average values<br>(Range of values) |                      |                      |                          | cy  | uen-<br>of<br>ation |                     |                   |                                                                        |                    |
|---------|----------------------|-------------------|--------------------------------------------|----------------------|----------------------|--------------------------|-----|---------------------|---------------------|-------------------|------------------------------------------------------------------------|--------------------|
| Sl. No  |                      |                   | Parameters                                 |                      |                      |                          |     | cent<br>iola-       | Designated<br>Class | Existing<br>Class | Parameters<br>responsible<br>for down-<br>grading the<br>water quality | Possible<br>Reason |
|         |                      |                   | рН                                         | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)    | BOD | TC                  |                     |                   |                                                                        |                    |
| Ib rive | r                    |                   |                                            |                      |                      |                          |     |                     |                     |                   |                                                                        |                    |
| 1.      | Sundargarh           | 12                | 7.3<br>(6.6-<br>7.9)                       | 7.0<br>(5.3-<br>8.6) | 1.0<br>(0.4-<br>2.0) | 2049<br>(45-3500)        | 0   | 0                   | С                   | С                 |                                                                        |                    |
| 2.      | Jharsuguda           | 12                | 7.8<br>(6.5-<br>8.6)                       | 7.7<br>(7.2-<br>8.0) | 1.0<br>(0.4-<br>1.7) | 1521<br>(110-4300)       | 0   | 0                   | С                   | С                 |                                                                        |                    |
| 3.      | Brajarajnagar<br>U/s | 12                | 7.8<br>(6.9-<br>8.4)                       | 7.6<br>(6.8-<br>8.0) | 1.0<br>(0.4-<br>1.8) | 1674<br>(20-3500)        | 0   | 0                   | С                   | С                 |                                                                        |                    |
| 4.      | Brajarajnagar<br>D/s | 12                | 7.9<br>(7.0-<br>8.4)                       | 7.6<br>(7.2-<br>8.2) | 1.6<br>(0.5-<br>2.9) | 2709<br>(45-4900)        | 0   | 0                   | С                   | С                 |                                                                        |                    |
| Bhede   | n river              |                   |                                            |                      |                      |                          |     |                     |                     |                   |                                                                        |                    |
| 5.      | Jharsuguda           | 12                | 7.9<br>(7.2-<br>8.4)                       | 7.7<br>(7.4-<br>8.2) | 1.4<br>(0.6-<br>2.8) | 2277<br>(<1.8-<br>16000) | 0   | 1 (8)               | С                   | С                 |                                                                        |                    |



|        |                                       |                   | A                    |                       | verage<br>e of va    | values<br>lues)         | CY                 | uen-<br>of<br>ation |                     |                                     |                                                                        |                                          |
|--------|---------------------------------------|-------------------|----------------------|-----------------------|----------------------|-------------------------|--------------------|---------------------|---------------------|-------------------------------------|------------------------------------------------------------------------|------------------------------------------|
| Sl. No | Sampling Loca-<br>tion                | No.<br>of<br>Obs. |                      | Par                   | ametei               | rs                      | (Percent of viola- |                     | Designated<br>Class | Existing<br>Class                   | Parameters<br>responsible<br>for down-<br>grading the<br>water quality | Possible<br>Reason                       |
|        |                                       |                   | рН                   | DO<br>(mg/l)          | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)   | BOD                | TC                  |                     |                                     |                                                                        |                                          |
| Hiraku | ıd reservoir                          |                   |                      |                       |                      |                         |                    |                     |                     |                                     |                                                                        |                                          |
| 6.     | Hirakud reser-<br>voir                | 12                | 7.7<br>(6.6-<br>8.3) | 7.4<br>(6.7-<br>9.0)  | 0.9<br>(0.3-<br>1.7) | 1592<br>(20-16000)      | 0                  | 1 (8)               | С                   | С                                   |                                                                        |                                          |
| Power  | Channel                               |                   |                      |                       |                      |                         |                    |                     |                     |                                     |                                                                        |                                          |
|        | Power Channel<br>U/s                  | 12                | 7.7<br>(6.6-<br>8.3) | 7.2<br>(5.2-<br>8.1)  | 0.6<br>(0.3-<br>1.1) | 328<br>(<1.8-<br>1400)  | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
|        | Power Channel<br>D/s                  | 12                | 7.6<br>(6.9-<br>8.2) | 7.2<br>(5.2-<br>8.6)  | 1.0<br>(0.5-<br>2.0) | 795<br>(20-3500)        | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| Mahan  | adi river                             | •                 | •                    |                       |                      |                         |                    |                     |                     |                                     |                                                                        |                                          |
| 9      | Sambalpur U/s                         | 12                | 7.5<br>(6.6-<br>8.3) | 7.6<br>(6.9-<br>8.4)  | 1.2<br>(0.6-<br>1.7) | 1355<br>(45-4900)       | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| 10     | Sambalpur D/s                         | 12                | 7.6<br>(6.6-<br>8.4) | 7.4<br>(6.7-<br>8.4)  | 1.6<br>(0.6-<br>2.2) | 5626<br>(130-<br>22000) | 0                  | 4 (33)              | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                                     | Waste<br>water of<br>Sambal-<br>pur town |
|        | Sambalpur<br>FD/s at Shan-<br>karmath | 12                | 7.6<br>(6.7-<br>8.4) | 7.3<br>(6.0-<br>8.2)  | 1.1<br>(0.5-<br>1.8) | 2850<br>(20-16000)      | 0                  | 2<br>(17)           | С                   | С                                   |                                                                        |                                          |
|        | Sambalpur FF-<br>D/s at Huma          | 12                | 7.7<br>(6.9-<br>8.3) | 7.4<br>(6.5-<br>8.4)  | 0.9<br>(0.4-<br>1.4) | 2255<br>(170-9200)      | 0                  | 1 (8)               | С                   | С                                   |                                                                        |                                          |
| 13.    | Sonepur U/s                           | 12                | 7.8<br>(6.9-<br>8.3) | 7.6<br>(6.7-<br>8.4)  | 0.8<br>(0.2-<br>1.5) | 151<br>(<1.8-460)       | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| 14.    | Sonepur D/s                           | 12                | 7.7<br>(7.0-<br>8.4) | 7.0<br>(6.1-<br>7.8)  | 1.2<br>(0.4-<br>2.1) | 641<br>(130-3500)       | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| 15.    | Tikarapada                            | 12                | 7.8<br>(6.7-<br>8.4) | 8.0<br>(6.4-<br>10.2) | 0.7<br>(0.2-<br>1.5) | 766<br>(20-3500)        | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| 16.    | Narasinghpur                          | 12                | 7.8<br>(6.7-<br>8.5) | 8.1<br>(7.4-<br>10.0) | 0.6<br>(0.4-<br>0.9) | 723<br>(20-3500)        | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| 17.    | Mundali                               | 12                | 7.8<br>(7.2-<br>8.4) | 8.1<br>(7.2-<br>9.8)  | 0.7<br>(0.3-<br>1.1) | 614<br>(78-1300)        | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |
| 18.    | Cuttack U/s                           | 12                | 7.9<br>(7.1-<br>8.4) | 7.9<br>(6.8-<br>10.2) | 0.7<br>(0.3-<br>1.0) | 930<br>(45-2400)        | 0                  | 0                   | С                   | С                                   |                                                                        |                                          |

Annual Report 2018-19 —



|         |                               |          | A                    |                      | verage<br>e of val    | values<br>lues)           | cy                  | Frequen-<br>cy of<br>violation |                                                                        |                                     |         |                                        |
|---------|-------------------------------|----------|----------------------|----------------------|-----------------------|---------------------------|---------------------|--------------------------------|------------------------------------------------------------------------|-------------------------------------|---------|----------------------------------------|
| Sl. No  | Sampling Loca-<br>tion        | ion Obs. |                      | 's                   | (Percent<br>of viola- |                           | Designated<br>Class | Existing<br>Class              | Parameters<br>responsible<br>for down-<br>grading the<br>water quality | Possible<br>Reason                  |         |                                        |
|         |                               |          | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)         | TC<br>(MPN/100<br>ml)     | BOD                 | TC                             |                                                                        |                                     |         |                                        |
| 19.     | Cuttack D/s                   | 12       | 7.8<br>(7.2-<br>8.3) | 7.5<br>(6.4-<br>9.8) | 1.3<br>(0.6-<br>2.3)  | 4866<br>(790-<br>16000)   | 0                   | 4 (33)                         | С                                                                      | Doesn't<br>conform<br>to Class<br>C | TC      | Waste<br>water of<br>Cuttack<br>city   |
| 20.     | Cuttack FD/s                  | 12       | 7.9<br>(7.3-<br>8.5) | 7.6<br>(6.6-<br>9.6) | 1.0<br>(0.6-<br>1.7)  | 4057<br>(490-<br>16000)   | 0                   | 2<br>(17)                      | С                                                                      | С                                   |         |                                        |
| 21.     | Paradeep U/s                  | 12       | 7.8<br>(6.9-<br>8.0) | 7.4<br>(6.2-<br>8.6) | 1.0<br>(0.4-<br>1.5)  | 973<br>(<1.8-<br>3500)    | 0                   | 0                              | С                                                                      | С                                   |         |                                        |
| 22.     | Paradeep D/s                  | 12       | 7.6<br>(7.0-<br>8.1) | 7.4<br>(6.8-<br>8.2) | 1.0<br>(0.3-<br>1.8)  | 146<br>(<1.8-490)         | 0                   | 0                              | С                                                                      | С                                   |         |                                        |
| Ong Ri  | iver                          |          |                      |                      |                       |                           |                     |                                |                                                                        |                                     |         |                                        |
| 23.     | Dharuakhaman                  | 12       | 7.9<br>(6.4-<br>8.5) | 7.7<br>(6.7-<br>8.4) | 0.8<br>(0.2-<br>2.7)  | 594<br>(<1.8-<br>5400)    | 0                   | 1 (8)                          | С                                                                      | С                                   |         |                                        |
| Tel Riv | ver                           |          |                      |                      |                       |                           |                     |                                |                                                                        |                                     |         |                                        |
| 24.     | Monmunda                      | 12       | 7.7<br>(6.5-<br>8.3) | 7.4<br>(6.6-<br>8.4) | 1.0<br>(0.3-<br>1.9)  | 345<br>(<1.8-<br>1300)    | 0                   | 0                              | С                                                                      | С                                   |         |                                        |
| Kathaj  | odi river                     |          |                      |                      |                       |                           |                     |                                |                                                                        |                                     |         |                                        |
| 25.     | Cuttack U/s                   | 12       | 7.7<br>(6.5-<br>8.1) | 7.7<br>(6.9-<br>8.4) | 0.7<br>(0.4-<br>1.4)  | 1703<br>(140-5400)        | 0                   | 1<br>(8)                       | С                                                                      | С                                   |         |                                        |
| 26.     | Cuttack D/s                   | 12       | 7.7<br>(6.8-<br>8.4) | 6.4<br>(4.6-<br>8.4) | 2.8<br>(0.7-<br>5.7)  | 46758<br>(790-<br>160000) | 6<br>(50)           | 10<br>(83)                     | С                                                                      | Doesn't<br>conform<br>to Class<br>C | BOD, TC | Waste<br>water<br>of Cut-<br>tack city |
| 27.     | Mattagajpur<br>(Cuttack FD/s) | 12       | 7.8<br>(6.9-<br>8.5) | 6.7<br>(4.2-<br>9.2) | 2.6<br>(0.8-<br>3.9)  | 23416<br>(790-<br>92000)  | 5<br>(42)           | 11<br>(92)                     | С                                                                      | Doesn't<br>conform<br>to Class<br>C | BOD, TC |                                        |
| 28.     | Kamasasan<br>(Cuttack FFD/s)  | 12       | 7.7<br>(7.2-<br>8.1) | 7.5<br>(6.6-<br>8.6) | 1.2<br>(0.5-<br>2.6)  | 1532<br>(78-4900)         | 0                   | 0                              | С                                                                      | С                                   |         |                                        |
| Serua 1 | River                         |          |                      |                      |                       |                           |                     |                                |                                                                        |                                     |         |                                        |
| 29.     | Sankhatrasa<br>(Cuttack FD/s) | 12       | 7.7<br>(7.1-<br>8.5) | 6.9<br>(5.6-<br>7.8) | 2.4<br>(0.6-<br>5.5)  | 25494<br>(230-<br>160000) | 5<br>(42)           | 7<br>(58)                      | С                                                                      | Doesn't<br>conform<br>to Class<br>C | BOD, TC | Waste<br>water of<br>Cuttack<br>city   |



|         |                                                            |                   | A                    | nnual a<br>(Rang      | verage<br>e of val     | values<br>lues)              | cy                                     | uen-<br>of<br>ation |                     |                                     |                                                                        |                                               |
|---------|------------------------------------------------------------|-------------------|----------------------|-----------------------|------------------------|------------------------------|----------------------------------------|---------------------|---------------------|-------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|
| Sl. No  | Sampling Loca-<br>tion                                     | No.<br>of<br>Obs. |                      | Pai                   | rametei                | °S                           | (Per<br>of v<br>tion)<br>desig<br>crit | cent<br>iola-       | Designated<br>Class | Existing<br>Class                   | Parameters<br>responsible<br>for down-<br>grading the<br>water quality | Possible<br>Reason                            |
|         |                                                            |                   | рН                   | DO<br>(mg/l)          | BOD<br>(mg/l)          | TC<br>(MPN/100<br>ml)        | BOD                                    | TC                  |                     |                                     |                                                                        |                                               |
| Kuakh   | ai river                                                   |                   |                      |                       |                        |                              |                                        |                     |                     |                                     |                                                                        |                                               |
| 30      | Bhubaneswar<br>FU/s                                        | 12                | 7.6<br>(6.7-<br>8.4) | 7.4<br>(5.5-<br>8.7)  | 1.0<br>(0.4-<br>1.5)   | 1432<br>(330-3500)           | 0                                      | 0                   | С                   | С                                   |                                                                        |                                               |
| 31.     | Bhubaneswar<br>U/s                                         | 12                | 7.6<br>(6.5-<br>8.3) | 7.3<br>(5.3-<br>9.7)  | 1.1<br>(0.6-<br>1.6)   | 2800<br>(1300-<br>3500)      | 0                                      | 0                   | С                   | С                                   |                                                                        |                                               |
| Daya 1  | iver                                                       |                   | ı                    |                       |                        | I                            |                                        |                     | l                   | L                                   | I                                                                      |                                               |
| 32.     | Gelapur                                                    | 12                | 7.5<br>(7.0-<br>8.3) | 8.2<br>(6.0-<br>9.9)  | 1.0<br>(0.5-<br>1.9)   | 2695<br>(170-<br>16000)      | 0                                      | 2<br>(17)           | С                   | С                                   |                                                                        |                                               |
| 33.     | Bhubaneswar<br>D/s                                         | 12                | 7.4<br>(6.7-<br>8.2) | 4.2<br>(1.1-<br>7.8)  | 4.6<br>(1.5-<br>7.4)   | 72583<br>(13000-<br>160000)  | 9 (75)                                 | 12<br>(100)         | С                   | Doesn't<br>conform<br>to Class<br>C | DO#, BOD, TC                                                           | Waste<br>water<br>of Bhu-<br>baneswar<br>city |
| 34.     | Bhubaneswar<br>FD/s                                        | 12                | 7.3<br>(6.8-<br>8.1) | 5.1<br>(1.4-<br>11.1) | 4.3<br>(1.3-<br>7.4)   | 54358<br>(3300-<br>160000)   | 9 (75)                                 | 11<br>(92)          | С                   | Doesn't<br>conform<br>to Class<br>C | DO##, BOD,<br>TC                                                       |                                               |
| 35.     | Kanas                                                      | 12                | 7.7<br>(6.9-<br>8.4) | 6.5<br>(3.8-<br>8.9)  | 2.2<br>(0.8-<br>4.4)   | 8092<br>(200-<br>16000)      | 2 (17)                                 | 10<br>(83)          | С                   | Doesn't<br>conform<br>to Class<br>C | DO###, BOD,<br>TC                                                      | Human<br>activities                           |
| ## Free | uency of violatio<br>quency of violati<br>equency of viola | on for            | DO is                | s 5 time              | es (42%                | of total ob                  | servat                                 | ion)                |                     |                                     | l                                                                      |                                               |
| Gangu   | a River                                                    |                   |                      |                       |                        |                              |                                        |                     |                     |                                     |                                                                        |                                               |
| 36.     | Near Rajdhani<br>Engg. College                             | 12                | 7.1<br>(6.5-<br>7.6) | 1.9<br>(0.4-<br>4.6)  | 14.2<br>(3.6-<br>31.3) | 153818<br>(92000-<br>160000) | 12<br>(100)                            | 12<br>(100)         | С                   | Doesn't<br>conform<br>to Class<br>C | DO#, BOD, TC                                                           |                                               |
| 37.     | Palasuni                                                   | 12                | 7.1<br>(6.5-<br>7.7) | 1.7<br>(0.5-<br>3.2)  | 15.0<br>(4.1-<br>34.3) | 154333<br>(92000-<br>160000) | 12<br>(100)                            | 12<br>(100)         | С                   | Doesn't<br>conform<br>to Class<br>C | DO##, BOD, TC                                                          | Waste<br>water<br>of Bhu-                     |
| 38.     | Samantray pur                                              | 12                | 7.2<br>(6.7-<br>7.9) | 1.1<br>(0.2-<br>3.8)  | 22.4<br>(3.6-<br>70.8) | 151167<br>(54000-<br>160000) | 12<br>(100)                            | 12<br>(100)         | С                   | Doesn't<br>conform<br>to Class<br>C | DO##, BOD, TC                                                          | baneswar<br>city                              |
| 39.     | Vadimula                                                   | 12                | 7.3<br>(6.7-<br>8.1) | 3.2<br>(0.7-<br>6.6)  | 8.1<br>(3.4-<br>16.3)  | 123533<br>(5400-<br>160000)  | 12<br>(100)                            | 12<br>(100)         | С                   | Doesn't<br>conform<br>to Class<br>C | DO###, BOD,<br>TC                                                      |                                               |

46



|                   |                                                                             | No.        | A                    | (Range                | e of val             |                          | cy<br>viola<br>(Per<br>of v | quen-<br>of<br>ation<br>cent<br>riola-<br>from |                     |                                     | Parameters<br>responsible                 | D. 21               |
|-------------------|-----------------------------------------------------------------------------|------------|----------------------|-----------------------|----------------------|--------------------------|-----------------------------|------------------------------------------------|---------------------|-------------------------------------|-------------------------------------------|---------------------|
| Sl. No            | Sampling Location                                                           | of<br>Obs. |                      | Pai                   | ametei               | rs .                     | desig<br>crit               | nated<br>eria<br>lue                           | Designated<br>Class | Class                               | for down-<br>grading the<br>water quality | Possible<br>Reason  |
|                   |                                                                             |            | рН                   | DO<br>(mg/l)          | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)    | BOD                         | тс                                             |                     |                                     |                                           |                     |
| Birupa            | River                                                                       |            |                      |                       |                      |                          |                             | •                                              |                     |                                     |                                           |                     |
| 40.               | Choudwar D/s                                                                | 12         | 7.7<br>(6.7-<br>8.2) | 8.0<br>(6.6-<br>9.2)  | 0.9<br>(0.4-<br>1.8) | 2003<br>(40-3500)        | 0                           | 0                                              | С                   | С                                   |                                           |                     |
| Kusha             | bhadra River                                                                |            |                      |                       |                      |                          |                             |                                                |                     |                                     |                                           |                     |
| 41.               | Bhingarpur                                                                  | 12         | 7.8<br>(6.9-<br>8.4) | 7.0<br>(5.1-<br>10.0) | 1.6<br>(0.7-<br>2.5) | 3911<br>(130-9200)       | 0                           | 2 (17)                                         | С                   | С                                   |                                           |                     |
| 42.               | Nimapara                                                                    | 12         | 7.8<br>(7.0-<br>8.5) | 7.0<br>(5.5-<br>8.5)  | 1.3<br>(0.7-<br>2.4) | 3442<br>(78-16000)       | 0                           | 2 (17)                                         | С                   | С                                   |                                           |                     |
| 43.               | Gop                                                                         | 12         | 7.8<br>(7.0-<br>8.5) | 6.7<br>(5.2-<br>8.2)  | 1.2<br>(0.5-<br>2.2) | 6199<br>(790-<br>17000)  | 0                           | 4 (33)                                         | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                        | Human<br>activities |
| ## Free<br>### Fr | uency of violation<br>quency of violation<br>requency of viola<br>avi River | on for     | DO is                | s 12 tii              | mes (1               | 00% of tota              | l obse                      | rvatio                                         |                     |                                     |                                           |                     |
| 44.               | Chandanpur                                                                  | 12         | 8.0<br>(7.4-<br>8.5) | 7.0<br>(4.3-<br>10.3) | 1.1<br>(0.5-<br>2.0) | 3285<br>(330-<br>16000)  | 0                           | 1 (8)                                          | С                   | С                                   |                                           |                     |
| Manga             | la River                                                                    |            |                      |                       |                      |                          |                             |                                                |                     |                                     |                                           |                     |
| 45.               | Malatipatpur                                                                | 12         | 7.6<br>(6.6-<br>8.4) | 6.5<br>(4.8-<br>8.6)  | 1.1<br>(0.4-<br>1.7) | 2734<br>(490-9200)       | 0                           | 2 (17)                                         | С                   | С                                   |                                           |                     |
| 46.               | Golasahi                                                                    | 12         | 7.7<br>(7.2-<br>8.4) | 6.5<br>(3.2-<br>11.6) | 3.6<br>(1.3-<br>5.8) | 8108<br>(1300-<br>17000) | 8<br>(67)                   | 9<br>(75)                                      | С                   | Doesn't<br>conform<br>to Class<br>C | DO#, BOD, TC                              | Human<br>activities |
| Devi R            | liver                                                                       |            |                      |                       |                      |                          |                             |                                                |                     |                                     |                                           |                     |
| 47.               | Machhagaon                                                                  | 12         | 7.6<br>(7.2-<br>8.2) | 7.0<br>(6.2-<br>7.6)  | 0.8<br>(0.3-<br>1.4) | 621<br>(<1.8-<br>3500)   | 0                           | 0                                              | С                   | С                                   |                                           |                     |
| Gobari            | i River                                                                     |            |                      |                       |                      |                          |                             |                                                |                     |                                     |                                           |                     |
| 48.               | Kendrapara U/s                                                              | 12         | 7.8<br>(7.1-<br>8.4) | 6.7<br>(5.2-<br>7.6)  | 1.3<br>(0.3-<br>2.2) | 9018<br>(330-<br>43000)  | 0                           | 5<br>(42)                                      | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                        | Human<br>activities |
| 49.               | Kendrapara<br>D/s                                                           | 12         | 7.7<br>(7.0-<br>8.4) | 6.5<br>(4.4-<br>7.8)  | 1.8<br>(0.8-<br>2.5) | 22008<br>(790-<br>92000) | 0                           | 10<br>(83)                                     | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                        | Human<br>activities |



|         |                                  |                   | A                    |                       | verage<br>e of val   | values<br>lues)         | cy<br>viola<br>(Per    | uen-<br>of<br>ation<br>cent<br>iola- |                     |                                     | Parameters                                               |                     |
|---------|----------------------------------|-------------------|----------------------|-----------------------|----------------------|-------------------------|------------------------|--------------------------------------|---------------------|-------------------------------------|----------------------------------------------------------|---------------------|
| Sl. No  | Sampling Loca-<br>tion           | No.<br>of<br>Obs. |                      | Pai                   | ametei               | 's                      | tion)<br>desig<br>crit |                                      | Designated<br>Class | Existing<br>Class                   | responsible<br>for down-<br>grading the<br>water quality | Possible<br>Reason  |
|         |                                  |                   | pН                   | DO<br>(mg/l)          | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)   | BOD                    | TC                                   |                     |                                     |                                                          |                     |
| Nuna I  | River                            |                   |                      |                       |                      |                         |                        |                                      |                     |                                     |                                                          |                     |
| 50.     | Bijipur                          | 12                | 7.8<br>(7.0-<br>8.5) | 6.5<br>(5.6-<br>8.4)  | 1.3<br>(0.2-<br>2.7) | 5265<br>(490-<br>16000) | 0                      | 3<br>(25)                            | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                       | Human<br>activities |
| Kusum   | ii River                         |                   |                      |                       |                      |                         |                        |                                      |                     | ı                                   |                                                          |                     |
| 51.     | Tangi                            | 12                | 7.8<br>(7.3-<br>8.3) | 7.0<br>(6.2-<br>8.4)  | 1.2<br>(0.4-<br>1.7) | 4543<br>(330-<br>16000) | 0                      | 3<br>(25)                            | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                       | Human<br>activities |
| # Frequ | uency of violatio                | n for l           | DO is                | 1 time                | (8% of               | total observ            | vation)                | )                                    | ,                   |                                     |                                                          |                     |
| Kansaı  | ri River                         |                   |                      |                       |                      |                         |                        |                                      |                     |                                     |                                                          |                     |
| 52.     | Banapur                          | 12                | 7.8<br>(6.7-<br>8.4) | 6.6<br>(4.4-<br>8.4)  | 1.6<br>(0.6-<br>3.6) | 7586<br>(330-<br>35000) | 0                      | 3<br>(25)                            | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                       | Human<br>activities |
| Badasa  | nkha River                       |                   |                      | ı                     |                      |                         |                        |                                      |                     |                                     |                                                          |                     |
| 53.     | Langaleswar                      | 12                | 7.8<br>(7.1-<br>8.4) | 6.7<br>(3.3-<br>10.1) | 2.4<br>(0.6-<br>5.4) | 4243<br>(330-<br>16000) | 4 (33)                 | 3<br>(25)                            | С                   | Doesn't<br>conform<br>to Class<br>C | DO#,BOD, TC                                              | Human<br>activities |
| Sabulia | a River                          |                   |                      | l                     |                      |                         |                        |                                      | L                   | L                                   | L                                                        | L                   |
| 54.     | Rambha                           | 12                | 8.0<br>(7.5-<br>8.5) | 6.5<br>(4.1-<br>8.6)  | 1.5<br>(0.8-<br>2.4) | 4636<br>(230-<br>16000) | 0                      | 4 (33)                               | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                       | Human<br>activities |
| Ratnac  | hira River                       |                   |                      |                       |                      |                         |                        |                                      |                     |                                     |                                                          |                     |
| 55.     | Kumardihi                        | 12                | 7.8<br>(7.1-<br>8.5) | 6.8<br>(3.1-<br>8.7)  | 1.8<br>(0.5-<br>3.5) | 5825<br>(460-<br>16000) | 1 (8)                  | 4 (33)                               | С                   | Doesn't<br>conform<br>to Class<br>C | DO#,BOD, TC                                              | Human<br>activities |
|         | C' water quality<br>S-2296-1982) | Cri-              | 6.5-<br>8.5          | 4 and<br>above        | 3 or<br>less         | 5000 or<br>less         |                        |                                      | Drinking v          | water sou<br>ent follov             | rce with conv<br>ved by disinfe                          | entional<br>ction   |

<sup>#</sup> Frequency of violation for DO is 1 time (8% of total observation)

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml.(Ref : IS 2296-1982 foot note)

48 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_



### (B) Brahmani river System (2018)

| Sl.<br>No | Sampling Location                      | No.<br>of<br>Obs. | 2                    | (Rang                | average<br>ge of va  |                           | Frequence of violation) designation crite val | lation<br>cent<br>iola-<br>from<br>nated<br>eria | Designated<br>Class | Existing<br>Class                   | Parameters<br>respon-<br>sible for<br>down-<br>grading<br>the water | Possible<br>Reason                                       |
|-----------|----------------------------------------|-------------------|----------------------|----------------------|----------------------|---------------------------|-----------------------------------------------|--------------------------------------------------|---------------------|-------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|
|           |                                        |                   | рН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)     | BOD                                           | тс                                               |                     |                                     | quality                                                             |                                                          |
| Sanl      | kh river                               |                   |                      |                      |                      |                           |                                               |                                                  | ,                   |                                     |                                                                     |                                                          |
| 1.        | Sankh U/s                              | 12                | 7.5<br>(6.7-<br>8.1) | 6.8<br>(4.8-<br>8.2) | 1.2<br>(0.4-<br>1.8) | 4901<br>(330-16000)       | 0                                             | 3<br>(25)                                        | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                                  | Human<br>activities                                      |
| Koe       | l River                                |                   |                      |                      |                      |                           |                                               |                                                  |                     |                                     |                                                                     |                                                          |
| 2.        | Koel U/s                               | 12                | 7.6<br>(6.7-<br>8.3) | 6.7<br>(4.5-<br>8.0) | 1.1<br>(0.4-<br>2.5) | 3966<br>(68->16000)       | 0                                             | 4 (33)                                           | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                                  | Human<br>activities                                      |
| Brał      | ımani river                            |                   |                      |                      |                      |                           |                                               |                                                  | 1                   |                                     |                                                                     |                                                          |
| 3.        | Panposh U/s                            | 12                | 7.5<br>(6.8-<br>8.3) | 7.4<br>(5.6-<br>9.0) | 1.3<br>(0.5-<br>2.0) | 3956<br>(580-16000)       | 0                                             | 2 (17)                                           | С                   | С                                   |                                                                     |                                                          |
| 4.        | Panposh D/s                            | 12                | 7.5<br>(6.6-<br>8.2) | 5.0<br>(3.5-<br>7.4) | 4.8<br>(1.5-<br>7.6) | 35858<br>(5400-<br>92000) | 11<br>(92)                                    | 12<br>(100)                                      | С                   | Doesn't<br>conform<br>to Class<br>C | DO#, BOD,<br>TC                                                     | Waste<br>water of<br>Rourkela<br>town and<br>Steel Plant |
| 5.        | Rourkela D/s                           | 12                | 7.4<br>(6.6-<br>8.2) | 5.2<br>(3.7-<br>7.8) | 4.2<br>(1.3-<br>6.5) | 20217<br>(1300-<br>92000) | 11<br>(92)                                    | 11<br>(92)                                       | С                   | Doesn't<br>conform<br>to Class<br>C | DO##, BOD,<br>TC                                                    | -do-                                                     |
| 6.        | Rourkela FD/s<br>(Attaghat)            | 12                | 7.4<br>(6.9-<br>8.2) | 6.5<br>(4.6-<br>8.6) | 3.1<br>(0.8-<br>5.4) | 6671<br>(92-24000)        | 6<br>(50)                                     | 7<br>(58)                                        | С                   | Doesn't<br>conform<br>to Class<br>C | BOD, TC                                                             | -do-                                                     |
| 7.        | Rourkela FD/s<br>(Biritola)            | 12                | 7.6<br>(6.7-<br>8.2) | 7.2<br>(5.2-<br>8.2) | 1.4<br>(0.4-<br>2.8) | 2216<br>(45-9200)         | 0                                             | 2 (17)                                           | С                   | С                                   |                                                                     |                                                          |
|           | equency of violat<br>Frequency of viol |                   |                      |                      |                      |                           |                                               |                                                  |                     |                                     |                                                                     |                                                          |
| 8.        | Bonaigarh                              | 12                | 7.7<br>(7.0-<br>8.2) | 7.3<br>(4.9-<br>9.0) | 1.3<br>(0.1-<br>2.2) | 860<br>(20-3500)          | 0                                             | 0                                                | С                   | С                                   |                                                                     |                                                          |
| 9.        | Rengali                                | 12                | 7.7<br>(6.9-<br>8.2) | 7.9<br>(6.0-<br>9.0) | 0.8<br>(0.5-<br>1.5) | 626<br>(68-1600)          | 0                                             | 0                                                | С                   | С                                   |                                                                     |                                                          |
| 10.       | Samal                                  | 12                | 7.7<br>(7.1-<br>8.3) | 8.0<br>(4.8-<br>9.2) | 0.8<br>(0.2-<br>1.9) | 1180<br>(130-3500)        | 0                                             | 0                                                | С                   | С                                   |                                                                     |                                                          |



| Sl.<br>No | Sampling Loca-<br>tion | No.<br>of<br>Obs. | 1                    | (Rang                | average<br>ge of va  | lues)                    | Frequency of violation) designation critical value of violation critical value of violatical value of viol | lation<br>cent<br>iola-<br>from<br>nated<br>eria | Designated<br>Class |                                     | Parameters<br>respon-<br>sible for<br>down-<br>grading<br>the water | Possible<br>Reason  |
|-----------|------------------------|-------------------|----------------------|----------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|-------------------------------------|---------------------------------------------------------------------|---------------------|
|           |                        |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)    | BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | тс                                               |                     |                                     | quality                                                             |                     |
| 11.       | Talcher FU/s           | 12                | 7.7<br>(7.1-<br>8.3) | 8.0<br>(7.2-<br>9.0) | 0.7<br>(0.4-<br>1.1) | 1427<br>(78-5400)        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (8)                                            | С                   | С                                   |                                                                     |                     |
| 12.       | Talcher U/s            | 12                | 7.8<br>(7.2-<br>8.2) | 7.8<br>(6.4-<br>8.6) | 0.8<br>(0.5-<br>1.2) | 1816<br>(130-9200)       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (8)                                            | С                   | С                                   |                                                                     |                     |
| 13.       | Mandapal               | 12                | 7.7<br>(7.1-<br>8.2) | 7.8<br>(6.8-<br>8.4) | 1.2<br>(0.6-<br>2.6) | 3226<br>(170-16000)      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (17)                                           | С                   | С                                   |                                                                     |                     |
| 14.       | Talcher D/s            | 12                | 7.6<br>(6.6-<br>8.1) | 7.8<br>(6.9-<br>8.8) | 1.2<br>(0.2-<br>2.8) | 3027<br>(230-11000)      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 (25)                                           | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                                  | Human<br>activities |
| 15.       | Talcher FD/s           | 12                | 7.6<br>(7.0-<br>8.1) | 8.0<br>(6.4-<br>9.1) | 0.8<br>(0.2-<br>1.4) | 2085<br>(230-7900)       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (17)                                           | С                   | С                                   |                                                                     |                     |
| 16.       | Dhenkanal<br>U/s       | 12                | 7.7<br>(7.3-<br>8.2) | 8.2<br>(7.2-<br>9.4) | 0.7<br>(0.2-<br>1.0) | 1621<br>(130-9200)       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (8)                                            | С                   | С                                   |                                                                     |                     |
| 17.       | Dhenkanal D/s          | 12                | 7.7<br>(7.3-<br>8.0) | 8.0<br>(6.4-<br>9.2) | 1.0<br>(0.2-<br>2.0) | 3502<br>(270-17000)      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (17)                                           | С                   | С                                   |                                                                     |                     |
| 18.       | Bhuban                 | 12                | 7.8<br>(7.3-<br>8.3) | 7.9<br>(6.8-<br>9.0) | 0.8<br>(0.2-<br>1.9) | 715<br>(20-2400)         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                | С                   | С                                   |                                                                     |                     |
| 19.       | Kabatabandha           | 12                | 7.7<br>(6.3-<br>8.4) | 7.2<br>(6.4-<br>7.6) | 0.5<br>(0.2-<br>0.8) | 1149<br>(20-4300)        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                | С                   | С                                   |                                                                     |                     |
| 20.       | Dharmasala U/s         | 12                | 7.6<br>(6.4-<br>8.2) | 7.4<br>(6.8-<br>7.9) | 0.6<br>(0.2-<br>0.9) | 1227<br>(110-3500)       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                | С                   | С                                   |                                                                     |                     |
| 21.       | Dharmasala D/s         | 12                | 7.7<br>(6.7-<br>8.4) | 7.3<br>(6.6-<br>7.6) | 1.1<br>(0.6-<br>1.6) | 1847<br>(78-5400)        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (8)                                            | С                   | С                                   |                                                                     |                     |
| 22.       | Pottamundai            | 12                | 7.8<br>(7.0-<br>8.4) | 7.4<br>(6.0-<br>9.2) | 1.2<br>(0.7-<br>1.8) | 1719<br>(170-4300)       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                | С                   | С                                   |                                                                     |                     |
| Nan       | dira river             |                   |                      |                      |                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                     |                                     |                                                                     |                     |
| 23.       | Nandira U/s            | 12                | 7.9<br>(7.3-<br>8.4) | 7.4<br>(5.8-<br>8.4) | 1.1<br>(0.6-<br>2.5) | 3921<br>(45 -<br>>16000) | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>(25)                                        | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                                  | Human<br>activities |



|           |                   |                   | 1                    | Annual<br>(Ran       | average<br>ge of va   | e values<br>lues)            | Frequence of vio | lation<br>cent        |                     |                                     | Parameters                                            |                     |
|-----------|-------------------|-------------------|----------------------|----------------------|-----------------------|------------------------------|------------------|-----------------------|---------------------|-------------------------------------|-------------------------------------------------------|---------------------|
| Sl.<br>No | Sampling Location | No.<br>of<br>Obs. |                      | Pa                   | aramete               | rs                           | tion)            | from<br>nated<br>eria | Designated<br>Class | Existing<br>Class                   | respon-<br>sible for<br>down-<br>grading<br>the water | Possible<br>Reason  |
|           |                   |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)         | TC<br>(MPN/100<br>ml)        | BOD              | TC                    |                     |                                     | quality                                               |                     |
| 24.       | Nandira D/s       | 12                | 8.0<br>(7.4-<br>8.5) | 7.3<br>(5.8-<br>8.8) | 1.6<br>(0.8-<br>3.5)  | 7551<br>(330-35000)          | 1 (8)            | 4 (33)                | С                   | Doesn't<br>conform<br>to Class<br>C | BOD, TC                                               | Human<br>activities |
| Kisi      | ndajhor           | ļ                 | l                    |                      |                       |                              |                  |                       | <u> </u>            |                                     |                                                       |                     |
| 25.       | Kisindajhor       | 12                | 8.0<br>(7.6-<br>8.3) | 6.9<br>(4.6-<br>8.2) | 1.1<br>(0.6-<br>2.1)  | 2133<br>(78-5400)            | 0                | 3<br>(25)             | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                    | Human<br>activities |
| Kha       | rasuan River      |                   |                      |                      |                       |                              |                  |                       | 1                   |                                     |                                                       |                     |
| 26.       | Khanditara        | 12                | 7.6<br>(6.8-<br>8.1) | 7.7<br>(6.4-<br>8.4) | 0.8<br>(0.3-<br>1.4)  | 789<br>(45-3500)             | 0                | 0                     | С                   | С                                   |                                                       |                     |
| 27.       | Binjharpur        | 12                | 7.8<br>(7.1-<br>8.3) | 7.9<br>(7.2-<br>8.6) | 0.7<br>(0.3-<br>1.6)  | 1169<br>(45-5400)            | 0                | 1 (8)                 | С                   | С                                   |                                                       |                     |
| 28.       | Aul               | 12                | 7.8<br>(7.3-<br>8.4) | 7.3<br>(6.2-<br>8.6) | 1.2<br>(0.3-<br>2.0)  | 2390<br>(45-5400)            | 0                | 1 (8)                 | С                   | С                                   |                                                       |                     |
| Gur       | adih nallah       |                   |                      |                      |                       |                              |                  |                       |                     |                                     |                                                       |                     |
| 29.       | Guradih nallah    | 12                | 7.4<br>(6.8-<br>7.9) | 3.4<br>(1.8-<br>6.4) | 7.0<br>(3.3-<br>10.1) | 70750<br>(11000-<br>>160000) |                  |                       | Drain               |                                     |                                                       |                     |
| Bad       | jhor nallah       |                   |                      |                      |                       |                              |                  |                       |                     |                                     |                                                       |                     |
| 30.       | Badjhor nallah    | 12                | 8.0<br>(7.7-<br>8.3) | 7.2<br>(6.6-<br>8.3) | 0.9<br>(0.4-<br>1.5)  | 7173<br>(490-54000)          | 0                | 2 (17)                | С                   | С                                   |                                                       |                     |
| Dan       | ısala River       |                   |                      |                      |                       |                              |                  |                       |                     |                                     |                                                       |                     |
| 31.       | Dayanabil         | 12                | 7.8<br>(7.0-<br>8.5) | 7.3<br>(6.4-<br>8.3) | 0.7<br>(0.3-<br>1.4)  | 1884<br>(45-4600)            | 0                | 0                     | С                   | С                                   |                                                       |                     |
| Gan       | da nallah         |                   |                      |                      |                       |                              |                  |                       |                     |                                     |                                                       |                     |
| 32.       | Marthapur         | 12                | 7.8<br>(7.2-<br>8.2) | 7.5<br>(6.4-<br>8.2) | 1.0<br>(0.4-<br>2.4)  | 10964<br>(20-92000)          | 0                | 3 (25)                | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                    | Human<br>activities |
| Ling      | ira River         |                   |                      |                      |                       |                              |                  |                       |                     |                                     |                                                       |                     |
| 33.       | Angul U/s         | 12                | 8.3<br>(7.7-<br>8.8) | 7.7<br>(6.2-<br>9.0) | 1.0<br>(0.3-<br>1.8)  | 2183<br>(45-16000)           | 0                | 1 (8)                 | С                   | С                                   |                                                       |                     |



| Sl.<br>No | Sampling Location                       | No.<br>of<br>Obs. | 1                    | (Rang                 | averagg<br>ge of va<br>uramete |                       | Frequence of violation) designation val | lation<br>cent<br>lola-<br>from<br>nated<br>eria | Designated<br>Class | Existing<br>Class                   | grading<br>the water         | Possible<br>Reason  |
|-----------|-----------------------------------------|-------------------|----------------------|-----------------------|--------------------------------|-----------------------|-----------------------------------------|--------------------------------------------------|---------------------|-------------------------------------|------------------------------|---------------------|
|           |                                         |                   | рН                   | DO<br>(mg/l)          | BOD<br>(mg/l)                  | TC<br>(MPN/100<br>ml) | BOD                                     | TC                                               |                     |                                     | quality                      |                     |
| 34.       | Angul D/s                               | 12                | 8.3<br>(7.8-<br>8.8) | 7.3<br>(5.8-<br>8.6)  | 1.1<br>(0.5-<br>2.2)           | 2299<br>(78-9200)     | 0                                       | 1 (8)                                            | С                   | С                                   |                              |                     |
| Ran       | niala River                             |                   |                      |                       |                                |                       |                                         |                                                  |                     | •                                   |                              |                     |
| 35.       | Kamakhyanagar                           | 12                | 8.0<br>(7.5-<br>8.5) | 7.8<br>(4.4-<br>9.4)  | 1.0<br>(0.3-<br>1.8)           | 1397<br>(78-3500)     | 0                                       | 0                                                | С                   | С                                   |                              |                     |
| Ban       | guru nallah                             |                   | •                    |                       |                                |                       |                                         |                                                  |                     | •                                   |                              |                     |
| 36.       | Banguru nallah                          | 12                | 8.1<br>(7.6-<br>8.5) | 7.5<br>(5.2-<br>9.0)  | 1.3<br>(0.5-<br>3.9)           | 1248<br>(130-2400)    | 1 (8)                                   | 0                                                | С                   | Doesn't<br>conform<br>to Class<br>C | BOD                          | Human<br>activities |
| Sing      | gada jhor                               |                   |                      |                       |                                | ı                     |                                         |                                                  | ı                   |                                     |                              |                     |
| 37.       | Singada jhor                            | 12                | 8.1<br>(7.5-<br>8.5) | 7.9<br>(5.8-<br>10.0) | 1.2<br>(0.7-<br>2.1)           | 980<br>(45-4300)      | 0                                       | 0                                                | С                   | С                                   |                              |                     |
| Tiki      | ra River                                |                   |                      |                       |                                |                       |                                         |                                                  | 1                   |                                     |                              |                     |
| 38.       | Kaniha U/s                              | 12                | 8.1<br>(7.9-<br>8.3) | 8.0<br>(7.0-<br>9.6)  | 0.8<br>(0.4-<br>1.5)           | 1163<br>(110-3500)    | 0                                       | 0                                                | С                   | С                                   |                              |                     |
| 39.       | Kaniha D/s                              | 12                | 7.9<br>(6.7-<br>8.4) | 7.3<br>(5.8-<br>8.2)  | 1.1<br>(0.6-<br>2.5)           | 2520<br>(110-9200)    | 0                                       | 1 (8)                                            | С                   | С                                   |                              |                     |
| Ban       | gurusingada jho                         | r                 |                      |                       |                                |                       |                                         |                                                  |                     |                                     |                              |                     |
| 40.       | Bangurusingada<br>jhor                  | 12                | 8.1<br>(7.7-<br>8.5) | 7.3<br>(5.2-<br>8.8)  | 1.1<br>(0.1-<br>2.5)           | 2775<br>(20-9200)     | 0                                       | 1 (8)                                            | С                   | С                                   |                              |                     |
| Kar       | o River                                 |                   |                      |                       |                                |                       |                                         |                                                  |                     |                                     |                              |                     |
| 41.       | Barbil                                  | 12                | 7.6<br>(6.4-<br>8.5) | 7.0<br>(6.0-<br>7.7)  | 0.9<br>(0.1-<br>1.9)           | 1744<br>(78-4300)     | 0                                       | 0                                                | С                   | С                                   |                              |                     |
|           | ass 'C' water qua<br>iteria (IS-2296-19 |                   | 6.5-<br>8.5          | 4 and above           | 3 or<br>less                   | 5000 or<br>less       |                                         |                                                  |                     |                                     | rce with con<br>ed by disinf |                     |

**NB**: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml.

(Ref : IS 2296-1982 foot note)



### (C) Baitarani river system (2018)

|           |                      |                   | A                    | nnual a<br>(Range    | verage verage of value |                          | of vi<br>(Perovio | quency<br>olation<br>cent of<br>lation) |                     |                                     | Parameters<br>responsible |                     |
|-----------|----------------------|-------------------|----------------------|----------------------|------------------------|--------------------------|-------------------|-----------------------------------------|---------------------|-------------------------------------|---------------------------|---------------------|
| Sl.<br>No | Sampling<br>Location | No.<br>of<br>Obs. |                      | Par                  | ameters                | 3                        | desi              | rom<br>gnated<br>ia value               | Designated<br>Class | Existing<br>Class                   | for downgrading the water | Possible<br>Reason  |
|           |                      |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)          | TC<br>(MPN/100<br>ml)    | BOD               | тс                                      |                     |                                     | quality                   |                     |
| Kun       | dra nallah           |                   |                      |                      |                        |                          |                   |                                         |                     |                                     |                           |                     |
| 1.        | Joda                 | 12                | 7.6<br>(6.9-<br>8.4) | 6.9<br>(6.0-<br>8.3) | 1.2<br>(0.3-<br>2.1)   | 1636<br>(68-4300)        | 0                 | 0                                       | С                   | С                                   |                           |                     |
| Kus       | ei River             |                   |                      |                      |                        |                          |                   |                                         |                     |                                     |                           |                     |
| 2.        | Deogaon              | 12                | 7.9<br>(7.0-<br>8.5) | 7.6<br>(7.1-<br>9.6) | 1.2<br>(0.7-<br>2.2)   | 3306<br>(390-<br>5400)   | 0                 | 1 (8)                                   | С                   | С                                   |                           |                     |
| Bait      | arani River          |                   |                      |                      |                        |                          |                   |                                         |                     |                                     |                           |                     |
| 3.        | Naigarh              | 12                | 7.7<br>(6.7-<br>8.4) | 7.5<br>(6.2-<br>8.9) | 0.8<br>(0.4-<br>1.8)   | 842<br>(78-3500)         | 0                 | 0                                       | С                   | С                                   |                           |                     |
| 4.        | Unchabali            | 12                | 7.5<br>(6.0-<br>8.4) | 7.5<br>(6.2-<br>8.9) | 0.8<br>(0.4-<br>1.8)   | 842<br>(78-3500)         | 0                 | 0                                       | С                   | С                                   |                           |                     |
| 5.        | Champua              | 12                | 7.5<br>(6.8-<br>8.3) | 7.1<br>(6.0-<br>7.8) | 1.0<br>(0.3-<br>2.4)   | 1289<br>(78-3500)        | 0                 | 0                                       | С                   | С                                   |                           |                     |
| 6.        | Tribindha            | 12                | 7.7<br>(6.9-<br>8.3) | 7.4<br>(6.4-<br>8.2) | 0.9<br>(0.4-<br>2.2)   | 1061<br>(78-3500)        | 0                 | 0                                       | С                   | С                                   |                           |                     |
| 7.        | Joda                 | 12                | 7.6<br>(6.9-<br>8.3) | 7.5<br>(6.2-<br>8.7) | 0.7<br>(0.4-<br>1.3)   | 1089<br>(20-3500)        | 0                 | 0                                       | С                   | С                                   |                           |                     |
| 8.        | Anandpur             | 12                | 7.6<br>(7.0-<br>8.4) | 7.5<br>(6.8-<br>8.1) | 1.0<br>(0.5-<br>2.0)   | 1805<br>(170-360)        | 0                 | 0                                       | С                   | С                                   |                           |                     |
| 9.        | Jajpur               | 12                | 7.9<br>(7.4-<br>8.4) | 7.6<br>(6.5-<br>8.4) | 0.7<br>(0.3-<br>1.4)   | 4556<br>(78-<br>16000)   | 0                 | 3<br>(25)                               | С                   | Doesn't<br>conform<br>to Class<br>C | TC                        | Human<br>activities |
| 10.       | Chandbali<br>U/s     | 12                | 7.9<br>(7.1-<br>8.4) | 7.4<br>(5.6-<br>9.2) | 0.9<br>(0.5-<br>2.1)   | 8267<br>(1100-<br>16000) | 0                 | 5<br>(42)                               | С                   | Doesn't<br>conform<br>to Class<br>C | ТС                        | Human<br>activities |
| 11.       | Chandbali<br>D/s     | 12                | 7.8<br>(7.3-<br>8.2) | 7.4<br>(6.0-<br>8.8) | 1.3<br>(0.4-<br>1.9)   | 8335<br>(920-<br>16000)  | 0                 | 5<br>(42)                               | С                   | Doesn't<br>conform<br>to Class<br>C | TC                        | Human<br>activities |
| Sala      | ndi River            |                   |                      |                      |                        |                          |                   |                                         |                     |                                     |                           |                     |
| 12.       | Bhadrak<br>U/s       | 12                | 7.9<br>(7.1-<br>8.4) | 7.5<br>(5.2-<br>9.2) | 0.8<br>(0.3-<br>1.2)   | 2391<br>(490-<br>5400)   | 0                 | 1 (8)                                   | С                   | С                                   |                           |                     |



| Sl.<br>No | Sampling<br>Location                                  | No.<br>of<br>Obs. | A                    |                                            | verage verage of valu | ies)                    | of vi<br>(Pero<br>viol<br>fi<br>desi | uency olation cent of ation) com gnated ia value | Designated<br>Class | Existing<br>Class                   | Parameters<br>responsible<br>for<br>downgrading<br>the water | Possible<br>Reason  |
|-----------|-------------------------------------------------------|-------------------|----------------------|--------------------------------------------|-----------------------|-------------------------|--------------------------------------|--------------------------------------------------|---------------------|-------------------------------------|--------------------------------------------------------------|---------------------|
|           | 13. Bhadrak                                           |                   | pН                   | DO<br>(mg/l)                               | BOD<br>(mg/l)         | TC<br>(MPN/100<br>ml)   | BOD                                  | TC                                               |                     |                                     | quality                                                      |                     |
| 13.       | Bhadrak<br>D/s                                        | 12                | 7.8<br>(6.4-<br>8.4) | 7.8 7.7 1.1 9823<br>6.4- (5.6- (0.7- (790- |                       |                         | 0                                    | 5<br>(42)                                        | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                           | Human<br>activities |
| Dha       | mra River                                             |                   |                      |                                            |                       |                         |                                      |                                                  |                     |                                     |                                                              |                     |
| 14.       | Dhamra                                                | 12                | 7.7<br>(6.9-<br>8.1) | 7.2<br>(5.6-<br>8.8)                       | 0.9<br>(0.4-<br>1.9)  | 5028<br>(330-<br>16000) | 0                                    | 3<br>(25)                                        | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                           | Human<br>activities |
| 1         | Class 'C' water<br>uality Criteria (IS-<br>2296-1982) |                   |                      | 4 and<br>above                             | 3 or<br>less          | 5000 or<br>less         |                                      |                                                  |                     |                                     | rce with conve<br>red by disinfec                            |                     |

**NB**: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml.

(Ref : IS 2296-1982 foot note

### (D) Rushikulya river system (2018)

| Sl.<br>No | Sampling<br>Location | No.<br>of<br>Obs. | A                    | (Rang                                        | average<br>ge of val |                       | viola<br>(Perco<br>viola<br>fro<br>desig<br>crit | nency of ention ent of etion) om nated eria | Designated<br>Class | Existing<br>Class | Parameters<br>responsible<br>for<br>downgrading<br>the water<br>quality | Possible<br>Reason |
|-----------|----------------------|-------------------|----------------------|----------------------------------------------|----------------------|-----------------------|--------------------------------------------------|---------------------------------------------|---------------------|-------------------|-------------------------------------------------------------------------|--------------------|
|           |                      |                   | pН                   | DO<br>(mg/l)                                 | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml) | BOD                                              | TC                                          |                     |                   | ,                                                                       |                    |
| Rus       | selkunda Res         | ervoir            | 1                    |                                              |                      |                       |                                                  |                                             |                     |                   |                                                                         |                    |
| 1.        | Russelkunda          | 12                | 7.6<br>(7.0-<br>8.3) | 7.6 8.1 1.2 1716<br>(7.0- (6.0- (0.8- (<1.8- |                      | 0                     | 0                                                | С                                           | С                   |                   |                                                                         |                    |
| Bad       | a Nadi               |                   |                      | ,                                            |                      |                       |                                                  |                                             |                     |                   |                                                                         |                    |
| 2         | Aska                 | 12                | 8.0<br>(7.4-<br>8.4) | 8.2<br>(6.5-<br>9.5)                         | 1.0<br>(0.3-<br>1.8) | 1414<br>(170-4300)    | 0                                                | 0                                           | С                   | С                 |                                                                         |                    |
| Rus       | shikulya River       |                   |                      |                                              |                      |                       |                                                  |                                             |                     |                   |                                                                         |                    |
| 3.        | Aska                 | 12                | 7.9<br>(6.9-<br>8.5) | 7.6<br>(6.0-<br>8.6)                         | 0.9<br>(0.4-<br>1.5) | 2508<br>(230-5400)    | 0                                                | 1 (8)                                       | С                   | С                 |                                                                         |                    |

54 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_\_



| Sl.<br>No | Sampling<br>Location                                   | No.<br>of<br>Obs. | A                    | (Rang                 | average<br>se of val | ·                       | viola<br>(Perco<br>viola<br>fro<br>desig<br>crit | nency of ation ent of ation) om nated eria lue | Designated<br>Class | Existing<br>Class                   | Parameters<br>responsible<br>for<br>downgrading<br>the water<br>quality | Possible<br>Reason  |
|-----------|--------------------------------------------------------|-------------------|----------------------|-----------------------|----------------------|-------------------------|--------------------------------------------------|------------------------------------------------|---------------------|-------------------------------------|-------------------------------------------------------------------------|---------------------|
|           |                                                        |                   | PH   (mg/l) (1       |                       | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)   | BOD                                              | тс                                             |                     |                                     |                                                                         |                     |
| 4.        | Nalabanta                                              | 12                | 8.0<br>(7.5-<br>8.4) | 7.7<br>(6.0-<br>10.0) | 1.1<br>(0.4-<br>1.8) | 1906<br>(61-5400)       | 0                                                | 1 (8)                                          | С                   | С                                   |                                                                         |                     |
| 5.        | Madhopur                                               | 12                | 8.0<br>(7.4-<br>8.4) | 7.9<br>(6.2-<br>10.5) | 1.4<br>(0.6-<br>2.6) | 2642<br>(<1.8-<br>4300) | 0                                                | 0                                              | С                   | С                                   |                                                                         |                     |
| 6.        | Potagarh                                               | 12                | 7.8<br>(7.5-<br>8.4) | 7.8<br>(6.8-<br>10.1) | 2.0<br>(0.9-<br>3.7) | 1126<br>(<1.8-<br>3500) | 2 (17)                                           | 0                                              | С                   | Doesn't<br>conform<br>to Class<br>C | BOD                                                                     | Human<br>activities |
|           | Class 'C' water quality<br>Criteria (IS-2296-<br>1982) |                   |                      | 4 and above           | 3 or<br>less         | 5000 or<br>less         |                                                  |                                                |                     |                                     | rce with conve<br>yed by disinfec                                       |                     |

**NB**: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml.

(Ref : IS 2296-1982 foot note)

### (E) Nagavali river system (2018)

|           | No Location                               |                   |                      |                      | average<br>ge of val |                       | Frequ<br>of viol<br>(Perce<br>viola | ation<br>nt of<br>tion) |                     |   | Parameters                                                |                    |
|-----------|-------------------------------------------|-------------------|----------------------|----------------------|----------------------|-----------------------|-------------------------------------|-------------------------|---------------------|---|-----------------------------------------------------------|--------------------|
| Sl.<br>No |                                           | No.<br>of<br>Obs. |                      | Pa                   | rameters             | S                     | fro<br>design<br>crite<br>val       | nated<br>eria           | Designated<br>Class |   | responsible<br>for<br>downgrading<br>the water<br>quality | Possible<br>Reason |
|           | Nagavali river                            |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml) | BOD                                 | TC                      |                     |   | quanty                                                    |                    |
| Nag       |                                           |                   |                      |                      |                      |                       |                                     |                         |                     |   |                                                           |                    |
| 1.        | Penta U/s                                 | 12                | 7.6<br>(6.4-<br>8.3) | 7.4<br>(6.9-<br>7.8) | 0.9<br>(0.4-<br>1.5) | 1103<br>68-3500       | 0                                   | 0                       | С                   | С |                                                           |                    |
| 2.        | J.K. Pur<br>D/S                           | 12                | 7.7<br>(6.7-<br>8.4) | 6.7<br>(6.3-<br>7.0) | 1.6<br>(0.8-<br>2.8) | 3364<br>(700-16000)   | 0                                   | 2<br>(17)               | С                   | С |                                                           |                    |
| 3.        | Rayagada<br>D/S                           | 12                | 7.7<br>(6.6-<br>8.4) | 7.3<br>(7.0-<br>7.6) | 1.1<br>(0.5-<br>2.1) | 1391<br>(170-3500)    | 0                                   | 0                       | С                   | С |                                                           |                    |
|           | Class 'C' wa<br>dity Criteri<br>2296-1982 | a (IS-            | 6.5-<br>8.5          | 4 and<br>above       | 3 or<br>less         | 5000 or<br>less       |                                     |                         |                     |   | rce with conve<br>yed by disinfec                         |                    |

**NB**: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml. (Ref : IS 2296-1982 foot note)



### (F) Subarnarekha river system (2018)

| Sl.<br>No | Sampling<br>Location                   | No.<br>of<br>Obs. | A                    |                      | verage<br>e of valu  | ues)                  | of vio<br>(Perce<br>viola<br>fro<br>desig | nency<br>lation<br>ent of<br>ition)<br>om<br>nated<br>a value | Designated<br>Class | Existing<br>Class | Parameters<br>responsible<br>for<br>downgrading<br>the water | Possible<br>Reason |
|-----------|----------------------------------------|-------------------|----------------------|----------------------|----------------------|-----------------------|-------------------------------------------|---------------------------------------------------------------|---------------------|-------------------|--------------------------------------------------------------|--------------------|
|           |                                        |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml) | BOD                                       | TC                                                            |                     |                   | quality                                                      |                    |
| Suba      | rnarekha                               | river             |                      |                      |                      |                       |                                           |                                                               |                     |                   |                                                              |                    |
| 1.        | Rajghat                                | 12                | 8.0<br>(6.9-<br>8.5) | 7.5<br>(6.4-<br>8.8) | 1.0<br>(0.3-<br>1.6) | 2162<br>(170-4900)    | 0                                         | 0                                                             | С                   | С                 |                                                              |                    |
| qual      | s 'C' water<br>ity Criteria<br>5-1982) |                   | 6.5-<br>8.5          | 4 and above          | 3 or<br>less         | 5000 or<br>less       |                                           |                                                               |                     |                   | rce with convo<br>ved by disinfe                             |                    |

NB:

The criteria of non-compliance with respect to TC has been calculated on the following basis: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml.

(Ref: IS 2296-1982 foot note)

### (G) Budhabalanga river system (2018)

| Sl.<br>No | Sampling<br>Location | No.<br>of<br>Obs. | 1                    | (Ran                 | average<br>ge of va  |                           | Frequof viology (Perceviolated) fro design criteria | ation<br>nt of<br>tion)<br>m<br>nated | Designated<br>Class | Existing<br>Class                   | Parameters<br>responsible<br>for<br>downgrading<br>the water | Possible<br>Reason  |
|-----------|----------------------|-------------------|----------------------|----------------------|----------------------|---------------------------|-----------------------------------------------------|---------------------------------------|---------------------|-------------------------------------|--------------------------------------------------------------|---------------------|
|           |                      |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml)     | BOD                                                 | TC                                    |                     |                                     | quality                                                      |                     |
| Bud       | habalanga            | rive              | r                    |                      |                      |                           |                                                     |                                       |                     |                                     |                                                              |                     |
| 1.        | Baripada<br>D/s      | 12                | 7.9<br>(6.8-<br>8.5) | 8.1<br>(6.8-<br>9.6) | 1.0<br>(0.6-<br>1.6) | 7923<br>(680-<br>54000)   | 0                                                   | 3<br>(25)                             | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                           | Human<br>activities |
| 2.        | Balasore<br>U/s      | 12                | 7.8<br>(7.0-<br>8.3) | 7.5<br>(6.4-<br>8.8) | 1.0<br>(0.2-<br>2.3) | 3149<br>(790-9200)        | 0                                                   | 1 (8)                                 | С                   | С                                   |                                                              |                     |
| 3.        | Balasore<br>D/s      | 12                | 7.8<br>(7.0-<br>8.4) | 6.9<br>(5.2-<br>8.2) | 1.6<br>(1.0-<br>2.8) | 17567<br>(3500-<br>54000) | 0                                                   | 7<br>(58)                             | С                   | Doesn't<br>conform<br>to Class<br>C | TC                                                           | Human<br>activities |



| Sl.<br>No | Sampling<br>Location                     | No.<br>of<br>Obs. | 1                    | (Rang                | average<br>ge of va  |                       | Freque<br>of viol<br>(Perce<br>violat<br>fro<br>design<br>criteria | ation<br>nt of<br>ion)<br>m<br>ated | Designated<br>Class | Existing<br>Class | Parameters<br>responsible<br>for<br>downgrading<br>the water | Possible<br>Reason |
|-----------|------------------------------------------|-------------------|----------------------|----------------------|----------------------|-----------------------|--------------------------------------------------------------------|-------------------------------------|---------------------|-------------------|--------------------------------------------------------------|--------------------|
|           |                                          |                   | pН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml) | BOD                                                                | тс                                  |                     |                   | quality                                                      |                    |
| Son       | e River                                  |                   |                      |                      |                      |                       |                                                                    |                                     |                     |                   |                                                              |                    |
| 4.        | Hatigond                                 | 12                | 7.7<br>(6.9-<br>8.4) | 7.3<br>(5.0-<br>8.4) | 1.2<br>(0.4-<br>2.3) | 2107<br>(220-4300)    | 0                                                                  | 0                                   | С                   | С                 |                                                              |                    |
|           | lass 'C' wa<br>lity Criteri<br>2296-1982 | a (IS-            | 6.5-<br>8.5          | 4 and<br>above       | 3 or<br>less         | 5000 or<br>less       |                                                                    |                                     |                     |                   | arce with conv<br>wed by disinfe                             | <b> </b>           |

**NB**: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

### (H) Kolab river system (2018)

| Sl.<br>No | Sampling<br>Location                          | No.<br>of<br>Obs. | 2                    | (Rang                | average<br>ge of val | ues)                  | Frequence of violatic frequency of the viola | f<br>ation<br>ent of<br>tion)<br>om<br>nated<br>eria | Designated<br>Class | Existing<br>Class | Parameters<br>responsible<br>for<br>downgrading<br>the water<br>quality | Possible<br>Reason |
|-----------|-----------------------------------------------|-------------------|----------------------|----------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|-------------------------------------------------------------------------|--------------------|
|           |                                               |                   | рН                   | DO<br>(mg/l)         | BOD<br>(mg/l)        | TC<br>(MPN/100<br>ml) | BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TC                                                   |                     |                   | quanty                                                                  |                    |
| Ker       | andi River                                    |                   |                      |                      |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                     |                   |                                                                         |                    |
| 1.        | Sunabeda                                      | 12                | 7.6<br>(7.2-<br>8.1) | 7.3<br>(7.0-<br>7.8) | 0.7<br>(0.3-<br>1.4) | 1593<br>(78-3500)     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                    | С                   | С                 |                                                                         |                    |
|           | Class 'C' wat<br>ality Criteria<br>2296-1982) | (IS-              | 6.5-<br>8.5          | 4 and above          | 3 or<br>less         | 5000 or<br>less       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                     |                   | rce with conve<br>yed by disinfec                                       |                    |

**NB**: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml.

(Ref: IS 2296-1982 foot note)



## Vansadhara river system (2018)

| Annual average values (Range of values)                                                     | Annual average values<br>(Range of values) | Annual average values<br>(Range of values)               | Annual average values (Range of values)   | erage values<br>of values) | ues<br>)        | Fr.<br>Viole | Frequency of violation (Percent                    |                     |                   |                                                                            |                    |
|---------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------|-----------------|--------------|----------------------------------------------------|---------------------|-------------------|----------------------------------------------------------------------------|--------------------|
| Sl. Sampling of Or Darameters                                                               | No.                                        | Parameters                                               | Parameters                                | meters                     |                 | of vi        | of violation) from<br>designated criteria<br>value | Designated<br>Class | Existing<br>Class | Parameters responsible for downgrading the                                 | Possible<br>Reason |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                      | DO BOD (Mg/1) (mg/1)                       | DO BOD (Mg/l) (Mg/l)                                     | BOD (Mg/l)                                | BOD (MPN/100 Iml)          | TC (MPN/100 ml) | BOD          | TC                                                 |                     |                   | water quanty                                                               |                    |
| Vansadhara River                                                                            | ver                                        |                                                          |                                           |                            |                 |              |                                                    |                     |                   |                                                                            |                    |
| 1. Muniguda 12 7.7 7.3 0.8 638 (6.6-6.7-7.9) (0.5-1.5) (20-1700) 8.4)                       | 12 7.7 (6.6-<br>8.4)                       | 7.7 7.3 0.8 638 (6.6- (6.7-7.9) (0.5-1.5) (20-1700) 8.4) | 7.3 0.8 638 (6.7-7.9) (0.5-1.5) (20-1700) | (0.5-1.5) (20-1700) (38    | (20-1700)       |              | 0                                                  | C                   | O O               |                                                                            |                    |
| 2. Gunupur 12 7.8 7.4 0.9 1339 (6.6- (6.6- (7.1-8.1) (0.2-1.6) (20-3500) 8.4)               | 7.8<br>(6.6-<br>8.4)                       |                                                          |                                           | (0.2-1.6) (20-3500)        | 1339 (20-3500)  | 0            | 0                                                  | C                   | C                 |                                                                            |                    |
| Class 'C' water quality 6.5- 4 and 3 or 5000 or Criteria (IS-2296-1982) 8.5 above less less | 6.5- 4 and 3 or<br>8.5 above less          | 4 and 3 or above less                                    | 3 or<br>less                              |                            | 5000 or<br>less |              |                                                    | Drinking wat        | er source wi      | Drinking water source with conventional treatment followed by disinfection | followed by        |

NB:The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml. (Ref:1S 2296-1982 foot note)

## J) Indravati river system (2018)

|           |                      |                |    | Annual average valu<br>(Range of values) | verage v      | values<br>ies)          | Freq<br>of vic                    | uency<br>olation                                      |                           |                |                                                                |                    |
|-----------|----------------------|----------------|----|------------------------------------------|---------------|-------------------------|-----------------------------------|-------------------------------------------------------|---------------------------|----------------|----------------------------------------------------------------|--------------------|
| SI.<br>No | Sampling<br>Location | No. of<br>Obs. |    | Par                                      | Parameters    |                         | (Perc<br>violation<br>designation | (Percent of violation) from designated criteria value | Designated Existing Class | Existing Class | Parameters responsible<br>for downgrading the<br>water quality | Possible<br>Reason |
|           |                      |                | Hd | DO BOD (mg/l)                            | BOD<br>(mg/l) | TC BOD GMPN/100 BOD ml) | BOD                               | TC                                                    |                           |                |                                                                |                    |
| Indra     | Indravati River      |                |    |                                          |               |                         |                                   |                                                       |                           |                |                                                                |                    |

| Orinking water source with conventional treatment followed by disinfection | Drinkin |   |   | 5000 or<br>less  | 3 or less            | 8.1)<br>4 and<br>above | 8.3) 8.1) 6.5-8.5 4 and above | ality<br>982) | Class 'C' water quality Criteria (IS-2296-1982) |
|----------------------------------------------------------------------------|---------|---|---|------------------|----------------------|------------------------|-------------------------------|---------------|-------------------------------------------------|
| J                                                                          | O       | 0 | 0 | 537<br>(40-2400) | 0.7<br>(0.2-<br>1.7) | 7.4<br>(7.0-<br>8.1)   | 7.6<br>(6.8-<br>8.3)          | 12            | . Nawaranngpur                                  |

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref:1S 2296-1982 foot note)



## (K) Bahuda river system (2018)

|                                          | ـ ب                                                               |                       |              |                        | <b>&gt;</b>                                                                |
|------------------------------------------|-------------------------------------------------------------------|-----------------------|--------------|------------------------|----------------------------------------------------------------------------|
|                                          | Possible<br>Reason                                                |                       |              |                        | ollowed b                                                                  |
|                                          | Parameters<br>responsible for<br>downgrading the<br>water quality |                       |              |                        | Drinking water source with conventional treatment followed by disinfection |
|                                          | Existing<br>Class                                                 |                       |              | )                      | r source with c                                                            |
|                                          | <b>Designated</b><br>Class                                        |                       |              | C                      | Drinking wate                                                              |
| ncy<br>ition                             | nt of<br>on)<br>n<br>ated<br>value                                | TC                    |              | 0                      |                                                                            |
| Frequency of violation                   | (Percent of violation) from designated criteria value             | BOD                   |              | 0                      |                                                                            |
| /alues<br>les)                           |                                                                   | TC<br>(MPN/100<br>ml) |              | 1411<br>(170-3500)     | 5000 or<br>less                                                            |
| Annual average valu<br>(Range of values) | Parameters                                                        | pH DO BOD (mg/1)      |              | (0.5-1.5)              | 3 or less                                                                  |
| Annu<br>(Rä                              |                                                                   | DO<br>(mg/l)          |              | 8.1 7.5 (6.0-8.4) 9.2) | 6.5- 4 and 8.5 above                                                       |
|                                          |                                                                   | Hd                    |              | 8.1<br>(7.6-<br>8.4)   | 6.5-                                                                       |
|                                          | No. of<br>Obs.                                                    |                       |              | 12                     | quality<br>3-1982)                                                         |
|                                          | Sampling<br>Location                                              |                       | Bahuda River | 1. Damodarpally        | Class 'C' water quality<br>Criteria (IS-2296-1982)                         |
|                                          | SI.<br>No                                                         |                       | Bah          | 1.                     |                                                                            |

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref:1S 2296-1982 foot note)

# Table-5.19 Water quality with respect to Other Parameters during 2018 (January-December)

### Mahanadi River System (2018) (A)

|                                   |                                         | Ц                          |                  |          | 0.35<br>(0.22-<br>0.61)                                         |
|-----------------------------------|-----------------------------------------|----------------------------|------------------|----------|-----------------------------------------------------------------|
|                                   |                                         | $SO_4$                     |                  |          | 7.77<br>(1.74-<br>19.40)                                        |
| nts                               |                                         | כו                         | 1)               |          | 10.40<br>(7.40-<br>20.20)                                       |
| ıstitueı                          |                                         | НТ                         | (mg/l)           |          | 55<br>(36-<br>88)                                               |
| Mineral constituents              |                                         | TDS                        |                  |          | 93<br>(66-<br>122)                                              |
| Mii                               | nes)                                    | В                          |                  |          | 0.011<br>(<0.003-<br>0.028)                                     |
|                                   | ge of val                               | SAR                        |                  |          | 0.39<br>(0.28-<br>0.86)                                         |
|                                   | lues (Rang                              | EC                         | (mS/cm)          |          | 156 0.39 0.011 93 (111-212) (0.28- (<0.003- (66- 0.028) 122)    |
| Bacteri-<br>ological<br>parameter | Annual average values (Range of values) | FC                         | (MP-<br>N/100ml) |          | 2000)                                                           |
| ors                               | Annua                                   | TKN                        |                  |          | 4.29<br>(0.56-<br>13.44)                                        |
| on Indicators                     |                                         | Free<br>NH <sub>3</sub> -N | J)               |          | 0.003 (0- 4.29 788<br>0.010) (0.56- (20-2<br>13.44)             |
| Organic polluti                   |                                         | NH <sub>4</sub> -N         | (mg/l)           |          | 0.191<br>(BDL-<br>0.450)                                        |
|                                   |                                         | СОД                        |                  |          |                                                                 |
| Physical parameters               |                                         | Total<br>alkal<br>-inity   | (I/gm)           |          | 64<br>(42-88)                                                   |
| Physica<br>eto                    |                                         | TSS                        | lm)              |          | 114<br>(2-426)                                                  |
|                                   | Compliance                              | Location                   |                  | ır       | 1. Sundargarh   114   64   9.4   (2-426)   (42-88)   (5.0-24.1) |
|                                   | อ                                       | No.                        |                  | Ib river | 1.                                                              |

| 1. Sundargarh   114   64   9.4   0.191   0.003 (0   4.29   788   156   0.200)   (1.74 - 88)   (2.426)   (42-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.0 - 420)   (4.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88)   (5.2-88) | 117 71 | 5                        |         |                       |                 |                          |                  |               |                         |                             |                   |                           |                          |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|---------|-----------------------|-----------------|--------------------------|------------------|---------------|-------------------------|-----------------------------|-------------------|---------------------------|--------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.     | Sundargarh 114<br>(2-426 | (42-88) | 9.4<br>(5.0-<br>24.1) | 0.003 (0-0.010) | 4.29<br>(0.56-<br>13.44) | 788<br>(20-2200) | 156 (111-212) | 0.39<br>(0.28-<br>0.86) | 0.011<br>(<0.003-<br>0.028) | 55<br>(36-<br>88) | 10.40<br>(7.40-<br>20.20) | 7.77<br>(1.74-<br>19.40) | 0.35<br>(0.22-<br>0.61) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                          |         |                       |                 |                          |                  |               |                         |                             |                   |                           |                          |                         |



|       |                         | Physica<br>et | Physical parameters       | Orgar                  | Organic pollution Indicators | on Indicat                 | ors                      | Bacteri-<br>ological<br>parameter |                  |                         | Min                         | Mineral constituents | ıstituen           | ts                         |                           |                         |
|-------|-------------------------|---------------|---------------------------|------------------------|------------------------------|----------------------------|--------------------------|-----------------------------------|------------------|-------------------------|-----------------------------|----------------------|--------------------|----------------------------|---------------------------|-------------------------|
| 5     | Sampling                |               |                           |                        |                              |                            | Annual                   | average values                    |                  | (Range of values)       | nes)                        |                      |                    |                            |                           |                         |
| No.   | Location                | TSS           | Total<br>alkal<br>-inity  | COD                    | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                | EC               | SAR                     | В                           | TDS                  | TH                 | Cl                         | $\mathbf{SO}_4$           | H                       |
|       |                         | m)            | (mg/l)                    |                        | /gm)                         | (T)                        |                          | (MP-<br>N/100ml)                  | (µS/cm)          |                         |                             |                      | (mg/l)             | •                          |                           |                         |
| 2.    | Jharsuguda              | (1-370)       | 62<br>(44-76)             | 8.9<br>(6.1-<br>13.9)  | 0.204<br>(0.056-<br>0.560)   | 0.007 (0-0.034)            | 3.32<br>(0.28-<br>13.44) | (20-3500)                         | 210 (114-648)    | 0.77<br>(0.20-<br>3.66) | 0.043<br>(0.005-<br>0.162)  | 123<br>(68-<br>352)  | 65<br>(48-<br>98)  | 24.59<br>(5.78-<br>139.00) | 12.77<br>(1.71-<br>38.06) | 0.39<br>(0.25-<br>0.60) |
| 3.    | Brajra-<br>jnagar U/s   | 138 (3-804)   | 74 (32-186)               | 9.5<br>(5.2-<br>15.8)  | 0.204<br>(0.056-<br>0.560)   | 0.007 (0-0.022)            | 2.59<br>(0.56-<br>7.84)  | 652<br>(<1.8-1700)                | 180 (107-392)    | 0.35<br>(0.18-<br>0.76) | 0.039<br>(<0.003-<br>0.136) | 109<br>(58-<br>218)  | 73<br>(30-<br>162) | 9.88<br>(5.78-<br>17.70)   | 13.45<br>(8.28-<br>24.13) | 0.39<br>(0.21-<br>0.81) |
| 4.    | Brajra-<br>jnagar D/s   | 78<br>(2-378) | 78 85<br>(2-378) (40-208) | 13.0<br>(8.1-<br>18.5) | 0.242<br>(0.056-<br>0.790)   | 0.013 (0-0.077)            | 2.43<br>(0.56-<br>6.16)  | 1198 (<1.8-2600)                  | 214<br>(111-534) | 0.46<br>(0.19-<br>0.91) | 0.047<br>(0.003-<br>0.088)  | 131<br>(67-<br>299)  | 83<br>(38-<br>186) | 14.87<br>(5.78-<br>44.97)  | 16.48<br>(7.8-<br>31.47)  | 0.46<br>(0.25-<br>1.50) |
| Bhede | Bheden river            |               |                           |                        |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 7.    | Jharsuguda              | (1-614)       | 76<br>(20-124)            | 12.8<br>(7.8-<br>20.0) | 0.158<br>(BDL-<br>0.450)     | 0.010 (0-0.031)            | 2.36<br>(0.28-<br>7.84)  | 11985 (<1.8-9200)                 | 219 (102-339)    | 0.45<br>(0.16-<br>0.93) | 0.038<br>(0.004-<br>0.105)  | 133<br>(62-<br>211)  | 85<br>(32-<br>124) | 14.56<br>(3.86-<br>29.98)  | 25.4<br>(9.07-<br>56.09)  | 0.55<br>(0.22-<br>1.20) |
| Hirak | Hirakud Reservoir       | r             |                           |                        |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 9     | Hirakud<br>reservoir    | 23 (1-75)     | 71 (44-98)                | 8.2<br>(4.8-<br>13.8)  | 0.266<br>(BDL-<br>1.120)     | 0.010 (0-0.029)            | 2.19<br>(0.56-<br>7.28)  | 853<br>(<1.8-9200)                | 193<br>(135-298) | 0.34<br>(0.28-<br>0.43) | 0.025<br>(<0.003-<br>0.084) | 109<br>(82-<br>124)  | 71<br>(52-<br>82)  | 10.37<br>(7.71-<br>13.99)  | 13.99<br>(6.72-<br>18.65) | 0.35<br>(0.25-<br>0.54) |
| Powe  | Power Channel           |               |                           |                        |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 7.    | Power<br>Channel<br>U/s | 27 (1-132)    | 74<br>(48-96)             | 8.4<br>(4.8-<br>13.9)  | 0.083<br>(BDL-<br>0.330)     | 0.003 (0-0.013)            | 2.12<br>(0.56-<br>5.60)  | (<1.8-790)                        | 177 (132-227)    | 0.35<br>(0.24-<br>0.68) | 0.032<br>(<0.003-<br>0.088) | 107<br>(86-<br>121)  | 70<br>(56-<br>86)  | 9.50<br>(7.40-<br>11.99)   | 12.63<br>(6.72-<br>17.16) | 0.36<br>(0.27-<br>0.55) |
| %     | Power<br>Channel<br>D/s | 23<br>(2-88)  | 73<br>(48-96)             | 17.0<br>(6.6-<br>93.5) | 0.200<br>(0.056-<br>1.120)   | 0.004 (0-0.014)            | 1.96<br>(0.56-<br>6.16)  | 330 (<1.8-1300)                   | 185<br>(153-227) | 0.35<br>(0.24-<br>0.68) | 0.034<br>(<0.003-<br>0.112) | 113<br>(94-<br>132)  | 73<br>(54-<br>94)  | 10.20<br>(7.40-<br>15.99)  | 13.74<br>(6.84-<br>21.76) | 0.37<br>(0.28-<br>0.55) |
| Maha  | Mahanadi river          |               |                           |                        |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 6     | Sambalpur<br>U/s        | 23 (1-115)    | 80 (52-112)               | 10.2<br>(7.7-<br>17.8) | 0.168<br>(0.056-<br>1.120)   | 0.003 (0-0.014)            | 1.84<br>(0.28-<br>4.48)  | 468 (20-<br>1700)                 | 203 (135-261)    | 0.42<br>(0.29-<br>0.53) | 0.045<br>(<0.003-<br>0.095) | 120<br>(88-<br>148)  | 77<br>(60-<br>100) | 11.26<br>(1.99-<br>15.99)  | 14.07<br>(9.95-<br>21.26) | 0.38<br>(0.27-<br>0.56) |
| 10.   | Sambalpur<br>D/s        | 23 (2-86)     | 83 (56-116)               | 15.4<br>(6.6-<br>28.1) | 0.219<br>(BDL-<br>1.680)     | 0.006 (0-0.021)            | 3.10<br>(0.28-<br>7.84)  | 2928 (20-<br>11000)               | 215 (137-290)    | 0.45<br>(0.28-<br>0.75) | 0.051<br>(<0.003-<br>0.123) | 127<br>(96-<br>164)  | 81<br>(56-<br>106) | 13.16<br>(7.40-<br>18.20)  | 16.67<br>(9.95-<br>28.07) | 0.38<br>(0.24-<br>0.58) |



|     |                                          | Physica<br>et       | Physical parameters       | Organ                  | Organic pollutio           | on Indicators              | ors                      | Bacteri-<br>ological<br>parameter |                          |                           | Min                         | Mineral constituents    | stituent              | ts                           |                            |                         |
|-----|------------------------------------------|---------------------|---------------------------|------------------------|----------------------------|----------------------------|--------------------------|-----------------------------------|--------------------------|---------------------------|-----------------------------|-------------------------|-----------------------|------------------------------|----------------------------|-------------------------|
|     | Samuling                                 |                     |                           |                        |                            |                            | Annual                   | average values                    |                          | (Range of values)         | nes)                        |                         |                       |                              |                            |                         |
| No. | Location                                 | TSS                 | Total<br>alkal<br>inity   | COD                    | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                | EC                       | SAR                       | В                           | TDS                     | ТН                    | Cl                           | SO <sub>4</sub>            | Щ                       |
|     |                                          | m)                  | (mg/l)                    |                        | /gm)                       | <b>(</b> F                 |                          | (MP-<br>N/100ml)                  | (µS/cm)                  |                           |                             |                         | (mg/l)                |                              |                            |                         |
|     | Sambalpur<br>FD/s at<br>Shankar-<br>math | 29 (1-70)           | 89<br>(64-110)            | 11.8<br>(6.4-<br>19.8) | 0.102<br>(BDL-<br>0.336)   | 0.003 (0-0.014)            | 3.62<br>(0.56-<br>15.12) | 1453 (20-<br>9200)                | 221                      | 0.42<br>(0.26-<br>0.62)   | 0.095<br>(0.003-<br>0.666)  | 129<br>(102-<br>158)    | 82<br>(64-<br>102)    | 13.55<br>(7.40-<br>19.99)    | 13.58<br>(8.20-<br>19.40)  | 0.41<br>(0.22-<br>0.45) |
| 12. | Sambalpur<br>FFD/s at<br>Huma            | 38 (1-84)           | 80 (56-104)               | 9.3<br>(4.8-<br>15.8)  | 0.112<br>(BDL-<br>0.448)   | 0.003 (0-0.007)            | 2.99<br>(0.56-<br>16.80) | 1079 (45-<br>5400)                | 194<br>(146-266)         | 0.39<br>(0.26-<br>0.79)   | 0.028<br>(<0.003-<br>0.059) | 118<br>(98-<br>147)     | 76<br>(52-<br>98)     | 10.79<br>(7.40-<br>14.99)    | 14.20<br>(5.84-<br>24.50)  | 0.39<br>(0.28-<br>0.61) |
|     | Sonepur<br>U/s                           | 18 (1-59)           | 84 (60-112)               | 8.8<br>(4.8-<br>17.8)  | 0.125<br>(BDL-<br>0.336)   | 0.005 (0-0.018)            | 2.43<br>(0.56-<br>10.08) | 33 (<1.8-<br>110)                 | 208 (146-262)            | 0.41<br>(0.26-<br>0.76)   | 0.042<br>(<0.003-<br>0.144) | 123<br>(88-<br>148)     | 80<br>(54-<br>104)    | 12.22<br>(7.40-<br>17.99)    | 12.80<br>(7.41-<br>20.02)  | 0.39<br>(0.25-<br>0.61) |
| 14. | Sonepur<br>D/s                           | 20 (1-66)           | 86<br>(64-104)            | 11.3<br>(7.6-<br>16.8) | 0.164<br>(BDL-<br>0.560)   | 0.004 (0-0.010)            | 2.99<br>(0.56-<br>14.56) | 210 (20-<br>1300)                 | 236<br>(192-263)         | 0.51<br>(0.35-<br>0.83)   | 0.038<br>(<0.003-<br>0.088) | 135<br>(119-<br>156)    | 86<br>(64-<br>102)    | 16.35<br>(11.57-<br>24.98)   | 13.53<br>(8.58-<br>18.36)  | 0.41<br>(0.24-<br>0.60) |
| 15. | Tikarapada                               | 58<br>(4-247)       | 77 (56-98)                | 8.2<br>(3.6-<br>13.9)  | 0.219<br>(0.056-<br>0.560) | 0.012 (0-0.056)            | 3.01<br>(0.56-<br>6.72)  | 375 (20-<br>2200)                 | 195<br>(161-252)         | 0.40<br>(0.26-<br>0.55)   | 0.041<br>(0.007-<br>0.122)  | 113<br>(88-<br>138)     | 73<br>(42-<br>92)     | 11.43<br>(7.40-<br>15.99)    | 11.48<br>(2.24-<br>18.40)  | 0.39<br>(0.22-<br>0.72) |
| 16. | Narasingh-<br>pur                        | 40 (4-198)          | 40 82<br>(4-198) (60-102) | 9.0<br>(5.7-<br>18.7)  | 0.079<br>(BDL-<br>0.220)   | 0.005 (0-0.017)            | 1.96<br>(0.56-<br>4.48)  | 288 (<1.8-<br>1300)               | 195<br>(154-234)         | 0.46<br>(0.21-<br>1.96)   | 0.172<br>(<0.003-<br>1.510) | 125<br>(98-<br>228)     | 79<br>(62-<br>104)    | 15.11<br>(7.71-<br>65.96)    | 12.41<br>(7.83-<br>18.40)  | 0.34<br>(0.24-<br>0.50) |
| 17. | Munduli                                  | 38 (5-144)          | 78 (56-98)                | 8.2<br>(3.8-<br>11.8)  | 0.089<br>(BDL-<br>0.336)   | 0.004 (0-0.009)            | 2.10<br>(0.56-<br>5.04)  | 225 (20-<br>490)                  | 194<br>(153-228)         | 0.36<br>(0.23-<br>0.53)   | 0.039<br>(<0.003-<br>0.133) | 115<br>(96-<br>142)     | 77<br>(62-<br>92)     | 10.55<br>(6.99-<br>15.70)    | 11.27<br>(5.22-<br>18.53)  | 0.34<br>(0.24-<br>0.46) |
|     | Cuttack<br>U/s                           | 27 (2-106)          | 27 77 (2-106) (56-100)    | 7.9<br>(3.9-<br>11.8)  | 0.084<br>(BDL-<br>0.224)   | 0.004 (0-0.007)            | 1.90<br>(0.17-<br>5.04)  | 374<br>(20-1300)                  | 186<br>(145-221)         | 0.34<br>(0.18-<br>0.55)   | 0.053<br>(<0.003-<br>0.123) | 110<br>(92-<br>129)     | 74<br>(52-<br>86)     | 10.02<br>(5.99-<br>13.00)    | 11.84<br>(5.34-<br>18.40)  | 0.34<br>(0.25-<br>0.54) |
|     | Cuttack<br>D/s                           | 42 (2-111)          | 82<br>(56-96)             | 13.4<br>(9.5-<br>19.7) | 0.172<br>(0.056-<br>0.448) | 0.008<br>(0.001-<br>0.021) | 2.42<br>(0.28-<br>21.72) | 2667 (68-16000)                   | 201<br>(148-240)         | 0.40 (0.26-0.75)          | 0.048<br>(0.003-<br>0.143)  | 119<br>(92-<br>147)     | 78<br>(62-<br>88)     | 12.07<br>(7.71-<br>22.98)    | 11.93<br>(4.60-<br>18.28)  | 0.34<br>(0.25-<br>0.55) |
|     | Cuttack<br>FD/s                          | 33 (1-120)          | 84<br>(56-112)            | 11.6<br>(8.3-<br>19.7) | 0.121<br>(0.056-<br>0.330) | 0.007<br>(0.001-<br>0.026) | 3.29<br>(0.28-<br>7.84)  | 2348<br>(45-16000)                | 195<br>(147-248)         | 0.36<br>(0.26-<br>0.51)   | 0.047<br>(<0.003-<br>0.137) | 116<br>(92-<br>142)     | 78<br>(52-<br>90)     | 10.68<br>(7.70-<br>14.99)    | 11.72<br>(4.97-<br>18.15)  | 0.36<br>(0.26-<br>0.68) |
| 21. | Paradeep<br>U/s                          | 105<br>(14-<br>182) | 105 (68-166)              | 10.7<br>(3.2-<br>21.0) | 0.178<br>(0.056-<br>0.570) | 0.003 (0-0.009)            | 2.78<br>(0.56-<br>6.16)  | 356 (<1.8-1300)                   | 10929<br>(161-<br>31070) | 24.67<br>(0.35-<br>59.40) | 0.710<br>(0.007-<br>2.570)  | 7819<br>(106-<br>22060) | 1150<br>(62-<br>2900) | 4114.7<br>(9.64-<br>11994.0) | 591.6<br>(5.97-<br>1424.2) | 0.47<br>(0.24-<br>0.72) |



|             |                                       | Physica<br>et       | Physical parameters       | Organ                   | Organic pollutio           | on Indicators              | ors                      | Bacteri-<br>ological<br>parameter |                          |                           | Min                         | Mineral constituents     | stituen               | S                              |                             |                         |
|-------------|---------------------------------------|---------------------|---------------------------|-------------------------|----------------------------|----------------------------|--------------------------|-----------------------------------|--------------------------|---------------------------|-----------------------------|--------------------------|-----------------------|--------------------------------|-----------------------------|-------------------------|
| 7           | Samuling                              |                     |                           |                         |                            |                            | Annual                   | Annual average values             |                          | (Range of values)         | nes)                        |                          |                       |                                |                             |                         |
| No.         | Location                              | TSS                 | Total<br>alkal<br>-inity  | СОО                     | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                | EC                       | SAR                       | В                           | TDS                      | TH                    | CI                             | $\mathbf{SO}_4$             | Ц                       |
|             |                                       | m)                  | (mg/l)                    |                         | /gm)                       | (I)                        |                          | (MP-<br>N/100ml)                  | (µS/cm)                  |                           |                             |                          | (mg/l)                |                                |                             |                         |
| 22.         | Paradeep<br>D/s                       | 242<br>(48-<br>904) | 104 (48-134)              | 20.5<br>(8.5-<br>45.3)  | 0.177<br>(BDL-<br>0.560)   | 0.005 (0-0.018)            | 2.87<br>(0.56-<br>8.96)  | 47 (<1.8-230)                     | 24314<br>(203-<br>51284) | 49.50<br>(0.56-<br>97.60) | 1.316<br>(0.017-<br>2.781)  | 19687<br>(122-<br>43260) | 2421<br>(52-<br>5400) | 10660.1<br>(19.28-<br>23488.2) | 1273.7<br>18.65-<br>2898.1) | 0.77<br>(0.21-<br>2.60) |
| Ong River   | iver                                  |                     |                           |                         |                            |                            |                          |                                   |                          |                           |                             |                          |                       |                                |                             |                         |
| 23.         | Dharuakha-<br>man                     | 24 (2-91)           | 120<br>(70-156)           | 9.6<br>(3.3-<br>16.8)   | 0.130<br>(0.056-<br>0.448) | 0.006<br>(0.001-<br>0.021) | 2.84<br>(0.56-<br>9.52)  | (<1.8-3500) (141-397)             | 280 (141-397)            | 0.46<br>(0.24-<br>0.82)   | 0.028<br>(<0.003-<br>0.077) | 161<br>(89-<br>223)      | 109<br>(60-<br>152)   | 16.44<br>(6.99-<br>24.98)      | 12.59<br>(7.58-<br>36.94)   | 0.50<br>(0.23-<br>0.73) |
| Tel River   | ver                                   |                     |                           |                         |                            |                            |                          |                                   |                          |                           |                             |                          |                       |                                |                             |                         |
| 24.         | Monmunda                              | 52<br>(16-<br>126)  | (52-96)                   | 8.6<br>(3.3-<br>17.8)   | 0.224<br>(0.056-<br>0.672) | 0.005 (0-0.011)            | 2.47<br>(0.28-<br>8.96)  | 141 (<1.8-700)                    | 178 (148-206)            | 0.33<br>(0.20-<br>0.66)   | 0.024<br>(<0.003-<br>0.077) | 104<br>(88-<br>122)      | 72<br>(52-<br>84)     | 9.66<br>(5.78-<br>16.70)       | 5.66<br>(1.74-<br>12.11)    | 0.32<br>(0.21-<br>0.46) |
| Katha       | Kathajodi River                       |                     |                           |                         |                            |                            |                          |                                   |                          |                           |                             |                          |                       |                                |                             |                         |
| 25.         | Cuttack<br>U/s                        | (3-136)             | 83<br>(56-96)             | 8.6<br>(6.4-<br>11.8)   | 0.173<br>(0.056-<br>0.560) | 0-0.005)                   | 1.68<br>(0.56-<br>4.48)  | 857<br>(45-3500)                  | 193<br>(140-220)         | 0.39<br>(0.26-<br>0.56)   | 0.050<br>(0.004-<br>0.164)  | 116<br>(88-<br>138)      | 74<br>(56-<br>82)     | 11.25<br>(7.40-<br>18.99)      | 10.47<br>(1.24-<br>19.27)   | 0.32<br>(0.27-<br>0.45) |
| 26.         | Cuttack<br>D/s                        | 40 (6-191)          | 40 94 (6-191) (60-128)    | 21.0<br>(10.0-<br>29.7) | 0.158<br>(0.056-<br>0.386) | 0.005 (0-0.018)            | 2.33<br>(0.28-<br>7.84)  | 28411<br>(330-92000)              | 240<br>(155-384)         | 0.53<br>(0.32-<br>0.94)   | 0.052<br>(<0.003-<br>0.116) | 143<br>(98-<br>213)      | 89<br>(64-<br>118)    | 18.04<br>(9.30-<br>35.98)      | 13.92<br>(1.37-<br>24.87)   | 0.32<br>(0.25-<br>0.43) |
| 27.         | Matt-<br>agajpur<br>(Cuttack<br>FD/s) | 31 (1-108)          | 95<br>(56-120)            | 17.8<br>(8.4-<br>26.6)  | 0.298<br>(0.056-<br>0.900) | 0.010 (0-0.032)            | 3.98<br>(1.12-<br>12.32) | 12436<br>(330-<br>54000)          | 279<br>(152-357)         | 0.70<br>(0.36-<br>0.99)   | 0.058<br>(<0.003-<br>0.108) | 165<br>(96-<br>228)      | 94<br>(58-<br>122)    | 24.37<br>(9.64-<br>39.98)      | 20.91<br>(11.19-<br>29.97)  | 0.28<br>(0.21-<br>0.48) |
| 28.         | Kamasasan<br>(Cuttack<br>FFD/s)       | 42<br>(2-200)       | 42 88<br>(2-200) (60-124) | 10.0<br>(6.2-<br>15.8)  | 0.155<br>(0.056-<br>0.450) | 0.005 (0-0.014)            | 2.80<br>(0.56-<br>7.28)  | 526<br>(20-1700)                  | 219 (144-313)            | 0.51<br>(0.31-<br>0.74)   | 0.051<br>(0.004-<br>0.226)  | 131<br>(89-<br>179)      | 80<br>(54-<br>106)    | 15.33<br>(7.71-<br>25.98)      | 11.37<br>(6.34-<br>20.64)   | 0.32<br>(0.24-<br>0.48) |
| Serua River | River                                 |                     |                           |                         |                            |                            |                          |                                   |                          |                           |                             |                          |                       |                                |                             |                         |
| 29.         | Sankhatra-<br>sa                      | 62<br>(3-462)       | (3-462) (58-124)          | 17.2<br>(8.2-<br>29.7)  | 0.247<br>(0.056-<br>0.790) | 0.006(0.<br>001-<br>0.024) | 3.43<br>(0.28-<br>10.64) | 13206 (78-92000)                  | 223<br>(139-335)         | 0.48<br>(0.29-<br>0.96)   | 0.043<br>(<0.003-<br>0.115) | 133<br>(88-<br>192)      | 84<br>(56-<br>106)    | 15.51<br>(7.71-<br>33.98)      | 11.57<br>(6.09-<br>21.14)   | 0.32<br>(0.24-<br>0.44) |



|      |                                     | Physica<br>et      | Physical parameters       | Orgar                    | Organic pollution Indicators | on Indicat                 | ors                      | Bacteri-<br>ological<br>parameter |                  |                         | Min                         | Mineral constituents | stituen            | ts                         |                           |                         |
|------|-------------------------------------|--------------------|---------------------------|--------------------------|------------------------------|----------------------------|--------------------------|-----------------------------------|------------------|-------------------------|-----------------------------|----------------------|--------------------|----------------------------|---------------------------|-------------------------|
| 5    | Sampling                            |                    |                           |                          |                              |                            | Annual                   | Annual average values             | lues (Rang       | (Range of values)       | nes)                        |                      |                    |                            |                           |                         |
| No.  | Location                            | TSS                | Total<br>alkal<br>-inity  | COD                      | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                | EC               | SAR                     | В                           | TDS                  | ТН                 | CI                         | $\mathbf{SO}_4$           | Ц                       |
|      |                                     | m)                 | (mg/l)                    |                          | /gm)                         | 1)                         |                          | (MP-<br>N/100ml)                  | (µS/cm)          |                         |                             |                      | (mg/l)             |                            |                           |                         |
| Kuak | Kuakhai River                       |                    |                           |                          |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 30.  | Bhu-<br>baneswar<br>FU/s            | 23 (2-86)          | 83<br>(64-100)            | 9.0<br>(3.9-<br>13.9)    | 0.181<br>(BDL-<br>0.670)     | 0.005 (0-0.020)            | 4.11<br>(1.12-<br>11.20) | (130-1700)                        | 200 (146-221)    | 0.40<br>(0.29-<br>0.53) | 0.047<br>(<0.003-<br>0.112) | 117<br>(92-<br>138)  | 74<br>(62-<br>86)  | 11.62<br>(9.64-<br>15.80)  | 11.71<br>(6.59-<br>26.36) | 0.32<br>(0.19-<br>0.54) |
| 31.  | Bhu-<br>baneswar<br>U/s             | 33 (2-192)         | 87 (60-<br>108)           | 9.8<br>(3.9-<br>12.4)    | 0.190<br>(0.056-<br>0.670)   | 0.008 (0-0.054)            | 3.27<br>(0.56-<br>8.96)  | (490-2400) (146-245)              | 210 (146-245)    | 0.44<br>(0.33-<br>0.65) | 0.062<br>(<0.003-<br>0.214) | 125<br>(94-<br>148)  | 80<br>(64-<br>98)  | 12.98<br>(11.10-<br>21.98) | 12.63<br>(6.21-<br>29.35) | 0.29<br>(0.20-<br>0.44) |
| Daya | Daya River                          |                    |                           |                          |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 32.  | Gelapur                             | 25 (3-142)         | 25 81<br>(3-142) (56-102) | 8.1<br>(3.8-<br>13.9)    | 0.224<br>(0.056-<br>0.952)   | 0.005 (0-0.021)            | 2.99<br>(0.56-<br>9.52)  | 1778 (45-16000)                   | 201<br>(145-224) | 0.52<br>(0.30-<br>1.52) | 0.052<br>(<0.003-<br>0.143) | 126<br>(82-<br>197)  | 77<br>(56-<br>86)  | 15.39<br>(7.71-<br>45.97)  | 12.69<br>(7.83-<br>28.35) | 0.29<br>(0.17-<br>0.47) |
| 33.  | Bhu-<br>baneswar<br>D/s             | 47<br>(2-332)      | 47 85<br>(2-332) (48-108) | 31.4<br>(13.3-<br>56.2)  | 0.494<br>(0.110-<br>2.800)   | 0.006 (0-0.029)            | 4.06<br>(0.56-<br>10.64) | 55575<br>(4900-<br>160000)        | 312<br>(163-384) | 1.09<br>(0.61-<br>1.57) | 0.080<br>(0.010-<br>0.217)  | 179<br>(104-<br>220) | 88<br>(60-<br>100) | 37.99<br>(17.35-<br>63.00) | 18.67<br>(8.58-<br>33.96) | 0.27<br>(0.17-<br>0.42) |
| 34.  | Bhu-<br>baneswar<br>FD/s            | 53<br>(2-390)      | 53 83<br>(2-390) (60-120) | 28.0<br>(6.6-<br>49.8)   | 0.158<br>(0.056-<br>0.330)   | 0.003 (0-0.021)            | 3.71<br>(0.56-<br>8.96)  | 35592<br>(1300-<br>160000)        | 288              | 0.91<br>(0.55-<br>1.58) | 0.053<br>(0.003-<br>0.143)  | 164<br>(106-<br>214) | 84<br>(62-<br>100) | 31.80<br>(15.42-<br>55.97) | 16.28<br>(7.33-<br>33.08) | 0.27<br>(0.17-<br>0.41) |
| 35.  | Kanas                               | 75<br>(14-<br>156) | 89<br>(58-114)            | 18.7<br>(6.1-<br>46.5)   | 0.186<br>(0.056-<br>0.560)   | 0.007 (0-0.034)            | 2.16<br>(0.28-<br>3.92)  | 3618 (20-16000)                   | 274<br>(167-356) | 0.93<br>(0.45-<br>1.80) | 0.051<br>(0.021-<br>0.221)  | 166<br>(96-<br>218)  | 85<br>(60-<br>100) | 31.64<br>(13.50-<br>55.97) | 15.50<br>(8.19-<br>20.97) | 0.27<br>(0.11-<br>0.55) |
| Gang | Gangua River                        |                    |                           |                          |                              |                            |                          |                                   |                  |                         |                             |                      |                    |                            |                           |                         |
| 36.  | Near Raj-<br>dhani Engg.<br>College | 51 (7-118)         | 86<br>(50-<br>148)        | 55.8<br>(28.5-<br>118.8) | 1.049<br>(0.056-<br>3.920)   | 0.004 (0-0.039)            | 5.55<br>(2.52-<br>12.32) | 145500<br>(54000-<br>160000)      | 317 (211-419)    | 1.31<br>(0.73-<br>1.78) | 0.064<br>(<0.003-<br>0.161) | 173<br>(122-<br>234) | 73<br>(50-<br>110) | 38.27<br>(8.45-<br>28.10)  | 12.72<br>(8.45-<br>28.10) | 0.23<br>(0.13-<br>0.40) |
| 37.  | Palasuni                            | 64<br>(2-140)      | 85<br>(54-<br>124)        | 56.4<br>(26.6-<br>96.4)  | 1.105<br>(0.056-<br>4.500)   | 0.010 (0-0.067)            | 5.71<br>(0.56-<br>16.80) | 151167<br>(54000-<br>160000)      | 330<br>(204-416) | 1.34<br>(0.80-<br>2.08) | 0.060<br>(<0.003-<br>0.190) | 185<br>(128-<br>246) | 79<br>(62-<br>100) | 43.11<br>(22.20-<br>77.12) | 16.77<br>(8.58-<br>27.48) | 0.28<br>(0.13-<br>0.56) |



|       |                   | Physica<br>ete      | Physical parameters      | Organ                    | Organic pollution Indicators | on Indicat                 | ors                      | Bacteri-<br>ological<br>parameter |                          |                           | Min                         | Mineral constituents    | ıstituen              | ts                            |                               |                         |
|-------|-------------------|---------------------|--------------------------|--------------------------|------------------------------|----------------------------|--------------------------|-----------------------------------|--------------------------|---------------------------|-----------------------------|-------------------------|-----------------------|-------------------------------|-------------------------------|-------------------------|
| 5     | Complina          |                     |                          |                          |                              |                            | Annual                   | Annual average values             | ues (Rang                | (Range of values)         | nes)                        |                         |                       |                               |                               |                         |
| No.   | Location          | TSS                 | Total<br>alkal<br>-inity | COD                      | $\mathrm{NH_4-N}$            | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                | EC                       | SAR                       | В                           | TDS                     | TH                    | Cl                            | $SO_4$                        | F                       |
|       |                   | lm)                 | (mg/l)                   |                          | /gm)                         | (I/                        |                          | (MP-<br>N/100ml)                  | (µS/cm)                  |                           |                             |                         | (mg/l)                |                               |                               |                         |
| 38.   | Samantra-<br>pur  | 121 (2-888)         | 96<br>(62-<br>128)       | 80.7<br>(29.9-<br>216.7) | 1.023<br>(0.056-<br>3.808)   | 0.009 (0-0.088)            | 5.60<br>(1.12-<br>14.00) | 151167<br>(54000-<br>160000)      | 397 (273-718)            | 1.60<br>(0.91-<br>3.02)   | 0.042<br>(<0.003-<br>0.088) | 225<br>(152-<br>398)    | 90<br>(54-<br>126)    | 55.22<br>(25.90-<br>131.93)   | 27.42<br>(10.07-<br>95.32)    | 0.24<br>(0.14-<br>0.40) |
| 39.   | Vadimula          | 48 (5-97)           | 92<br>(52-<br>136)       | 43.2<br>(14.9-<br>111.8) | 0.479<br>(0.056-<br>1.340)   | 0.011 (0-0.073)            | 4.67<br>(0.56-<br>13.44) | 121942<br>(4900-<br>160000)       | 386<br>(187-510)         | 1.48<br>(0.74-<br>2.33)   | 0.051<br>(0.003-<br>0.102)  | 223<br>(114-<br>279)    | 95<br>(46-<br>116)    | 52.26<br>(24.10-<br>86.76)    | 21.69<br>(5.72-<br>43.03)     | 0.29<br>(0.15-<br>0.52) |
| Birup | Birupa River      |                     |                          |                          |                              |                            |                          |                                   |                          |                           |                             |                         |                       |                               |                               |                         |
| 40.   | Choudwar<br>D/s   | 36 (3-121)          | 81<br>(54-<br>98)        | 9.0<br>(5.9-<br>16.4)    | 0.236<br>(BDL-<br>0.790)     | 0.008 (0-0.040)            | 3.69<br>(1.12-<br>10.64) | 963 (0-3500)                      | 209 (161-273)            | 0.52<br>(0.25-<br>1.53)   | 0.047<br>(<0.003-<br>0.087) | 123<br>(94-<br>160)     | 75<br>(56-<br>84)     | 15.17<br>(7.40-<br>48.20)     | 12.46<br>(6.59-<br>21.89)     | 0.35<br>(0.25-<br>0.48) |
| Kush  | Kushabhadra River | er                  |                          |                          |                              |                            |                          |                                   |                          |                           |                             |                         |                       |                               |                               |                         |
| 41.   | Bhingarpur        | 42<br>(2-132)       | 110<br>(60-<br>150)      | 13.9<br>(5.6-<br>20.1)   | 0.479<br>(0.056-<br>1.340)   | 0.006 (0-0.014)            | 1.84<br>(0.56-<br>3.92)  | 1758 (20-5400)                    | 284<br>(189-410)         | 0.62<br>(0.39-<br>1.06)   | 0.053<br>(0.004-<br>0.254)  | 163<br>(108-<br>222)    | 97<br>(64-<br>130)    | 21.31<br>(11.57-<br>35.98)    | 12.01<br>(5.72-<br>19.27)     | 0.29<br>(0.13-<br>0.50) |
| 42.   | Nimapara          | 59<br>(12-<br>248)  | 90<br>(56-<br>128)       | 14.0<br>(7.3-<br>25.6)   | 0.135<br>(0.056-<br>0.560)   | 0.004 (0-0.018)            | 2.05<br>(0.56-<br>5.04)  | 2388<br>(20-16000)                | 279<br>(152-789)         | 0.82<br>(0.38-<br>3.75)   | 0.051<br>(0.003-<br>0.242)  | 159<br>(96-<br>429)     | 83<br>(54-<br>126)    | 29.50<br>(11.57-<br>157.90)   | 14.69<br>(10.32-<br>28.60)    | 0.25<br>(0.15-<br>0.42) |
| 43.   | Gop               | (3-100)             | 91<br>(60-<br>112)       | 13.2<br>(7.3-<br>20.6)   | 0.182<br>(0.056-<br>0.560)   | 0.013 (0-0.087)            | 1.93<br>(0.28-<br>5.04)  | 3508<br>(330-<br>16000)           | 249<br>(183-334)         | 0.68 (0.37-1.11)          | 0.057<br>(0.003-<br>0.294)  | 146<br>(106-<br>194)    | 84<br>(56-<br>104)    | 22.29<br>(13.00-<br>41.97)    | 13.87<br>(10.32-<br>17.66)    | 0.28<br>(0.16-<br>0.54) |
| Bharg | Bhargavi River    |                     |                          |                          |                              |                            |                          |                                   |                          |                           |                             |                         |                       |                               |                               |                         |
| 44.   | Chandan-<br>pur   | 32 (6-100)          | 85<br>(56-<br>112)       | 11.1<br>(7.6-<br>15.8)   | 0.219<br>(0.056-<br>0.560)   | 0.015<br>(0.001-<br>0.055) | 2.62<br>(0.28-<br>9.28)  | 1257 (110-5400)                   | 256<br>(160-506)         | 0.70<br>(0.23-<br>3.22)   | 0.056<br>(<0.003-<br>0.118) | 146<br>(94-<br>274)     | 83<br>(60-<br>100)    | 22.09<br>(5.78-<br>101.90)    | 17.34<br>(8.58-<br>27.24)     | 0.40<br>(0.23-<br>0.60) |
| Mang  | Mangala River     |                     |                          |                          |                              |                            |                          |                                   |                          |                           |                             |                         |                       |                               |                               |                         |
| 45.   | Malatipat-<br>pur | 39<br>(4-246)       | 91<br>(56-<br>126)       | 10.3<br>(7.6-<br>15.8)   | 0.214<br>(BDL-<br>0.780)     | 0.005 (0-0.023)            | 2.66<br>(0.56-<br>11.20) | 1307 (270-5400)                   | 270 (164-522)            | 0.63<br>(0.22-<br>1.24)   | 0.040<br>(0.007-<br>0.098)  | 159<br>(98-<br>278)     | 94<br>(54-<br>142)    | 22.32<br>(6.99-<br>49.97)     | 23.44<br>(11.07-<br>61.55)    | 0.34<br>(0.18-<br>0.44) |
| 46.   | Golasahi          | 106<br>(30-<br>192) | 134<br>(56-<br>240)      | 29.5<br>(9.7-<br>61.2)   | 0.434<br>(0.056-<br>1.680)   | 0.019<br>(0.001-<br>0.113) | 3.70<br>(0.56-<br>12.04) | 5323<br>(1300-<br>17000)          | 10391<br>(169-<br>32040) | 26.28<br>(0.58-<br>74.87) | 0.282<br>(0.003-<br>1.351)  | 8240<br>(102-<br>32900) | 1197<br>(52-<br>4200) | 4323.6<br>(15.42-<br>17991.0) | 590.25<br>(16.66-<br>1791.10) | 0.41<br>(0.21-<br>0.70) |



|            |                   | Physical ete        | Physical param-<br>eters |                        | Organic pollution Indicators | on Indicat                 | ors                      | Bacteri-<br>ological<br>parameter |                          |                            | Min                         | Mineral constituents     | stituen               | ts                            |                             |                         |
|------------|-------------------|---------------------|--------------------------|------------------------|------------------------------|----------------------------|--------------------------|-----------------------------------|--------------------------|----------------------------|-----------------------------|--------------------------|-----------------------|-------------------------------|-----------------------------|-------------------------|
| 5          | Samuling          |                     |                          |                        |                              |                            | Annual                   | l average values                  |                          | (Range of values)          | nes)                        |                          |                       |                               |                             |                         |
| No.        | Location          | LSS                 | Total<br>alkal<br>inity  | COD                    | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                | EC                       | SAR                        | В                           | TDS                      | HI                    | מ                             | SO₄                         | 14                      |
|            |                   | dm)                 | (mg/l)                   |                        | //gm)                        | (T                         |                          | (MP-<br>N/100ml)                  | (µS/cm)                  |                            |                             |                          | (mg/l)                |                               |                             |                         |
| Devi River | River             |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 47.        | Machhaga-<br>on   | 125<br>(14-<br>278) | 110<br>(58-<br>216)      | 27.6<br>(8.2-<br>66.7) | 0.265<br>(0.056-<br>0.560)   | 0.006<br>(0.001-<br>0.013) | 3.55<br>(0.56-<br>11.20) | 400 (<1.8-2400)                   | 12773<br>(168-<br>39970) | 38.99<br>(0.64-<br>161.72) | 0.617<br>(0.003-<br>2.141)  | 10429<br>(108-<br>33060) | 1245<br>(64-<br>4500) | 5562.3<br>(19.28-<br>17991.0) | 688.0<br>(10.32-<br>2307.2) | 0.47<br>(0.24-<br>0.80) |
| Gobar      | Gobari River      |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 48.        | Kendrapara<br>U/s | 74<br>(22-<br>178)  | 122<br>(48-<br>228)      | 11.5<br>(5.0-<br>18.7) | 0.157<br>(0.056-<br>0.450)   | 0.011 (0-0.056)            | 2.22<br>(0.56-<br>8.40)  | 5668<br>(110-<br>28000)           | 881<br>(164-<br>1999)    | 5.75<br>(0.55-<br>31.83)   | 0.103<br>(0.004-<br>0.484)  | 729<br>(104-<br>3340)    | 154<br>(60-<br>272)   | 323<br>(17.35-<br>1869.0)     | 46.89<br>(8.33-<br>160.46)  | 0.39<br>(0.21-<br>0.74) |
| 49.        | Kendrapara<br>D/s | 64<br>(25-<br>204)  | 120<br>(48-<br>202)      | 13.9<br>(7.6-<br>21.8) | 0.233<br>(0.056-<br>0.560)   | 0.008 (0-0.041)            | 3.55<br>(0.56-<br>8.96)  | 12524<br>(490-54000)              | 934<br>(164-<br>1971)    | 6.24<br>(0.60-<br>34.98)   | 0.089<br>(0.004-<br>0.386)  | 803<br>(102-<br>3580)    | 163<br>(56-<br>260)   | 354.17<br>(15.42-<br>1999.0)  | 66.32<br>(8.20-<br>208.30)  | 0.39<br>(0.20-<br>0.66) |
| Nuna River | River             |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 50.        | Bijipur           | 71 (7-196)          | 87<br>(48-<br>144)       | 14.7<br>(7.6-<br>31.5) | 0.167<br>(0.056-<br>0.560)   | 0.005 (0-0.055)            | 1.77<br>(0.28-<br>3.36)  | 3043 (220-16000)                  | 233 (143-375)            | 0.51<br>(0.28-<br>1.45)    | 0.052<br>(0.003-<br>0.266)  | 136<br>(88-<br>208)      | 84<br>(50-<br>132)    | 16.59<br>(9.30-<br>49.97)     | 15.65<br>(6.84-<br>25.49)   | 0.32<br>(0.21-<br>0.50) |
| Kusun      | Kusumi River      |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 51.        | Tangi             | 64<br>(6-366)       | 68<br>(44-<br>92)        | 13.0<br>(6.8-<br>37.1) | 0.264<br>(0.056-<br>1.120)   | 0.010<br>(0.001-<br>0.056) | 3.66<br>(0.56-<br>12.88) | 3517<br>(68-16000)                | 185<br>(127-314)         | 0.58<br>(0.33-<br>0.88)    | 0.042<br>(<0.003-<br>0.143) | 111<br>(82-<br>169)      | 64<br>(40-<br>92)     | 16.09<br>(9.64-<br>30.23)     | 10.31<br>(2.86-<br>24.50)   | 0.31<br>(0.11-<br>0.52) |
| Kansa      | Kansari River     |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 52.        | Banapur           | 53 (3-232)          | 100<br>(68-<br>202)      | 14.0<br>(9.1-<br>27.4) | 0.173<br>(0.056-<br>0.560)   | 0.010 (0-0.036)            | 1.80<br>(0.56-<br>5.04)  | 4563<br>(130-<br>16000)           | 272<br>(141-560)         | 0.63<br>(0.20-<br>2.29)    | 0.051<br>(0.003-<br>0.161)  | 163<br>(85-<br>375)      | 94<br>(56-<br>164)    | 23.41<br>(7.99-<br>94.95)     | 17.51<br>(1.37-<br>87.19)   | 0.31<br>(0.13-<br>0.45) |
| Badas      | Badasankha River  |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 53.        | Lan-<br>galeswar  | 32 (6-90)           | 147<br>(40-<br>196)      | 17.4<br>(6.6-<br>25.7) | 0.302<br>(0.056-<br>0.896)   | 0.012<br>(0.001-<br>0.041) | 2.83 (8.96)              | 1801 (78-5400)                    | 1112<br>(144-<br>7583)   | 4.01<br>(0.53-<br>27.04)   | 0.113<br>(0.003-<br>0.365)  | 745<br>(109-<br>5490)    | 189<br>(56-<br>800)   | 327.05<br>(13.00-<br>2998.5)  | 40.74<br>(2.61-<br>248.70)  | 0.39<br>(0.20-<br>0.56) |
| Sabuli     | Sabulia River     |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |
| 54.        | Rambha            | 50 (2-144)          | 191<br>(78-<br>284)      | 14.0 (6.6-229)         | 0.303<br>(0.056-<br>0.780)   | 0.016<br>(0.006-<br>0.070) | 3.06<br>(0.56-<br>13.44) | 2713<br>(78-16000)                | 500 (187-730)            | 1.16<br>(0.16-<br>1.78)    | 0.065<br>(0.003-<br>0.329)  | 293<br>(102-<br>420)     | 166<br>(72-<br>252)   | 49.48<br>(5.99-<br>83.95)     | 20.01<br>(9.10-<br>59.70)   | 0.46<br>(0.28-<br>0.63) |
|            |                   |                     |                          |                        |                              |                            |                          |                                   |                          |                            |                             |                          |                       |                               |                             |                         |



|                             |                  | Physica<br>et | Physical parameters      | Organ                  | Organic pollution Indicators | on Indicat                 | tors                    | Bacteri-<br>ological<br>parameter                                                                                                           |                  |                         | Mir                        | Mineral constituents | ıstituen           | ıts                        |                           |                         |
|-----------------------------|------------------|---------------|--------------------------|------------------------|------------------------------|----------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|----------------------------|----------------------|--------------------|----------------------------|---------------------------|-------------------------|
| อ                           | Compling         |               |                          |                        |                              |                            | Annua                   | Annual average values (Range of values)                                                                                                     | ues (Rang        | e of val                | nes)                       |                      |                    |                            |                           |                         |
| No.                         | Location         | TSS           | Total<br>alkal<br>-inity | COD                    | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N | TKN                     | FC                                                                                                                                          | EC               | SAR                     | В                          | TDS                  | НП                 | Cl                         | $SO_4$                    | Ц                       |
|                             |                  | m)            | (mg/l)                   |                        | /gm)                         | <b>(I)</b>                 |                         | (MP-<br>N/100ml)                                                                                                                            | (µS/cm)          |                         |                            |                      | (mg/1)             | (1                         |                           |                         |
| Ratnac                      | Ratnachira River |               |                          |                        |                              |                            |                         |                                                                                                                                             |                  |                         |                            |                      |                    |                            |                           |                         |
| 55.                         | 55. Kumardihi    | 35 (3-84)     | 90<br>(36-<br>164)       | 15.3<br>(6.1-<br>30.9) | 0.167<br>(0.056-<br>0.336)   | 0.008<br>(0.001-<br>0.035) | 2.89<br>(0.56-<br>8.96) | 0.008     2.89     3469     282     0.68       (0.001-     (0.56-     (110-16000)     (121-605)     (0.32-       0.035)     8.96)     1.80) | 282<br>(121-605) | 0.68<br>(0.32-<br>1.80) | 0.056<br>(0.003-<br>0.123) | 153<br>(82-<br>346)  | 88<br>(40-<br>164) | 24.79<br>(10.99-<br>89.99) | 16.01<br>(2.98-<br>34.70) | 0.39<br>(0.20-<br>0.58) |
| Class 'C'                   | J, sst           | -             | 1                        | -                      | 1                            | -                          | -                       | 1                                                                                                                                           |                  | -                       | -                          | 1500                 | ,                  | 600                        | 400                       | 1.5                     |
| <ul><li>Class 'E'</li></ul> | iss 'E'          |               |                          |                        |                              |                            |                         |                                                                                                                                             | 2250             | 26                      | 2.0                        | 2100                 | 1                  | 009                        | 1000                      | -                       |

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

#### (A) Contd..

|      |                      | Nutrients                                | ents                |                                         |           |             | He          | Heavy metals | als   |                                |                                                   |       |
|------|----------------------|------------------------------------------|---------------------|-----------------------------------------|-----------|-------------|-------------|--------------|-------|--------------------------------|---------------------------------------------------|-------|
| SI   |                      |                                          | A                   | Annual Average values (Range of values) | age value | es (Range   | of valu     | (sa)         |       |                                |                                                   |       |
| No.  | sampning Location    | Nitrate as NO <sub>3</sub>               | PO <sub>4</sub> 3-P | Cr(VI) ##   T. Cr##                     | T. Cr##   | Fe##        | Ni##        | Cu##         | Zn##  | Cd##                           | Hg##                                              | Pb##  |
|      |                      | (I/gm)                                   | (1/3                |                                         |           |             |             | (mg/l)       |       |                                |                                                   |       |
| Ib R | Ib River             |                                          |                     |                                         |           |             |             |              |       |                                |                                                   |       |
| 1.   | Sundargarh           | 2.1242 (0.565-4.305) 0.076 (0.009-0.356) | 0.076 (0.009-0.356) | <0.002                                  | 0.005     | 4.814       | 0.002       | 0.004        | 0.008 | 4.814 0.002 0.004 0.008 0.0003 | 0.00006                                           | 0.002 |
| 2.   | Jharsuguda           | 2.571 (0.199-7.284)                      | 0.077 (0.001-0.180) | 0.005                                   | 0.014     | 3.631       | 900.0       | 0.007        | 0.015 | 0.0003                         | 0.00019                                           | 0.013 |
| 3.   | Brajraj nagar U/s    | 2.063 (0.266-4.244)                      | 0.054 (0.001-0.155) | <0.002                                  | 0.012     | 3.254       | 3.254 0.008 | 900.0        | 0.009 | 0.006   0.009   0.0008         | 0.00006                                           | 0.007 |
| 4.   | 4. Brajraj nagar D/s | 2.142 (0.372-6.922)                      | 0.093 (0.002-0.344) | <0.002                                  | 0.019     | 5.539       | 0.014       | 0.012        | 0.015 | 0.0009                         | 5.539   0.014   0.012   0.015   0.0009   0.00025  | 0.016 |
| Bhe  | Bheden river         |                                          |                     |                                         |           |             |             |              |       |                                |                                                   |       |
| 2.   | 5.   Jharsuguda      | 3.277 (0.274-10.720)                     | 0.058 (0.003-0.151  | 0.005                                   | 0.021     | 0.296       | 0.011       | 0.004        | 0.016 | 0.0006                         | 0.296   0.011   0.004   0.016   0.0006   <0.00006 | 0.015 |
| Hira | Hirakud reservoir    |                                          |                     |                                         |           |             |             |              |       |                                |                                                   |       |
| .9   | Hirakud reservoir    | 2.486 (0.754-6.245)                      | 0.068 (0.001-0.171  | <0.002                                  | 0.009     | 0.357 0.006 | 900.0       | 0.003        | 900.0 | 0.003   0.006   0.0004         | 0.00019                                           | 0.004 |
|      |                      |                                          |                     |                                         |           |             |             |              |       |                                |                                                   |       |



|     |                                  | Nutrients                    | pute                |                                         |           |          | Не      | Heavy metals | alc   |        |          |       |
|-----|----------------------------------|------------------------------|---------------------|-----------------------------------------|-----------|----------|---------|--------------|-------|--------|----------|-------|
| 5   |                                  |                              |                     | Annual Average values (Range of values) | ige value | s (Range | of valu | es)          |       |        |          |       |
| No. | Sampling Location                | Nitrate as NO <sub>3</sub> . | PO <sub>4</sub> 3-P | Cr(VI) ##                               | T. Cr##   | Fe##     | Ni##    | Cu##         | Zn##  | Cd##   | Hg##     | Pb##  |
|     |                                  | (l/gm)                       | (L/:                |                                         |           |          |         | (mg/l)       |       |        |          |       |
| 7.  | Power channel U/s                | 2.094 (0.429-5.134)          | 0.094 (0.001-0.457) | <0.002                                  | 0.011     | 0.153    | 900.0   | 0.003        | 900.0 | 0.0005 | 0.00013  | 90000 |
| 8.  | Power Channel D/s                | 2.568<br>(0.988-5.160)       | 0.146 (0.003-0.590) | 0.003                                   | 0.019     | 0.541    | 0.008   | 0.005        | 0.014 | 0.0005 | 0.00019  | 0.008 |
| Mah | Mahanadi River                   |                              |                     |                                         |           |          |         |              |       |        |          |       |
| 9.  | Sambalpur U/s                    | 2.968 (0.775-5.397)          | 0.065 (0.002-0.199) | <0.002                                  | 0.009     | 0.587    | 900.0   | 0.005        | 0.004 | 0.0004 | 0.00051  | 0.004 |
| 10. | Sambalpur D/s                    | 3.099<br>(1.032-5.764)       | 0.113 (0.002-0.753) | 0.003                                   | 0.011     | 0.571    | 0.008   | 0.004        | 0.020 | 0.0004 | 0.00044  | 0.005 |
| 11. | Sambalpur FD/s at<br>Shankarmath | 2.706 (0.927-5.043)          | 0.116 (0.001-0.725) | <0.002                                  | 600.0     | 0.643    | 0.007   | 0.004        | 0.007 | 0.0003 | 0.00019  | 0.009 |
| 12. | Sambalpur FD/s at<br>Huma        | 2.831<br>(1.085-7.272)       | 0.095 (0.001-0.332) | <0.002                                  | 0.011     | 0.602    | 0.005   | 0.004        | 0.035 | 0.0003 | 0.00051  | 0.004 |
| 13. | Sonepur U/s                      | 2.135<br>(0.870-5.125)       | 0.080 (0.001-0.270) | <0.002                                  | 0.005     | 0.469    | 0.005   | 0.004        | 900.0 | 0.0004 | 0.00006  | 0.007 |
| 14. | Sonepur D/s                      | 2.443<br>(1.156-5.746)       | 0.114 (0.001-0.516) | 0.002                                   | 0.005     | 0.367    | 900.0   | 0.002        | 0.003 | 0.0004 | >0.00006 | 0.003 |
| 15. | Tikarapada                       | 1.700 (0.286-3.289)          | 0.096 (0.001-0.508) | <0.002                                  | 0.009     | 0.877    | 900.0   | 0.003        | 0.003 | 0.0004 | 0.00006  | 0.003 |
| 16. | Narasinghpur                     | 1.598 (0.420-3.503)          | 0.143 (0.003-0.895) | 0.01                                    | 0.021     | 0.959    | 0.001   | 0.001        | 0.002 | 0.0004 | 0.00006  | 0.002 |
| 17. | Munduli                          | 1.935 (0.207-5.248)          | 0.154 (0.001-1.008) | 0.002                                   | 0.014     | 0.974    | 0.002   | 0.001        | 0.003 | 0.0005 | 0.00051  | 0.005 |
| 18. | Cuttack U/s                      | 1.783 (0.464-4.942)          | 0.158 (0.007-0.601) | <0.002                                  | 0.008     | 0.128    | 0.002   | 0.001        | 0.004 | 0.0004 | 0.00025  | 900.0 |
| 19. | Cuttack D/s                      | 3.905<br>(0.297-30.035)      | 0.098 (0.001-0.335) | 0.005                                   | 0.011     | 0.944    | 0.008   | 0.001        | 0.004 | 0.0003 | <0.00006 | 0.005 |
| 20. | Cuttack FD/s                     | 1.767 (0.332-6.080)          | 0.101 (0.001-0.669) | 0.015                                   | 0.029     | 0.275    | 0.008   | 0.001        | 0.007 | 0.0004 | 0.00021  | 0.008 |
| 21. | Paradeep U/s                     | 2.527 (0.511-6.096)          | 0.085 (0.002-0.322) | 0.003                                   | 0.011     | 1.872    | 900.0   | 0.004        | 0.007 | 0.0004 | 0.00006  | 0.008 |
| 22. | Paradeep D/s                     | 2.341 (0.315-5.886)0         | 0.577 (0.017-3.600) | 0.008                                   | 0.026     | 0.551    | 0.008   | 900.0        | 0.012 | 900000 | 0.00013  | 0.008 |



|      |                               | Nutrients                  | ients                           |                                         |           |           | He      | Heavy metals | tals  |        |          |                               |
|------|-------------------------------|----------------------------|---------------------------------|-----------------------------------------|-----------|-----------|---------|--------------|-------|--------|----------|-------------------------------|
| SI   |                               |                            | A                               | Annual Average values (Range of values) | age value | es (Range | of valu | (sa)         |       |        |          |                               |
| No.  | Sampinng Location             | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI) ##                               | T. Cr##   | Fe##      | Ni##    | Cu##         | Zn##  | Cd##   | Hg##     | $\mathbf{P}\mathbf{b}^{\#\#}$ |
|      |                               | Sm)                        | (mg/l)                          |                                         |           |           |         | (mg/l)       |       |        |          |                               |
| Ong  | Ong River                     |                            |                                 |                                         |           |           |         |              |       |        |          |                               |
| 23.  | Dharuakhaman                  | 2.636<br>(0.815-11.327)    | 0.126 (0.001-0.621)             | <0.002                                  | 0.005     | 0.464     | 0.005   | 0.005        | 0.026 | 0.0009 | 0.00025  | 0.010                         |
| Tel  | River                         |                            |                                 |                                         |           |           |         |              |       |        |          |                               |
| 24.  | Monmunda                      | 1.856<br>(0.857-3.375)     | 0.142 (0.001-0.602)             | 0.003                                   | 0.011     | 0.785     | 0.005   | 0.007        | 0.057 | 0.0007 | 0.00019  | 0.008                         |
| Kath | Kathajodi River               |                            |                                 |                                         |           |           |         |              |       |        |          |                               |
| 25.  | Cuttack U/s                   | 1.977 (0.164-6.430)        | 0.146 (0.005-0.549)             | <0.002                                  | 0.005     | 1.637     | 0.001   | 0.004        | 0.002 | 0.0004 | 0.00044  | 0.003                         |
| 26.  | Cuttack D/s                   | 6.356<br>(0.426-20.911)    | 0.274 (0.004-0.833)             | 0.015                                   | 0.037     | 0.296     | 0.003   | 0.001        | 0.005 | 0.0003 | 0.00025  | 0.005                         |
| 27.  | Mattagajpur<br>(Cuttack FD/s) | 4.419<br>(0.626-8.744)     | 0.226 (0.001-1.082)             | <0.002                                  | 600.0     | 1.821     | 0.005   | 0.004        | 0.004 | 0.0008 | 0.00063  | 0.012                         |
| 28.  | Kamasasan<br>(Cuttack FFD/s)  | 6.091<br>(0.651-16.574)    | 0.160 (0.004-0.412)             | 0.005                                   | 0.011     | 1.499     | 0.002   | 0.003        | 0.002 | 0.0005 | <0.00006 | 0.005                         |
| Seru | Serua River                   |                            |                                 |                                         |           |           |         |              |       |        |          |                               |
| 29.  | Sankhatrasa<br>(Cuttack FD/s) | 3.515<br>(0.549-7.923)     | 0.243 (0.004-0.723)             | <0.002                                  | 0.009     | 3.397     | 0.003   | 0.003        | 0.032 | 0.0006 | 0.00006  | 0.010                         |
| Kual | Kuakhai River                 |                            |                                 |                                         |           |           |         |              |       |        |          |                               |
| 30.  | Bhubaneswar FU/s              | 1.903<br>(0.328-4.050)     | 0.083 (0.001-0.332)             | 0.005                                   | 0.011     | 0.505     | 900.0   | 0.002        | 0.007 | 0.0004 | 0.00057  | 0.005                         |
| 31.  | Bhubaneswar U/s               | 1.896 (0.195-6.183)        | 0.111 (0.001-0.457)             | 0.007                                   | 0.017     | 0.954     | 0.004   | 0.002        | 0.010 | 0.0004 | 0.00006  | 0.005                         |
| Daya | Daya River                    |                            |                                 |                                         |           |           |         |              |       |        |          |                               |
| 32.  | Gelapur                       | 1.982 (1.041-3.581)        | 0.139 (0.002-0.479)             | 0.012                                   | 0.029     | 1.341     | 0.007   | 0.003        | 0.000 | 0.0006 | 0.00006  | 0.002                         |
| 33.  | Bhubaneswar D/s               | 13.826<br>(3.848-41.624)   | 0.302 (0.015-0.708)             | 0.02                                    | 0.031     | 1.295     | 0.004   | 0.002        | 0.012 | 0.0011 | 0.00076  | 0.004                         |
| 34.  | Bhubaneswar FD/s              | 18.700<br>(1.887-51.994)   | 0.226 (0.009-0.476)             | 0.012                                   | 0.026     | 0.785     | 0.005   | 0.002        | 0.006 | 0.0011 | 0.00006  | 0.003                         |
| 35.  | Kanas                         | 7.232<br>(1.032-20.765)    | 0.128 (0.001-0.378)             | <0.002                                  | 0.009     | 4.304     | 0.007   | 0.008        | 0.037 | 0.0008 | 0.00285  | 900.0                         |



|      |                                | •                            |                     |                                         |           |           | ;       |              | •     |              |                      |       |
|------|--------------------------------|------------------------------|---------------------|-----------------------------------------|-----------|-----------|---------|--------------|-------|--------------|----------------------|-------|
|      |                                | Nutrients                    | ients               |                                         |           |           | He      | Heavy metals | tals  |              |                      |       |
| SI   | Samuling I ocation             |                              | A                   | Annual Average values (Range of values) | age value | es (Range | of valu | (es)         | -     |              |                      |       |
| No.  |                                | Nitrate as NO <sub>3</sub> . | PO <sub>4</sub> 3P  | Cr(VI) ##                               | T. Cr##   | Fe##      | Ni##    | Cu##         | Zn##  | <b>Cd</b> ## | $\mathrm{Hg}^{\#\#}$ | Pb##  |
|      |                                | (m)                          | (l/gm)              |                                         |           |           |         | (mg/l)       |       |              |                      |       |
| Gan  | Gangua River                   |                              |                     |                                         |           |           |         |              |       |              |                      |       |
| 36.  | Near Rajdhani Engg.<br>College | 11.198 (1.487-35.855)        | 0.358 (0.106-1.186) | 0.018                                   | 0.037     | 2.366     | 900.0   | 0.004        | 0.025 | 0.0012       | 9000000              | 0.002 |
| 37.  | Palasuni                       | 15.297<br>(0.805-43.076)     | 0.402 (0.002-1.290) | 0.017                                   | 0.024     | 0.938     | 0.004   | 0.004        | 0.046 | 0.0016       | 0.00032              | 900.0 |
| 38.  | Samantraypur                   | 16.899<br>(0.726-56.826)     | 0.485 (0.145-1.359) | 0.018                                   | 60.03     | 0.903     | 0.009   | 0.010        | 0.109 | 0.0008       | 9000000              | 90000 |
| 39.  | Vadimula                       | 23.670<br>(1.448-62.178)     | 0.578 (0.022-1.604) | 0.005                                   | 0.015     | 3.468     | 0.003   | 0.008        | 0.045 | 0.0008       | 9000000              | 0.006 |
| Biru | Birupa River                   |                              |                     |                                         |           |           |         |              |       |              |                      |       |
| 40.  | Choudwar D/s                   | 2.003 (0.079-7.172)          | 0.130 (0.001-0.904) | <0.002                                  | 0.01      | 0.219     | 0.014   | 0.003        | 0.007 | 0.0004       | 0.00019              | 0.005 |
| Kus  | Kushabhadra River              |                              |                     |                                         |           |           |         |              |       |              |                      |       |
| 41.  | Bhingarpur                     | 3.420<br>(0.784-8.237)       | 0.064 (0.002-0.161) | 0.003                                   | 0.015     | 1.703     | 0.000   | 0.004        | 0.036 | 0.0007       | 0.00019              | 900.0 |
| 42.  | Nimapara                       | 2.326<br>(0.985-3.980)       | 0.091 (0.001-0.196) | <0.002                                  | 0.013     | 0.755     | 0.011   | 0.004        | 0.012 | 0.0008       | 0.00013              | 0.008 |
| 43.  | Сор                            | 2.005 (0.833-4.079)          | 0.109 (0.005-0.256) | <0.002                                  | 0.013     | 4.712     | 0.012   | 0.006        | 0.098 | 0.0007       | 0.00044              | 0.008 |
| Bha  | Bhargavi River                 |                              |                     |                                         |           |           |         |              |       |              |                      |       |
| 44.  | Chandanpur                     | $1.821 \\ (0.035-4.154)$     | 0.270 (0.002-2.120) | <0.002                                  | 0.01      | 1.372     | 0.006   | 0.005        | 0.009 | 0.0011       | 0.00013              | 0.005 |
| Man  | Mangala River                  |                              |                     |                                         |           |           |         |              |       |              |                      |       |
| 45.  | Malatipatpur                   | 2.973<br>(0.140-6.463)       | 0.136 (0.001-0.830) | <0.002                                  | 0.011     | 0.551     | 0.005   | 0.003        | 0.007 | 0.0007       | 0.00013              | 900.0 |
| 46.  | Golasahi                       | 11.334<br>(2.615-36.796)     | 0.275 (0.019-0.629) | <0.002                                  | 0.015     | 1.183     | 0.007   | 0.008        | 0.011 | 0.0000       | 0.00032              | 0.007 |
| Dev  | Devi River                     |                              |                     |                                         | ,         | ,         |         |              |       |              | ,                    |       |
| 47.  | Machhagaon                     | 2.548<br>(0.638-6.368)       | 0.317 (0.002-3.001) | 0.012                                   | 0.025     | 0.780     | 0.008   | 0.007        | 0.008 | 0.0004       | 0.00006              | 0.005 |
|      |                                |                              |                     |                                         |           |           |         |              |       |              |                      |       |



|      |                   |                            |                     |                                         |           |           | -       |              |       |        |          |       |
|------|-------------------|----------------------------|---------------------|-----------------------------------------|-----------|-----------|---------|--------------|-------|--------|----------|-------|
|      |                   | Nutr                       | Nutrients           |                                         |           |           | —— He   | Heavy metals | tals  |        |          |       |
| SI   | Compling Location |                            | A                   | Annual Average values (Range of values) | nge value | es (Range | of valu | (sa)         |       |        |          |       |
| No.  | Sampung Location  | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> 3-P | Cr(VI) ##                               | T. Cr##   | Fe##      | Ni##    | Cu##         | Zn##  | Cd##   | Hg##     | Pb##  |
|      |                   | îm)                        | (mg/l)              |                                         |           |           |         | (mg/l)       |       |        |          |       |
| Gob  | Gobari River      |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 48.  | Kendrapara U/s    | 3.640<br>(0.134-9.936)     | 0.109 (0.006-0.319) | 0.010                                   | 0.027     | 0.520     | 0.016   | 0.003        | 900.0 | 0.0011 | 0.00032  | 0.014 |
| 49.  | Kendrapara D/s    | 4.220<br>(0.912-9.048)     | 0.119 (0.003-0.290) | 0.010                                   | 0.045     | 0.887     | 0.008   | 0.003        | 0.008 | 0.0012 | 0.00019  | 0.012 |
| Nun  | Nuna River        |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 50.  | Bijipur           | 2.144<br>(0.928-4.894)     | 0.072 (0.001-0.166) | 0.005                                   | 0.011     | 1.811     | 0.008   | 0.007        | 0.029 | 0.0009 | 0.00032  | 0.005 |
| Kusı | Kusumi River      |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 51.  | Tangi             | 3.374<br>(1.398-8.633)     | 0.101 (0.001-0.366) | 0.015                                   | 0.027     | 0.842     | 900.0   | 0.006        | 0.007 | 0.0007 | <0.00006 | 0.002 |
| Kan  | Kansari River     |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 52.  | Banapur           | 3.679<br>(1.155-7.015)     | 3.679 (1.155-7.015) | <0.002                                  | 0.021     | 1.336     | 0.004   | 0.009        | 0.027 | 0.0006 | <0.00006 | 0.008 |
| Bade | Badasankha River  |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 53.  | Langaleswar       | 5.736<br>(0.450-31.164)    | 0.072 (0.001-0.237) | 0.002                                   | 0.023     | 0.796     | 900.0   | 0.002        | 900.0 | 0.0009 | 0.00013  | 0.008 |
| Sabu | Sabulia River     |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 54.  | Rambha            | 5.400<br>(0.523-12.586)    | 0.081 (0.001-0.198) | 0.003                                   | 0.018     | 1.836     | 0.007   | 0.002        | 0.040 | 0.0007 | 0.00019  | 0.004 |
| Ratn | Ratnachira River  |                            |                     |                                         |           |           |         |              |       |        |          |       |
| 55.  | Kumardihi         | 2.940<br>(0.070-11.383)    | 0.100 (0.001-0.345) | <0.002                                  | 0.013     | 6.293     | 0.009   | 0.003        | 0.018 | 0.0004 | <0.00006 | 0.005 |
|      | "Class 'C'        | 50                         | •                   | 0.05                                    | 1         | 50        | ,       | 1.5          | 15.0  | 0.01   | ,        | 0.10  |
|      | *Class 'E'        | 1                          | •                   | 1                                       | 1         | 1         | ı       | ı            |       | 1      | ı        | 1     |

Class 'C': Drinking water source with conventional treatment followed by disinfection Class 'E': Irrigation water quality

<sup>\*</sup> Tolerance limit for Inland Surface water bodies (IS-2296-1982)

<sup>##</sup> Data for the period April, 2018

STITH!

Brahmani River System (2018)

 $\widehat{\mathbf{B}}$ 

|            |                             | Phy<br>parai        | Physical parameters      | Organ                   | Organic polluti            | ion Indicators             |                          | Bacteriological parameter               |                       |                         | 2                           | fineral              | Mineral constituents | ents                      |                            |                         |
|------------|-----------------------------|---------------------|--------------------------|-------------------------|----------------------------|----------------------------|--------------------------|-----------------------------------------|-----------------------|-------------------------|-----------------------------|----------------------|----------------------|---------------------------|----------------------------|-------------------------|
|            |                             |                     |                          |                         |                            |                            | An                       | Annual Average values (Range of values) | dues (R               | ange of                 | values)                     |                      |                      |                           |                            |                         |
| SI.<br>No. | Sampling<br>Location        | TSS                 | Total<br>alkal<br>-inity | СОД                     | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                    | SAR                     | В                           | TDS                  | ТН                   | CI                        | SO <sub>4</sub>            | Ŧ                       |
|            |                             | m)                  | (mg/l)                   |                         | 'gm)                       | g/l)                       |                          | (MPN/100ml)                             | (µS/cm)               |                         |                             |                      | (mg/l)               |                           |                            |                         |
| Sank       | Sankh river                 |                     |                          |                         |                            |                            |                          |                                         |                       |                         |                             |                      |                      |                           |                            |                         |
| 1.         | Sankh U/s                   | 70<br>(2-<br>330)   | 58 (32-<br>78)           | 9.4<br>(5.5-<br>14.4)   | 0.190<br>(BDL-<br>0.670)   | 0.006 (0-0.028)            | 4.22<br>(0.28-<br>11.20) | 3101 (130-16000)                        | 148<br>(1111-<br>201) | 0.39<br>(0.21-<br>0.59) | 0.015<br>(<0.003-<br>0.045) | 87<br>(68-<br>112)   | 52 (30-<br>72)       | 9.32<br>(5.99-<br>15.99)  | 9.20 (2.61-<br>26.36)      | 0.33<br>(0.13-<br>0.53) |
| Koel       | Koel river                  |                     |                          |                         |                            |                            |                          |                                         |                       |                         |                             |                      |                      |                           |                            |                         |
| 2.         | Koel U/s                    | 138<br>(11-<br>722) | 78 (36-<br>110)          | 9.7<br>(5.0-<br>17.8)   | 0.368<br>(BDL-<br>2.800)   | 0.037<br>(0-<br>0.208)     | 4.32<br>(0.56-<br>21.28) | 2619<br>(20-16000)                      | 185<br>(136-<br>251)  | 0.34<br>(0.22-<br>0.51) | 0.021<br>(<0.003-<br>0.077) | (83-<br>(146)        | 74 (48-<br>104)      | 9.61<br>(5.86-<br>13.00)  | 11.67 (2.73-28.10)         | 0.28<br>(0.14-<br>0.50) |
| Brah       | Brahmani river              |                     |                          |                         |                            |                            |                          |                                         |                       |                         |                             |                      |                      |                           |                            |                         |
| 3.         | Panposh U/s                 | 122<br>(14-<br>376) | 70 (44-<br>98)           | 10.6<br>(5.0-<br>19.8)  | 0.167<br>(BDL-<br>0.670)   | 0.011<br>(0-<br>0.068)     | 4.44<br>(0.28-<br>11.20) | 1889<br>(170-9200)                      | 169<br>(133-<br>224)  | 0.36<br>(0.25-<br>0.45) | 0.038<br>(<0.003-<br>0.077) | 100<br>(78-<br>138)  | 65 (46-<br>100)      | 9.57<br>(5.80-<br>13.50)  | 10.08 (2.86-26.24)         | 0.33<br>(0.19-<br>0.62) |
| 4          | Panposh D/s                 | 167<br>(14-<br>836) | 72 (36-<br>104)          | 32.8<br>(15.8-<br>48.0) | 1.091<br>(BDL-<br>10.752)  | 0.027<br>(0-<br>0.242)     | 5.04<br>(0.56-<br>16.80) | 19333<br>(1700-49000)                   | 322<br>(207-<br>494)  | 0.67<br>(0.16-<br>1.11) | 0.046<br>(0.004-<br>0.091)  | 182<br>(122-<br>258) | 100<br>(64-<br>120)  | 22.30<br>(5.99-<br>31.98) | 47.28<br>(26.36-<br>80.40) | 1.03<br>(0.24-<br>1.60) |
| 2.         | Rourkela D/s                | 229<br>(8-<br>634)  | 70 (40-<br>88)           | 29.1<br>(13.8-<br>44.2) | 0.302<br>(0.056-<br>1.456) | 0.007<br>(0-<br>0.029)     | 4.55<br>(0.28-<br>20.16) | 8874<br>(490-35000)                     | 227<br>(150-<br>308)  | 0.49<br>(0.19-<br>0.87) | 0.042<br>(<0.003-<br>0.084) | 132<br>(84-<br>175)  | 77(44-               | 15.36<br>(5.99-<br>31.98) | 23.49 (8.95-<br>33.45)     | 0.51<br>(0.21-<br>0.75) |
| 9.         | Rourkela FD/s<br>(Attaghat) | 164<br>(8-<br>812)  | 79 (46-<br>140)          | 22.2<br>(11.2-<br>40.3) | 0.271<br>(0.056-<br>0.800) | 0.006<br>(0-<br>0.026)     | 5.01<br>(0.28-<br>17.92) | 3617<br>(20-13000)                      | 225<br>(152-<br>313)  | 0.46<br>(0.16-<br>0.64) | 0.029<br>(<0.003-<br>0.073) | 133<br>(86-<br>184)  | 81 (48-<br>118)      | 14.79<br>(5.78-<br>19.99) | 20.95<br>(11.43-<br>39.05) | 0.49<br>(0.23-<br>0.79) |
| 7.         | Rourkela FD/s<br>(Biritola) | 131<br>(9-<br>662)  | 76 (42-<br>126)          | 13.5<br>(5.0-<br>28.8)  | 0.163<br>(0.056-<br>0.450) | 0.005<br>(0-<br>0.036)     | 3.66<br>(0.56-<br>11.76) | 1238<br>(20-5400)                       | 202<br>(141-<br>273)  | 0.40<br>(0.21-<br>0.81  | 0.027<br>(<0.003-<br>0.087) | 121<br>(82-<br>143)  | 76 (48-              | 11.13<br>(5.78-<br>15.99) | 18.50 (7.83-<br>32.09)     | 0.41<br>(0.21-<br>0.84) |
| 8.         | Bonaigarh                   | 155<br>(6-<br>696)  | 71 (32-<br>92)           | 11.1<br>(6.7-<br>17.3)  | 0.218<br>(0.056-<br>0.720) | 0.009<br>(0-<br>0.058)     | 2.26<br>(0.28-<br>7.28)  | 481 (5-1700)                            | 200<br>(1111-<br>245) | 0.41<br>(0.14-<br>0.55) | 0.024<br>(<0.003-<br>0.101  | 118<br>(64-<br>142)  | 72 (40-<br>88)       | 12.20<br>(3.86-<br>17.99) | 18.33<br>(10.32-<br>27.36) | 0.41<br>(0.20-<br>0.62) |
| 9.         | Rengali                     | 38<br>(1-<br>158)   | 53 (28-78)               | 7.7<br>(3.6-<br>12.9)   | 0.107<br>(0.056-<br>0.220) | 0.004<br>(0-<br>0.014)     | 1.82<br>(0.28-<br>3.92)  | 188<br>(20-540)                         | 139<br>(1111-<br>199) | 0.30<br>(0.19-<br>0.52) | 0.061<br>(0.004-<br>0.407)  | 84<br>(66-<br>110)   | 54 (38-<br>84)       | 7.12<br>(5.78-<br>12.99)  | 11.92 (5.84-23.75)         | 0.35<br>(0.17-<br>0.63) |



|            |                      | Phy<br>parai      | Physical parameters      | Organ                  | Organic pollution Indicators | ion Indi                   | cators                   | Bacteriological parameter               |                      |                         | 2                           | fineral             | Mineral constituents | ents                      |                        |                         |
|------------|----------------------|-------------------|--------------------------|------------------------|------------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|-----------------------------|---------------------|----------------------|---------------------------|------------------------|-------------------------|
|            |                      |                   |                          |                        |                              |                            | An                       | Annual Average values (Range of values) | ılues (R             | ange of                 | values)                     |                     |                      |                           |                        |                         |
| SI.<br>No. | Sampling<br>Location | TSS               | Total<br>alkal<br>-inity | СОБ                    | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                   | SAR                     | В                           | TDS                 | ТН                   | Cl                        | SO <sub>4</sub>        | Ľ                       |
|            |                      | m)                | (mg/l)                   |                        | gm)                          | g/1)                       |                          | (MPN/100ml)                             | (µS/cm)              |                         |                             |                     | (mg/l)               |                           |                        |                         |
| 10.        | Samal                | 38<br>(1-<br>132) | 55 (32-<br>70)           | 8.4<br>(3.6-<br>13.8)  | 0.117<br>(BDL-<br>0.450)     | 0.006<br>(0-<br>0.029)     | 2.10<br>(0.56-<br>6.72)  | 457<br>(45-1300)                        | 145<br>(102-<br>187) | 0.31<br>(0.19-<br>0.50) | 0.048<br>(<0.003-<br>0.143) | 87<br>(62-<br>103)  | 55 (36-<br>80)       | 7.27<br>(5.86-<br>9.99)   | 14.15 (8.08-<br>27.24) | 0.38<br>(0.19-<br>0.72) |
| 11.        | Talcher FU/s         | 38<br>(1-<br>178) | 53 (40-72)               | 7.6<br>(3.6-<br>11.9)  | 0.149<br>(BDL-<br>0.560)     | 0.004<br>(0-<br>0.011)     | 1.96<br>(0.56-<br>5.60)  | 504<br>(20-1700)                        | 141<br>(121-<br>173) | 0.29<br>(0.23-<br>0.38) | 0.056<br>(0.004-<br>0.157)  | 87<br>(76-<br>106)  | 54 (44-<br>60)       | 7.01<br>(5.78-<br>8.22)   | 13.90 (5.97-29.60)     | 0.36<br>(0.18-<br>0.72) |
| 12.        | Talcher U/s          | 61<br>(4-<br>385) | 60 (44-<br>88)           | 9.2<br>(3.6-<br>13.9)  | 0.121<br>(BDL-<br>0.330)     | 0.004<br>(0-<br>0.009)     | 1.75<br>(0.56-<br>4.48)  | 774<br>(45-3500)                        | 165<br>(117-<br>286) | 0.34<br>(0.33-<br>0.52) | 0.040<br>(0.004-<br>0.084)  | 98<br>(84-<br>164)  | 60 (46-<br>104)      | 8.89<br>(5.78-<br>17.30)  | 16.14 (6.46-<br>36.69) | 0.36<br>(0.17-<br>0.97) |
| 13.        | Mandapal             | 52<br>(1-<br>166) | 61 (32-<br>146)          | 10.5<br>(5.5-<br>23.6) | 0.079<br>(BDL-<br>0.224)     | 0.002<br>(0-<br>0.004)     | 2.75<br>(0.28-<br>8.96)  | 2010<br>(78-16000)                      | 172<br>(119-<br>519) | 0.31<br>(0.21-<br>0.68) | 0.042<br>(0.004-<br>0.084)  | 105<br>(74-<br>314) | 66 (42-<br>192)      | 9.35<br>(5.78-<br>35.98)  | 20.91 (8.58-<br>79.97) | 0.53<br>(0.11-<br>2.60) |
| 14.        | Talcher D/s          | 35<br>(2-<br>102) | 62 (48-<br>84)           | 13.7<br>(7.6-<br>28.8) | 0.145<br>(BDL-<br>0.570)     | 0.004<br>(0-<br>0.029)     | 2.64<br>(0.28-<br>7.28)  | 1352<br>(20-4600)                       | 170<br>(124-<br>249) | 0.45<br>(0.28-<br>1.55) | 0.068<br>(0.004-<br>0.133)  | 104<br>(82-<br>148) | 61 (52-<br>90)       | 11.48<br>(7.40-<br>37.98) | 16.08(9.33-<br>29.97)  | 0.40<br>(0.20-<br>0.84) |
| 15.        | Talcher FD/s         | 64<br>(1-<br>334) | 67 (36-<br>100)          | 11.3<br>(3.6-<br>17.7) | 0.084<br>(BDL-<br>0.336)     | 0.002<br>(0-<br>0.005)     | 1.89<br>(0.28-<br>7.28)  | 819<br>(78-3500)                        | 181<br>(126-<br>266) | 0.48<br>(0.29-<br>1.36) | 0.086<br>(0.004-<br>0.217)  | 112<br>(78-<br>149) | 63 (48-<br>86)       | 12.95<br>(7.99-<br>43.97) | 16.74 (8.45-<br>28.85) | 0.39<br>(0.24-<br>0.51) |
| 16.        | Dhenkanal U/s        | 49<br>(3-<br>192) | 56 (44-<br>72)           | 8.7<br>(3.8-<br>13.1)  | 0.167<br>(0.056-<br>0.560)   | 0.005<br>(0.001-<br>0.011) | 2.17<br>(0.28-<br>5.04)  | 619<br>(45-3500)                        | 153<br>(115-<br>201) | 0.36<br>(0.24-<br>0.50) | 0.037<br>(<0.003-<br>0.098) | 92<br>(78-<br>119)  | 54 (42-<br>66)       | 9.14<br>(6.99-<br>12.99)  | 13.94 (7.08-<br>26.74) | 0.36<br>(0.18-<br>0.63) |
| 17.        | Dhenkanal D/s        | 36<br>(3-<br>154) | 66 (48-<br>80)           | 9.8<br>(5.5-<br>12.9)  | 0.191<br>(0.056-<br>0.670)   | 0.004<br>(0.001-<br>0.015) | 2.62<br>(0.03-<br>6.72)  | 1844<br>(78-11000)                      | 173<br>(116-<br>224) | 0.39<br>(0.28-<br>0.57) | 0.054<br>(<0.003-<br>0.147) | 105<br>(85-<br>122) | 63 (52-<br>74)       | 10.46<br>(5.99-<br>13.99) | 15.63 (7.21-27.48)     | 0.36<br>(0.21-<br>0.55) |
| 18.        | Bhuban               | 39<br>(4-<br>180) | 56 (40-<br>80)           | 9.3<br>(3.8-<br>14.4)  | 0.131<br>(BDL-<br>0.620)     | 0.007 (0-0.060)            | 2.15<br>(0.56-<br>11.20) | 255 (<1.8-1300)                         | 149<br>(106-<br>186) | 0.31<br>(0.17-<br>0.46) | 0.059<br>(0.004-<br>0.249)  | 90<br>(68-<br>104)  | 55 (40-70)           | 7.68<br>(3.86-<br>10.60)  | 14.33 (7.46-<br>25.62) | 0.34<br>(0.18-<br>0.54) |
| 19.        | Kabatabandha         | 63<br>(3-<br>264) | 55 (44-<br>66)           | 6.8<br>(3.6-<br>11.2)  | 0.224<br>(0.056-<br>0.560)   | 0.005<br>(0-<br>0.018)     | 2.52<br>(0.28-<br>10.64) | 555<br>(<1.8-2800)                      | 155<br>(114-<br>171) | 0.34<br>(0.20-<br>0.53) | 0.036<br>(<0.003-<br>0.108) | 91<br>(82-<br>98)   | 55 (48-<br>68)       | 8.39<br>(5.78-<br>10.99)  | 15.01 (9.10-22.51)     | 0.34<br>(0.24-<br>0.46) |
| 20.        | Dharmasala<br>U/s    | 52<br>(1-<br>214) | 68 (44-<br>96)           | 6.7<br>(4.0-<br>10.9)  | 0.229<br>(0.056-<br>0.560)   | 0.007<br>(0-<br>0.034)     | 2.36<br>(0.28-<br>11.20) | 543<br>(45-1300)                        | 173<br>(115-<br>225) | 0.40<br>(0.23-<br>0.90) | 0.040<br>(<0.003-<br>0.101) | 104<br>(68-<br>135) | 62 (40-<br>84)       | 11.66<br>(5.78-<br>25.98) | 12.24 (5.59-<br>17.16) | 0.27<br>(0.19-<br>0.44) |



|            |                      | Phy<br>parai       | Physical parameters     | Organ                   | Organic pollut              | tion Indicators            | cators                    | Bacteriological<br>parameter            |                       |                          | 4                           | fineral              | Mineral constituents | ents                        |                             |                         |
|------------|----------------------|--------------------|-------------------------|-------------------------|-----------------------------|----------------------------|---------------------------|-----------------------------------------|-----------------------|--------------------------|-----------------------------|----------------------|----------------------|-----------------------------|-----------------------------|-------------------------|
|            |                      |                    |                         |                         |                             |                            | An                        | Annual Average values (Range of values) | alues (R              | ange of                  | values)                     |                      |                      |                             |                             |                         |
| SI.<br>No. | Sampling<br>Location | TSS                | Total<br>alkal<br>inity | СОО                     | NH <sub>4</sub> -N          | Free<br>NH <sub>3</sub> -N | TKN                       | FC                                      | EC                    | SAR                      | В                           | TDS                  | HI                   | CI                          | $SO_4$                      | Щ                       |
|            |                      | m)                 | (mg/l)                  |                         | gm)                         | g/1)                       |                           | (MPN/100ml)                             | (µS/cm)               |                          |                             |                      | (mg/l)               |                             |                             |                         |
| 21.        | Dharmasala<br>D/s    | 74<br>(6-<br>244)  | 68 (44-<br>96)          | 9.2<br>(3.6-<br>16.5)   | 0.205<br>(0.056-<br>0.670)  | 0.008 (0-0.028)            | 3.00<br>(0.56-<br>13.40)  | 840<br>(<1.8-2800))                     | 182<br>(139-<br>230)  | 0.41<br>(0.19-<br>0.77)  | 0.036<br>(0.003-<br>0.133)  | 109<br>(82-<br>138)  | 66 (48-<br>88)       | 12.38<br>(5.78-<br>22.98)   | 14.16 (6.09-                | 0.26<br>(0.18-<br>0.34) |
| 22.        | Pottamundai          | 55<br>(18-<br>154) | 76 (40-<br>100)         | 9.9<br>(3.8-<br>13.1)   | 0.182<br>(0.056-<br>0.560)  | 0.004<br>(0-<br>0.014)     | 2.59<br>(0.56-<br>5.04)   | 898<br>(45-3500)                        | 217<br>(130-<br>343)  | 0.50<br>(0.26-<br>0.66)  | 0.040<br>(0.003-<br>0.108)  | 124<br>(78-<br>158)  | 76 (50-<br>92)       | 15.70<br>(7.71-<br>21.98)   | 13.95 (9.45-<br>24.50)      | 0.37<br>(0.25-<br>0.69) |
| Nanc       | Nandira River        |                    |                         |                         |                             |                            |                           |                                         |                       |                          |                             |                      |                      |                             |                             |                         |
| 23.        | Nandira U/s          | 161<br>(2-<br>758) | 151 (64-<br>212)        | 11.6<br>(4.1-<br>18.7)  | 0.121<br>(BDL-<br>0.560)    | 0.006 (0-                  | 2.99<br>(0.28-<br>10.64)  | 2998<br>(20-16000)                      | 488<br>(175-<br>607)  | 0.77<br>(0.35-<br>1.28)  | 0.076<br>(0.007-<br>0.133)  | 278<br>(97-<br>356)  | 169<br>(60-<br>220)  | 33.55<br>(9.99-<br>61.96)   | 54.71<br>(13.68-<br>89.18)  | 1.03<br>(0.26-<br>2.00) |
| 24.        | Nandira D/s          | 177<br>(1-<br>780) | 149 (92-<br>192)        | 14.1<br>(6.1-<br>27.7)  | 0.267<br>(BDL-<br>0.6680)   | 0.016<br>(0-<br>0.054)     | 3.76<br>(0.56-<br>15.12)  | 4947<br>(110-17000)                     | 513<br>(295-<br>594)  | 0.87<br>(0.63-<br>1.45)  | 0.092<br>(<0.003-<br>0.187  | 306<br>(182-<br>378) | 182<br>(104-<br>208) | 36.54<br>(22.42-<br>58.00)  | 71.81<br>(35.07-<br>104.60) | 1.41<br>(0.54-<br>2.70) |
| Kisir      | Kisinda Jhor         |                    |                         |                         |                             |                            |                           |                                         |                       |                          |                             |                      |                      |                             |                             |                         |
| 25.        | Kisindajhor          | 25 (1-64)          | 148<br>(104-<br>208)    | 12.1<br>(3.8-<br>29.7)  | 0.126<br>(BDL-<br>0.560)    | 0.007<br>(0<br>0.45)       | 1.96<br>(0.56-<br>3.92)   | 962<br>(20-3500)                        | 533<br>(393-<br>669)  | 1.03<br>(0.43-<br>1.78)  | 0.113<br>(0.004-<br>0.252)  | 309<br>(206-<br>418) | 177<br>(142-<br>214) | 42.35<br>(19.28-<br>58.60)  | 67.39<br>(35.94-<br>123.90) | 1.61<br>(0.53-<br>3.50) |
| Khar       | Kharasrota River     |                    |                         |                         |                             |                            |                           |                                         |                       |                          |                             |                      |                      |                             | ,                           |                         |
| 26.        | Khanditara           | 69<br>(4-<br>244)  | 60 (44-<br>78)          | 6.9<br>(3.4-<br>11.8)   | 0.158<br>(0.056-<br>0.560)  | 0.005<br>(0-<br>0.012)     | 1.59<br>(0.56-<br>3.36)   | 386<br>(<1.8-2800)                      | 156<br>(118-<br>188)  | 0.33<br>(0.21-<br>0.46)  | 0.027<br>(<0.003-<br>0.074) | 94<br>(68-<br>114)   | 57 (40-<br>74)       | 8.33<br>(5.50-<br>11.99)    | 14.56 (6.46-<br>22.88)      | 0.30<br>(0.25-<br>0.36) |
| 27.        | Binjharpur           | 88<br>(5-<br>330)  | 65 (40-<br>84)          | 7.8<br>(3.4-<br>16.5)   | 0.144<br>(BDL-<br>0.336)    | 0.008<br>(0.001-<br>0.021) | 1.94<br>(0.56-<br>3.92)   | 562<br>(<1.8-3500)                      | 163<br>(123-<br>194)  | 0.36<br>(0.29-<br>0.46)  | 0.038<br>(<0.003-<br>0.094) | 101<br>(76-<br>117)  | 61 (40-<br>76)       | 9.37<br>(6.93-<br>11.10)    | 14.67 (6.09-<br>26.74)      | 0.27<br>(0.19-<br>0.37) |
| 28.        | Aul                  | 54<br>(24-<br>142) | 70 (48-<br>88)          | 10.4<br>(3.8-<br>16.8)  | 0.196<br>(0.056-<br>0.560)  | 0.005<br>(0-<br>0.017)     | 2.57<br>(0.56-<br>6.16)   | 1006<br>(20-2400)                       | 757<br>(133-<br>6052) | 2.00<br>(0.21-<br>18.19) | 0.151<br>(0.004-<br>0.775)  | 428<br>(78-<br>3390) | 140<br>(52-<br>634)  | 163.02<br>(5.99-<br>1730.0) | 59.53 (7.21-<br>305.8)      | 0.40<br>(0.21-<br>0.84) |
| 29.        | Guradih nallah       | 84<br>(28-<br>276) | 78 (38-<br>132)         | 46.0<br>(27.4-<br>63.4) | 1.892<br>(0.056-<br>10.416) | 0.008<br>(0-<br>0.022)     | 11.60<br>(0.28-<br>50.96) | 54050<br>(4600-160000)                  | 429<br>(303-<br>574)  | 0.88<br>(0.58-<br>1.50)  | 0.070<br>(<0.003-<br>0.116) | 245<br>(168-<br>322) | 129<br>(104-<br>160) | 32.46<br>(20.98-<br>43.97)  | 72.97<br>(40.54-<br>103.70) | 1.46<br>(0.19-<br>2.20) |



|            |                      | Phy<br>para        | Physical parameters      | Orgar                  | Organic polluti            | ion Indicators             |                          | Bacteriological<br>parameter            |                      |                         | Ŋ                           | fineral              | Mineral constituents | ents                       |                              |                         |
|------------|----------------------|--------------------|--------------------------|------------------------|----------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|-----------------------------|----------------------|----------------------|----------------------------|------------------------------|-------------------------|
|            |                      |                    |                          |                        |                            |                            | Anı                      | Annual Average values (Range of values) | ılues (R             | ange of                 | values)                     |                      |                      |                            |                              |                         |
| SI.<br>No. | Sampling<br>Location | TSS                | Total<br>alkal<br>-inity | СОД                    | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                   | SAR                     | В                           | TDS                  | ТН                   | Cl                         | SO <sub>4</sub>              | Ŧ                       |
|            |                      | u)                 | (mg/l)                   |                        | (mg/l)                     | ş/1)                       |                          | (MPN/100ml)                             | (µS/<br>cm)          |                         |                             |                      | (mg/l)               |                            |                              |                         |
| Badjh      | Badjhor nallah       |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 30.        | Badjhor nallah       | 21 (6-37)          | 108 (62-<br>138)         | 9.9<br>(5.7-<br>17.8)  | 0.144<br>(BDL-<br>0.336)   | 0.020<br>(0-<br>0.191)     | 3.61<br>(0.56-<br>7.28)  | 5737 (130-54000)                        | 286<br>(158-<br>407) | 0.64<br>(0.19-<br>1.14) | 0.060<br>(0.004-<br>0.242)  | 170<br>(93-<br>234)  | 103<br>(66-<br>130)  | 24.08<br>(5.99-<br>42.97)  | 16.95 (9.70-29.10)           | 0.45<br>(0.29-<br>0.72) |
| Dams       | Damsala River        |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 31.        | Dayanabil            | 62<br>(13-<br>274) | 89 (40-<br>130)          | 7.0<br>(3.4-<br>11.2)  | 0.191<br>(BDL-<br>1.230)   | 0.005 (0-0.013)            | 3.01<br>(0.56-<br>11.20) | 812<br>(<1.8-2800)                      | 224<br>(124-<br>315) | 0.27<br>(0.20-<br>0.36) | 0.038<br>(<0.003-<br>0.108) | 132<br>(72-<br>219)  | 98 (44-<br>168)      | 9.25<br>(5.78-<br>11.99)   | 19.62 (3.48-<br>60.25)       | 0.24<br>(0.14-<br>0.40) |
| Gand       | Ganda nallah         |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 32. 1      | Marthapur            | 90<br>(8-<br>326)  | 68 (46-<br>104)          | 11.2<br>(5.5-<br>16.1) | 0.131<br>(BDL-<br>0.330)   | 0.004<br>(0-<br>0.009)     | 2.40<br>(0.56-<br>6.16)  | 4952<br>(<1.8-35000)                    | 190<br>(121-<br>391) | 0.40<br>(0.25-<br>0.99) | 0.052<br>(<0.003-<br>0.130) | 113<br>(78-<br>238)  | 68 (44-<br>128)      | 12.41<br>(6.70-<br>40.97)  | 18.50 (7.09-51.49)           | 0.41<br>(0.23-<br>1.20) |
| Lingir     | Lingira River        |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 33. /      | Angul U/s            | 18 (1-40)          | 131 (76-<br>196)         | 9.8<br>(8.1-<br>12.7)  | 0.158<br>(BDL-<br>0.780)   | 0.028<br>(0.002-<br>0.111) | 3.94<br>(0.28-<br>17.64) | 1719 (<1.8-16000)                       | 359<br>(244-<br>526) | 0.53<br>(0.22-<br>0.67) | 0.066<br>(0.007-<br>0.252)  | 201<br>(146-<br>306) | 133<br>(84-<br>172)  | 20.34<br>(9.64-<br>29.98)  | 20.03 (9.15-<br>31.35)       | 0.67<br>(0.50-<br>0.95) |
| 34.        | Angul D/s            | 15 (1-92)          | 163 (88-<br>214)         | 11.3<br>(8.2-<br>14.4) | 0.263<br>(0.056-<br>0.890) | 0.006<br>(0.002-<br>0.012) | 5.30<br>(0.56-<br>23.80) | 803<br>(<1.8-2800)                      | 445<br>(375-<br>502) | 0.74<br>(0.44-<br>1.14) | 0.062<br>(0.004-<br>0.175)  | 247<br>(206-<br>282) | 161<br>(120-<br>200) | 31.97<br>(21.21-<br>51.97) | 24.78 (9.53-<br>36.56)       | 0.67<br>(0.59-<br>0.79) |
| Ramie      | Ramiala River        |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 35.        | Kamakhyanagar        | 49<br>(1-<br>312)  | 69 (36-<br>168)          | 9.7<br>(3.8-<br>17.8)  | 0.149<br>(0.056-<br>0.448) | 0.011<br>(0.001-<br>0.034) | 1.94<br>(0.28-<br>6.16)  | 621<br>(78-2400)                        | 178<br>(124-<br>427) | 0.40<br>(0.20-<br>0.86) | 0.069<br>(<0.003-<br>0.235) | 107<br>(75-<br>243)  | 66 (42-<br>152)      | 12.60<br>(5.99-<br>39.98)  | 11.69 (3.10-<br>25.99)       | 0.36<br>(0.18-<br>0.70) |
| Bangu      | Banguru nallah       |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 36.        | Banguru nallah       | 47<br>(1-<br>156)  | 134<br>(100-<br>184)     | 10.5<br>(5.5-<br>19.8) | 0.154<br>(0.056-<br>0.450) | 0.012<br>(0.001-<br>0.036) | 3.78<br>(0.28-<br>13.72) | 492<br>(45-1400)                        | 733<br>(442-<br>988) | 0.55<br>(0.32-<br>0.93) | 0.049<br>(<0.001-<br>0.168) | 421<br>(246-<br>546) | 286<br>(160-<br>372) | 29.84<br>(17.99-<br>43.77) | 177.04<br>(81.59-<br>278.60) | 0.61<br>(0.49-<br>0.80) |
| Singa      | Singada jhor         |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |
| 37.        | Singada jhor         | 99<br>(4-<br>496)  | 126 (64-<br>168)         | 10.5<br>(5.5-<br>18.7) | 0.200<br>(0.056-<br>0.560) | 0.009<br>(0.002-<br>0.036) | 3.36<br>(0.28-<br>11.48) | 486<br>(20-2800)                        | 398<br>(164-<br>510) | 0.49<br>(0.27-<br>0.88) | 0.045<br>(0.003-<br>0.182)  | 237<br>(98-<br>324   | 161<br>(62-<br>212)  | 19.52<br>(9.64-<br>26.98)  | 60.04<br>(17.93-<br>101.90)  | 0.66<br>(0.38-<br>1.80) |
|            |                      |                    |                          |                        |                            |                            |                          |                                         |                      |                         |                             |                      |                      |                            |                              |                         |



|            |                            | Phy<br>parai       | Physical parameters      | Organ                  | Organic pollution Indicators | ion Indi                   |                          | Bacteriological parameter               |                      |                         | 2                           | fineral o            | Mineral constituents | ents                      |                            |                         |
|------------|----------------------------|--------------------|--------------------------|------------------------|------------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|-----------------------------|----------------------|----------------------|---------------------------|----------------------------|-------------------------|
|            |                            |                    |                          |                        |                              |                            | An                       | Annual Average values (Range of values) | ılues (R             | ange of                 | values)                     |                      |                      |                           |                            |                         |
| SI.<br>No. | Sampling<br>Location       | TSS                | Total<br>alkal<br>-inity | СОО                    | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                   | SAR                     | В                           | TDS                  | TH                   | Cl                        | SO <sub>4</sub>            | Ħ                       |
|            |                            | m)                 | (mg/l)                   |                        | /gm)                         | (1/3                       |                          | (MPN/100ml)                             | (µS/<br>cm)          |                         |                             |                      | (mg/l)               |                           |                            |                         |
| Tikir      | Fikira River               |                    |                          |                        |                              |                            |                          |                                         |                      |                         |                             |                      |                      |                           |                            |                         |
| 38.        | 38. Kaniha U/s             | 216<br>(2-<br>648) | 77 (62-<br>88)           | 9.1<br>(5.5-<br>16.8)  | 0.158<br>(0.056-<br>0.448)   | 0.010<br>(0-<br>0.035)     | 2.85<br>(0.28-<br>14.28) | 449 (20-1700)                           | 215<br>(157-<br>326) | 0.40<br>(0.27-<br>0.58) | 0.051<br>(<0.003-<br>0.221) | 128<br>(88-<br>188)  | 82 (62-<br>126)      | 11.57<br>(7.40-<br>17.99) | 21.53 (7.46-50.12)         | 0.59<br>(0.22-<br>1.50) |
| 39.        | 39. Kaniha D/s             | 95<br>(8-<br>486)  | 86 (64-<br>108)          | 11.0<br>(5.5-<br>18.7) | 0.228<br>(0.056-<br>0.896)   | 0.005<br>(0-<br>0.017)     | 2.38<br>(0.28-<br>7.56)  | 1045<br>(20-3500)                       | 292<br>(210-<br>427) | 0.55<br>(0.29-<br>1.35) | 0.061<br>(0.003-<br>0.196)  | 173<br>(122-<br>239) | 108<br>(78-<br>170)  | 19.33<br>(9.30-<br>39.40) | 40.15<br>(23.88-<br>68.65) | 1.18<br>(0.37-<br>2.90) |
| Bang       | Bangurusingada jhor        |                    |                          |                        |                              |                            |                          |                                         |                      |                         |                             |                      |                      |                           |                            |                         |
| 40.        | 40. Bangurusingada<br>jhor | 32<br>(2-<br>158)  | 140 (52-<br>194)         | 10.2<br>(5.0-<br>19.3) | 0.181<br>(0.056-<br>0.504)   | 0.012<br>(0.004-<br>0.040) | 3.27<br>(0.56-<br>6.72)  | 1024 (<1.8-2800)                        | 353<br>(170-<br>484) | 0.49<br>(0.26-<br>0.98) | 0.060<br>(0.004-<br>0.235)  | 200<br>(96-<br>268)  | 138<br>(60-<br>172)  | 19.16<br>(7.71-<br>46.97) | 23.13<br>(12.68-<br>38.80) | 0.64<br>(0.38-<br>0.97) |
| Karo       | Karo River                 |                    |                          |                        |                              |                            |                          |                                         |                      |                         |                             |                      |                      |                           |                            |                         |
| 41.        | Barbil                     | 98<br>(1-79<br>8)  | 68 (36-<br>88)           | 9.5<br>(3.8-<br>16.1)  | 0.150<br>(0.056-<br>0.450)   | 0.016<br>(0-<br>0.076)     | 2.03<br>(0.28-<br>6.16)  | 652<br>(45-1700)                        | 157<br>(104-<br>198) | 0.26<br>(0.15-<br>0.53) | 0.033<br>(0.003-<br>0.123)  | 94<br>(62-<br>119)   | 65 (32-<br>88)       | 7.73<br>(5.78-<br>10.99)  | 7.64 (2.98-13.80)          | 0.25<br>(0.09-<br>0.75) |
| <b>*</b>   | Class 'C'                  | 1                  | -                        | 1                      | ı                            | 1                          | -                        | -                                       | -                    | -                       | -                           | 1500                 | 1                    | 009                       | 400                        | 1.5                     |
| <b>*</b>   | Class 'E'                  |                    | -                        | -                      | ı                            | -                          | -                        | 1                                       | 2250                 | 56                      | 2.0                         | 2100                 | -                    | 009                       | 1000                       | 1                       |

Tolerance limit for Inland Surface water bodies (IS-2296-1982) Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality **\*** 



(b) Contd..

|              |                                         | Pb##                         |        |              | 0.003               |            | 0.009               |                | 0.005               | 0.014                 | 0.018                 | 0.010                   | 900.0                   | 0.010                   | 0.010               | 0.003                  | 0.003               | 0.002               |
|--------------|-----------------------------------------|------------------------------|--------|--------------|---------------------|------------|---------------------|----------------|---------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|---------------------|------------------------|---------------------|---------------------|
|              |                                         | Hg##                         |        |              | 9000000>            |            | 9000000>            |                | 9000000             | 0.00032               | 0.00013               | 0.00000                 | 9000000                 | 9000000>                | 9000000>            | 900000->               | 900000->            | 900000'>            |
| ls           |                                         | <b>Cd</b> ##                 |        |              | 90000.0             |            | 0.0008              |                | 0.0007              | 0.0012                | 0.0018                | 0.0008                  | 0.0006                  | 0.0000                  | 0.0004              | 0.0004                 | 0.0004              | 0.0004              |
| Heavy metals |                                         | Zn##                         | (mg/l) |              | 0.003               |            | 0.004               |                | 0.092               | 0.221                 | 0.240                 | 0.025                   | 0.004                   | 0.015                   | 0.015               | 0.005                  | 0.003               | 0.004               |
| Heav         | 'alues)                                 | Cu##                         | (1)    |              | 0.002               |            | 0.005               |                | 0.004               |                       | 0.008                 |                         | 0.003                   | 0.005                   |                     | 0.003                  |                     |                     |
|              | ge of                                   | Ni##                         |        |              | 0.001               |            | 0.004               |                | 0.005               | 0.004 0.006           | 0.007                 | 0.004 0.019             | 0.002                   | 0.004                   | 0.005 0.007         | 0.005                  | 0.007 0.003         | 0.007 0.001         |
|              | ues (Rai                                | Fe##                         |        |              | 0.949               |            | 6.926               |                | 2.642               | 4.274                 | 6.181                 | 4.014                   | 0.709                   | 6.605                   | 1.142               | 1.290                  | 0.311               | 0.439               |
|              | age valı                                | T.<br>Cr##                   |        |              | 0.018               |            | 0.027               |                | 0.013               | 0.018                 | 0.021                 | 0.015                   | 0.013                   | 0.018                   | 0.018               | 0.015                  | 0.019               | 0.02                |
|              | Annual Average values (Range of values) | Cr(VI) ##                    |        |              | <0.002              |            | 0.003               |                | <0.002              | <0.002                | <0.002                | <0.002                  | <0.002                  | <0.002                  | <0.002              | <0.002                 | <0.002              | <0.002              |
| nts          | Am                                      | PO <sub>4</sub> 3-P          | l)     |              | 0.058 (0.002-0.201) |            | 0.054 (0.002-0.205) |                | 0.090 (0.006-0.376) | 0.126 (0.001-0.369)   | 0.138 (0.001-0.811)   | 0.091 (0.001-0.249)     | 0.063 (0.001-0.270)     | 0.064 (0.001-0.223)     | 0.140 (0.001-0.787) | 0.111 (0.001-0.279)    | 0.104 (0.001-0.419) | 0.099 (0.001-0.506) |
| Nutrients    |                                         | Nitrate as NO <sub>3</sub> : | (mg/l) |              | 2.239 (0.243-6.595) |            | 3.078 (0.371-7.570) |                | 3.166 (0.304-5.886) | 20.965 (4.198-48.980) | 11.660 (2.811-33.027) | 8.969<br>(0.910-19.146) | 4.630<br>(1.143-12.761) | 7.867<br>(3.052-16.085) | 2.557 (0.166-4.650) | 2.352<br>(0.219-5.239) | 1.780 (0.421-3.227) | 2.251 (0.699-4.732) |
|              | Samuling                                | Location                     |        | Sankha River | Sankha U/s          | Koel River | Koel U/s            | Brahmani river | Panposh U/s         | Panposh D/s           | Rourkela D/s          | Attaghat                | Biritola                | Bonai                   | Rengali             | Samal                  | Talcher FU/s        | Talcher U/s         |
|              | 5                                       | No.                          |        | Sank         | 1.                  | Koel       | 2.                  | Brah           | 3.                  | 4.                    | 5.                    | .9                      | 7.                      | 8.                      | 9.                  | 10.                    | 11.                 | 12.                 |



|     |                   | Nutrients                  | nts                             |                                         |            |          |             | Heav    | Heavy metals | ıls    |          |       |
|-----|-------------------|----------------------------|---------------------------------|-----------------------------------------|------------|----------|-------------|---------|--------------|--------|----------|-------|
| 5   | Complina          |                            | An                              | Annual Average values (Range of values) | age valı   | ıes (Rar | ge of v     | /alues) |              |        |          |       |
| No. |                   | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI) ##                               | T.<br>Cr## | Fe##     | Ni##        | Cu##    | Zn##         | Cd##   | Hg##     | Pb##  |
|     |                   | (L/gm)                     | (1)                             |                                         |            |          |             | )       | (mg/l)       |        |          |       |
| 13. | Mandapal          | 2.211<br>(1.064-3.665)     | 0.076 (0.001-0.156)             | <0.002                                  | 0.015      | 0.179    | 0.008       | 0.003   | 0.003        | 0.0004 | <0.00006 | 0.005 |
| 14. | Talcher D/s       | 2.187<br>(1.312-4.601)     | 0.101 (0.001-0.565)             | <0.002                                  | 0.022      | 1.224    | 0.011       | 0.003   | 0.005        | 0.0007 | <0.00006 | 0.003 |
| 15. | Talcher FD/s      | 2.070<br>(0.742-3.962)     | 0.044 (0.001-0.123)             | <0.002                                  | 0.015      | 2.438    | 0.011       | 0.002   | 0.002        | 0.0007 | <0.00006 | 0.001 |
| 16. | Dhenkanal U/s     | 2.527<br>(0.912-10.598)    | 0.106 (0.001-0.456)             | <0.002                                  | 0.015      | 990.0    | 0.001 0.002 | 0.002   | 0.005        | 0.0004 | <0.00006 | 0.005 |
| 17. | Dhenkanal D/s     | 0.418 (0.322-3.665)        | 0.112 (0.001-0.680)             | <0.002                                  | 0.018      | 0.036    | 0.002       | 0.004   | 0.012        | 0.0005 | <0.00006 | 0.007 |
| 18. | Bhuban            | 1.874 (0.669-3.061)        | 0.145 (0.001-1.279)             | 0.002                                   | 0.018      | 0.535    | 0.006       | 0.002   | 0.009        | 0.0004 | 0.00013  | 0.003 |
| 19. | Kabatabandha      | 3.106<br>(0.523-8.710)     | 0.072 (0.001-0.221)             | <0.002                                  | 0.027      | 2.341    | 900.0       | 0.005   | 900.0        | 0.0004 | 0.00057  | 0.007 |
| 20. | Dharmasala<br>U/s | 2.305<br>(0.525-6.776)     | 0.094 (0.002-0.284)             | <0.002                                  | 0.024      | 0.831    | 0.006       | 0.005   | 0.003        | 900000 | 0.00038  | 0.011 |
| 21. | Dharmasala<br>D/s | 2.271 (0.401-6.377)        | 0.151 (0.003-0.586)             | <0.002                                  | 0.024      | 2.530    | 0.006       | 0.012   | 0.003        | 0.0006 | 0.00070  | 0.012 |
| 22. | Pottamundai       | 3.788<br>(0.918-14.039)    | 0.112 (0.011-0.355)             | 0.005                                   | 0.037      | 0.479    | 0.006       | 0.002   | 0.009        | 0.0007 | 0.00019  | 0.007 |
| Nan | Nandira River     |                            |                                 |                                         |            |          |             |         |              |        |          |       |
| 23. | Nandira U/s       | 5.570 (1.174-11.580)       | 0.235 (0.001-1.574)             | <0.002                                  | 0.027      | 4.213    | 0.014       | 0.015   | 0.029        | 0.0006 | 0.00019  | 0.021 |
| 24. | Nandira D/s       | 4.045<br>(1.557-8.867)     | 0.174 (0.001-0.824)             | <0.002                                  | 0.029      | 5.243    | 0.016       | 0.004   | 0.009        | 0.0000 | 0.00032  | 0.007 |



| Substitution         Nitrate as NO₃           Nisindajhor         (mg/1)           25. Kisindajhor         11.282           26. Khanditara         (2.184-28.784)           27. Binjharpur         (0.675-4.575)           28. Aul         (1.131-11.195)           Curadih nallah         (5.930-55.566)           Badjhor nallah         (2.965           30. Badjhor nallah         (2.965           30. Badjhor nallah         (0.630-8.362)           Damsala River         (0.630-8.362) | Nutrients           |                                         |            |          |         | Hear   | Heavy metals | ıls          |          |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|------------|----------|---------|--------|--------------|--------------|----------|-------|
| ration Nitrate as NO <sub>3</sub> ajhor (2.184-28.784)  River (2.184-28.784)  Ritara (0.675-4.575)  rpur (0.675-4.575)  lah  h nallah (5.930-55.566)  r nallah (5.930-55.566)  r nallah (0.630-8.362)                                                                                                                                                                                                                                                                                          | An                  | Annual Average values (Range of values) | age valu   | ies (Ran | ge of v | alues) | -            |              |          |       |
| ajhor (2.184-28.784)  River (2.184-28.784)  River (2.184-28.784)  Pur (0.675-4.575)    1.918                                                                                                                                                                                                                                                                                                                                                                                                   | PO <sub>4</sub> 3-P | Cr(VI) ##                               | T.<br>Cr## | Fe##     | **iN    | Cu##   | Zn##         | <b>Cd</b> ## | Hg##     | Pb##  |
| ajhor  River Itara  rpur  h nallah  r nallah  r nallah                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng/1)               |                                         |            |          |         |        | (mg/l)       |              |          |       |
| or er rallah allah allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                         | ۰          |          | ,       | ,      |              |              | ,        |       |
| er r<br>r<br>allah allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.101 (0.002-0.277) | <0.002                                  | 0.024      | 0.026    | 0.000   | 0.004  | 0.009        | 0.0006       | 0.00013  | 0.008 |
| r allah allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                         |            |          |         |        |              |              |          |       |
| r allah allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.172 (0.001-0.870) | <0.002                                  | 0.027      | 2.417    | 0.005   | 0.001  | 0.008        | 0.0004       | 0.00076  | 0.005 |
| allah allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.074 (0.002-0.179) | <0.002                                  | 0.024      | 3.478    | 0.005   | 0.002  | 0.011        | 0.0007       | 0.00044  | 0.008 |
| allah allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.364 (0.002-3.198) | 0.013                                   | 0.035      | 1.040    | 0.004   | 0.008  | 0.015        | 0.0011       | 0.00006  | 0.008 |
| allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | •                                       |            | ١        | ,       | ,      | ١            |              |          |       |
| allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.070 (0.002-0.193) | 0.003                                   | 0.029      | 3.662    | 0.006   | 0.009  | 0.192        | 0.0012       | 0.00019  | 0.016 |
| allah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                         |            |          |         |        |              |              |          |       |
| Damsala River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.171 (0.001-1.389) | 0.01                                    | 0.024      | 0.156    | 0.007   | 0.004  | 0.003        | 0.0005       | <0.00006 | 0.007 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                         | ,          | •        | ,       | ,      | ,            |              | ,        |       |
| 31. Dayanabil 3.730 (0.182-13.950)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.081 (0.002-0.211) | 0.022                                   | 0.059      | 3.295    | 0.004   | 0.004  | 0.008        | 0.0004       | 0.00032  | 0.002 |
| Ganda nallah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                                         | ۰          |          | ,       | ,      |              |              | ,        |       |
| 32. Marthapur 3.655 (0.237-9.632)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.131 (0.011-0.690) | 0.005                                   | 0.015      | 1.005    | 0.004   | 0.009  | 0.017        | 0.0006       | 0.00019  | 0.003 |
| Lingra River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                                         | ٠          | ٠        |         |        | ١            |              |          |       |
| 33. Angul U/s 1.952 (0.444-5.095)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.126 (0.001-0.910) | <0.002                                  | 0.017      | 0.102    | 0.001   | 0.003  | 0.003        | 0.0004       | <0.00006 | 0.002 |



|      |                        | Nutrients                    | ents                   |                                         |            |                         |             | Неа                   | Heavy metals | ıls    |               |              |
|------|------------------------|------------------------------|------------------------|-----------------------------------------|------------|-------------------------|-------------|-----------------------|--------------|--------|---------------|--------------|
| 5    | Compling               |                              | An                     | Annual Average values (Range of values) | age valı   | ies (Ran                | ge of       | /alues)               |              |        |               |              |
| No.  | Location               | Nitrate as NO <sub>3</sub> . | $\mathbf{PO}_4^{3}$ -P | Cr(VI) ##                               | T.<br>Cr## | Fe##                    | "#IN        | Cu##                  | <b>Zn</b> ## | Cd##   | ## <b>8</b> H | <b>Pb</b> ## |
|      |                        | (l/gm)                       | <b>(1)</b>             |                                         |            |                         |             |                       | (mg/l)       |        |               |              |
| 34.  | Angul D/s              | 2.172 (0.604-4.364)          | 0.082 (0.003-0.301)    | <0.002                                  | 0.024      | 0.046 0.003             | 0.003       | 0.003                 | 0.007        | 0.0011 | >0.00006      | 0.004        |
| Ram  | Ramiala River          |                              |                        |                                         |            |                         |             |                       |              |        |               |              |
| 35.  | Kamakhyanagar          | 1.369 (0.055-2.545)          | 0.104 (0.001-0.429)    | 0.002                                   | 0.02       | 0.015 0.006 0.004 0.005 | 900.0       | 0.004                 | 0.005        | 0.0004 | 0.00013       | 0.001        |
| Bang | Banguru nallah         |                              |                        |                                         |            |                         |             |                       |              |        |               |              |
| 36.  | Banguru nallah         | 2.875<br>(0.620-6.269)       | 0.173(0.001-1.194)     | <0.002                                  | 0.018      | 2.433 0.007 0.005 0.007 | 0.007       | 0.005                 | 0.007        | 0.0004 | <0.00006      | 0.018        |
| Sing | Singada jhor           |                              |                        |                                         | ,          |                         | ,           | ,                     | ,            |        |               |              |
| 37.  | Singada jhor           | 2.457<br>(0.523-6.244)       | 0.087 (0.005-0.189)    | <0.002                                  | 0.029      | 6.472                   | 0.006 0.008 |                       | 0.015        | 0.0004 | 9000000>      | 0.017        |
| Tiki | Tikira River           |                              |                        |                                         |            |                         |             |                       |              |        |               |              |
| 38.  | 38. Kaniha U/s         | 1.990 (0.067-4.877)          | 0.159 (0.001-0.836)    | <0.002                                  | 0.04       | 4.672 0.007 0.007 0.011 | 0.007       | 200.0                 | 0.011        | 0.0007 | 0.00013       | 0.007        |
| 39.  | 39. Kaniha D/s         | 2.409<br>(0.195-5.198)       | 0.127 (0.006-0.346)    | <0.002                                  | 0.027      | 1.688                   | 0.008 0.002 | 0.005                 | 0.004        | 0.0070 | 0.00013       | 0.002        |
| Bang | Bangurusingada jhor    |                              |                        |                                         |            |                         |             |                       |              |        | •             |              |
| 40.  | Bangurusingada<br>jhor | 1.538 (0.079-5.335)          | 0.120 (0.001-0.664)    | <0.002                                  | 0.024      | 0.551                   | 0.007       | 0.007   0.001   0.003 | 0.003        | 900000 | 0.00006       | 0.001        |



|      |                             | Nutrients                  | ents                     |                                                                                 |            |          |         | Hear    | Heavy metals  | slı    |                                             |       |
|------|-----------------------------|----------------------------|--------------------------|---------------------------------------------------------------------------------|------------|----------|---------|---------|---------------|--------|---------------------------------------------|-------|
| อ    |                             |                            | An                       | Annual Average values (Range of values)                                         | age valı   | ıes (Rar | ge of v | 'alues) |               |        |                                             |       |
| No.  | Location                    | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> 3-P      | $Cr(VI)^{\#\#}$ $T_{CI^{\#\#}}$ $Fe^{\#\#}$ $NI^{\#\#}$ $Cu^{\#\#}$ $Zn^{\#\#}$ | T.<br>Cr## | Fe##     | Ni##    | Cu##    | <b>Zn</b> ##  | Cq##   | ## <b>BH</b>                                | Pb##  |
|      |                             | (mg/l)                     | (I)                      |                                                                                 |            |          |         |         | (mg/l)        |        |                                             |       |
| Karc | Karo River                  |                            |                          |                                                                                 |            |          |         |         |               |        |                                             |       |
| 41.  | 41. Barbil                  | 2.305<br>(0.540-5.108)     | 0.062 (0.001-0.300) 0.01 | 0.01                                                                            | 0.03       | 0.316    | 0.017   | 0.002   | 0.002         | 900000 | 0.03 0.316 0.017 0.002 0.002 0.0006 0.00063 | 900'0 |
| *    | <ul><li>Class 'C'</li></ul> | 50                         | 1                        | 0.05                                                                            | ı          | 20       | 1       | 1.5     | 1.5 15.0 0.01 | 0.01   | 1                                           | 0.10  |
| *    | ❖ Class 'E'                 | 1                          | ı                        | 1                                                                               | 1          | ı        | -       |         | -             | -      | ı                                           | ı     |
|      |                             |                            |                          | _                                                                               |            |          |         |         |               |        |                                             |       |

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

Class 'E': Irrigation water quality ## Data for the period April, 2018

## (C) Baitarani river system (2018)

|               |          | Physical         | Physical parameters Organic polluti                      | Organi         | c pollut                                  | ion Indicators             | cators                   | Bacteriological<br>parameter            |                      |                         | M                                             | Mineral constituents | onstitue            | ents                      |                          |                         |
|---------------|----------|------------------|----------------------------------------------------------|----------------|-------------------------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|-----------------------------------------------|----------------------|---------------------|---------------------------|--------------------------|-------------------------|
| Cl Com        |          |                  |                                                          |                |                                           |                            | Annue                    | Annual Average values (Range of values) | s (Rang              | e of val                | nes)                                          |                      |                     |                           |                          |                         |
| No. Loc       | Location | LSS              | Total alkal<br>-inity                                    | СОО            | COD NH <sub>4</sub> -N                    | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                   | CAD                     | В                                             | TDS                  | ТН                  | Cl                        | $SO_4$                   | F                       |
|               |          | I)               | (mg/l)                                                   |                | (mg/l)                                    | (1/)                       |                          | (MPN/100ml)                             | (µS/cm)              | NAC.                    |                                               |                      | ш)                  | (mg/l)                    |                          |                         |
| Kundra Nallah | allah    |                  |                                                          |                |                                           |                            |                          |                                         |                      |                         |                                               |                      |                     |                           |                          |                         |
| 1. Joda       |          | 54 (1-167)       | 63 (34-84)                                               |                | 10.0 0.093<br>(5.5- (BDL-<br>19.3) 0.224) | 0.003 (0-0.007)            | 1.50<br>(0.28-<br>4.76)  | 654<br>(18-2200)                        | 156<br>(121-<br>195) | 0.31<br>(0.19-<br>0.68) | 0.31 0.033<br>(0.19- (<0.003-<br>0.68) 0.157) | 92<br>(72-<br>110)   | 59<br>(34-<br>76)   | 8.22<br>(5.78-<br>9.99)   | 9.20<br>(3.60-<br>20.64) | 0.23<br>(0.11-<br>0.46) |
| Kusei River   | er       |                  |                                                          |                |                                           |                            |                          |                                         |                      |                         |                                               |                      |                     |                           |                          |                         |
| 2. Deogaon    | aon      | 104 (13-<br>381) | 112 (32- 9.6 (5.1- 0.177<br>166) 20.6) (0.056-<br>0.450) | 9.6 (5.1-20.6) | 0.177<br>(0.056-<br>0.450)                | 0.008<br>(0-<br>0.023)     | 3.21<br>(1.08-<br>10.64) | 1438 (110-2800)                         | 256<br>(97-<br>346)  | 0.39<br>(0.13-<br>0.71) | 0.038<br>(<0.003-<br>0.081)                   | 145<br>(56-<br>204)  | 103<br>(24-<br>172) | 13.37<br>(5.78-<br>19.99) | 9.76<br>(3.21-<br>14.05) | 0.30<br>(0.15-<br>0.68) |



|      |                    | Physical         | Physical parameters   | Organic pollu          | : polluti                  | tion Indicators            | cators                  | Bacteriological parameter    |                         |                           | Σ                           | Mineral constituents    | onstitue             | ents                        |                               |                         |
|------|--------------------|------------------|-----------------------|------------------------|----------------------------|----------------------------|-------------------------|------------------------------|-------------------------|---------------------------|-----------------------------|-------------------------|----------------------|-----------------------------|-------------------------------|-------------------------|
| 5    | Compline           |                  |                       |                        |                            |                            | Annua                   | Annual Average values (Range | s (Rang                 | e of values)              | nes)                        |                         |                      |                             |                               |                         |
| No.  |                    | TSS              | Total alkal<br>-inity | СОО                    | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                     | FC                           | EC                      | CAD                       | В                           | TDS                     | TH                   | CI                          | SO <sub>4</sub>               | Ħ                       |
|      |                    | i)               | (mg/l)                |                        | (mg/                       | (g/1)                      |                         | (MPN/100ml)                  | (ms/cm)                 | SAK                       |                             |                         | u)                   | (mg/l)                      |                               |                         |
| Bail | Baitarani River    |                  |                       |                        |                            |                            |                         |                              |                         |                           |                             |                         |                      |                             |                               |                         |
| 3.   | Naigarh            | 207 (2-1806)     | 48 (16-164)           | 10.5<br>(5.0-<br>41.1) | 0.178<br>(0.056-<br>0.560) | 0.006 (0-0.036)            | 1.71<br>(0.06-<br>5.06) | 279 (20-1100)                | 124<br>(65-<br>315)     | 0.28<br>(0.14-<br>0.54)   | 0.015<br>(<0.003-<br>0.042) | 74<br>(42-<br>172)      | 48<br>(24-<br>152)   | 6.01<br>(3.80-<br>9.30)     | 8.82<br>(1.74-<br>25.00)      | 0.35<br>(0.07-<br>1.42) |
| 4.   | Unchabali          | 204 (1-<br>1852) | 38 (22-52)            | 11.3<br>(5.0-<br>44.9) | 0.093<br>(BDL-<br>0.336)   | 0.003<br>(0-<br>0.010)     | 1.98<br>(0.56-<br>5.04) | 371<br>(4.5-2200)            | 103<br>(76-<br>155)     | 0.28<br>()0.10-<br>0.50)  | 0.023<br>(0.003-<br>0.049)  | 62<br>(48-91)           | 38<br>(28-<br>50)    | 5.53<br>(3.86-<br>7.99)     | 7.68<br>(1.99-<br>15.50)      | 0.23<br>(0.09-<br>0.50) |
| 5.   | Champua            | 65<br>(1-346)    | 53 (32-72)            | 9.4 (1.9-23.8)         | 0.112<br>(0.056-<br>0.560) | 0.002 (0-0.005)            | 1.98<br>(0.28-<br>6.44) | 485 (20-1700)                | 133<br>(108-<br>168)    | 0.32<br>(0.17-<br>0.49)   | 0.019<br>(0.004-<br>0.052)  | 81 (64-97)              | 50<br>(40-<br>62)    | 7.50<br>(3.80-<br>11.99)    | 8.88<br>(4.47-<br>17.53)      | 0.19<br>(0.07-<br>0.37) |
| 9.   | Tribindha          | 60 (1-218)       | 55 (32-68)            | 8.1 (3.8-15.0)         | 0.154<br>(0.056-<br>0.560) | 0.004<br>(0-<br>0.011)     | 1.70<br>(0.56-<br>4.48) | 501 (20-1700)                | 145<br>(99-<br>213)     | 0.35<br>(0.18-<br>0.78)   | 0.019<br>(<0.003-<br>0.088) | 87<br>(58-<br>132)      | 53<br>(28-<br>66)    | 8.57<br>(4.99-<br>23.98)    | 10.90<br>(2.74-<br>19.90)     | 0.21<br>(0.10-<br>0.37) |
| 7.   | Joda               | 85<br>(1-664)    | 51 (24-72)            | 8.2 (3.4-13.1)         | 0.135<br>(0.056-<br>0.560) | 0.007 (0-0.059)            | 1.82<br>(0.56-<br>5.04) | 442<br>(20-1700)             | 129<br>(97-<br>167)     | 0.26<br>(0.16-<br>0.43)   | 0.019<br>(<0.003-<br>0.067) | (26-98)                 | 50<br>(36-<br>58)    | 6.92<br>(3.86-<br>11.99)    | 8.88<br>(4.35-<br>16.79)      | 0.20<br>(0.11-<br>0.37) |
| 8.   | Anandpur           | 56 (14-<br>176)  | 60 (38-80)            | 9.3 (5.0-              | 0.167<br>(BDL-<br>0.448)   | 0.004<br>(0-<br>0.012)     | 2.17<br>(1.12-<br>5.04) | 848<br>(78-2400)             | 160<br>(126-<br>204)    | 0.37<br>(0.24-<br>0.70)   | 0.029<br>(<0.003-<br>0.084) | 92<br>(68-<br>119)      | 55<br>(40-<br>72)    | 9.79<br>(6.70-<br>18.11)    | 8.52<br>(3.10-<br>13.55)      | 0.20<br>(0.08-<br>0.40) |
| 9.   | Jajpur             | 121 (2-<br>458)  | 67 (40-96)            | 8.6 (3.6-<br>15.8)     | 0.219<br>(0.056-<br>0.560) | 0.010<br>(0.002-<br>0.044) | 2.45<br>(0.56-<br>5.88) | 2676<br>(20-16000)           | 173<br>(118-<br>233)    | 0.38<br>(0.12-<br>0.60)   | 0.096<br>(<0.003-<br>0.685) | 102<br>(74-<br>136)     | 63<br>(40-<br>84)    | 10.02<br>(3.86-<br>14.10)   | 11.65<br>(1.74-<br>20.27)     | 0.26<br>(0.15-<br>0.68) |
| 10.  | . Chandbali<br>U/s | 328 (44-<br>906) | 90 (44-180)           | 19.0<br>(6.8-<br>47.6) | 0.173<br>(0.056-<br>0.570) | 0.009<br>0.001-<br>0.071)  | 2.01<br>(0.56-<br>4.48) | 5338<br>(330-16000)          | 6155<br>(145-<br>19730) | 17.38<br>(0.57-<br>46.89) | 0.511<br>(<0.003-<br>2.148) | 4211<br>(88-<br>14400)  | 634<br>(44-<br>2000) | 2167.2<br>(13.5-<br>7696.2) | 327.03<br>(12.31-<br>982.60)  | 0.32<br>(0.18-<br>0.57) |
| 11.  | . Chandbali<br>D/s | 366 (80-<br>940) | 89 (48-130)           | 21.9<br>(8.5-<br>50.2) | 0.117<br>(BDL-<br>0.336)   | 0.004<br>(0-<br>0.012)     | 1.74<br>(0.45-<br>3.92) | 6023<br>(330-16000)          | 6161<br>(189-<br>19770) | 17.16<br>(0.89-<br>45.21) | 0.615<br>(0.003-<br>2.396)  | 4435<br>(122-<br>14800) | 717<br>(52-<br>2220) | 2262.1<br>(21.2-<br>7896.1) | 393.96<br>(13.80-<br>1113.20) | 0.33<br>(0.10-<br>0.82) |
| Sale | Salandi River      |                  |                       |                        |                            |                            |                         |                              |                         |                           |                             |                         |                      |                             |                               |                         |
| 12.  | . Bhadrak<br>U/s   | 41 (7-82)        | 80 (40-128)           | 8.7 (3.4-14.4)         | 0.107<br>(BDL-<br>0.336)   | 0.005 (0-0.014)            | 1.42<br>(0.56-<br>2.80) | 1188 (170-5400)              | 182<br>(99-<br>249)     | 0.37<br>(0.17-<br>0.65)   | 0.090 (0.003-0.277)         | 107<br>(48-<br>142)     | 71<br>(36-<br>102)   | 10.34<br>(5.99-<br>13.99)   | 7.44<br>(2.86-<br>16.42)      | 0.25<br>(0.13-<br>0.60) |
| 13.  | . Bhadrak<br>D/s   | 44 (20-68)       | 81<br>(32-120)        | 16.9<br>(6.7-<br>42.6) | 0.148<br>(BDL-<br>0.448)   | 0.009 (0-0.041)            | 2.03<br>(0.56-<br>4.48) | 5338 (130-35000)             | 202<br>(97-<br>273)     | 0.41<br>(0.21-<br>0.76)   | 0.126<br>(0.004-<br>0.723)  | 114<br>(58-<br>159)     | 75<br>(38-<br>100)   | 12.53<br>(7.71-<br>18.99)   | 9.19<br>(3.60-<br>20.23)      | 0.24<br>(0.12-<br>0.42) |



|          |                             | Physical          | Physical parameters Organic pollution Indicators | Organi                  | c <b>polluti</b>                          | on Indic                                 |                         | Bacteriological parameter               |                                              |                           | Z                                                                                                                                                          | Mineral constituents                                                                          | onstitue              | ents    |                            |                         |
|----------|-----------------------------|-------------------|--------------------------------------------------|-------------------------|-------------------------------------------|------------------------------------------|-------------------------|-----------------------------------------|----------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|---------|----------------------------|-------------------------|
| ี        | Comming                     |                   |                                                  |                         |                                           |                                          | Annua                   | Annual Average values (Range of values) | s (Range                                     | e of valu                 | res)                                                                                                                                                       |                                                                                               |                       |         |                            |                         |
| No.      | No. Location                | SSL               | Total alkal<br>-inity                            | СОО                     | COD NH <sub>4</sub> -N                    | Free<br>NH <sub>3</sub> -N               | TKN                     | FC                                      | EC                                           | CAD                       | B                                                                                                                                                          | TDS                                                                                           | TH                    | CI      | SO <sub>4</sub>            | F                       |
|          |                             | 1)                | (mg/l)                                           |                         | (mg/l)                                    | (I)                                      |                         | (MPN/100ml)                             | (µS/<br>cm)                                  | SAR                       |                                                                                                                                                            |                                                                                               | n)                    | (Ing/l) |                            |                         |
| Dhan     | Dhamra River                |                   |                                                  |                         |                                           |                                          |                         |                                         |                                              |                           |                                                                                                                                                            |                                                                                               |                       |         |                            |                         |
| 14.      | 14. Dhamra                  | 526 (62-<br>2076) | 100 (50-<br>148)                                 | 25.1<br>(12.4-<br>57.2) | 25.1 0.214 (12.4- (0.056- 57.2) 0.448) (1 | 0.006 2.56<br>(0- (0.17-<br>0.017) 9.52) | 2.56<br>(0.17-<br>9.52) | 3125<br>(130-16000)                     | 17827 41.01<br>(284- (1.02-<br>45150) 82.27) | 41.01<br>(1.02-<br>82.27) | 17827     41.01     1.265     14117     1832       (284-     (1.02-     (0.017-     (178-     (92-       45150)     82.27)     2.898)     34290)     4550) | 14117     1832     7681.3       (178-     (92-     (30.9-       34290)     4550)     19490.2) | 1832<br>(92-<br>4550) |         | 871.3<br>(52.9-<br>2223.3) | 0.42<br>(0.14-<br>0.63) |
| *        | <ul><li>Class 'C'</li></ul> | 1                 |                                                  | -                       |                                           |                                          |                         | 1                                       |                                              |                           |                                                                                                                                                            | 1500                                                                                          | ,                     | 009     | 400                        | 1.5                     |
| <b>*</b> | <ul><li>Class 'E'</li></ul> | 1                 | ,                                                |                         | 1                                         |                                          | -                       | ,                                       | 2250                                         | 26                        | 2.0                                                                                                                                                        | 2100                                                                                          | 1                     | 009     | 1000                       | 1                       |

**\*** 

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

#### (C) Contd..

|              |                                         | Pb##                                                                     |        |               | 0.004                                                                        |             | 0.004                                                                                          |                 | 0.002                                                                                  |
|--------------|-----------------------------------------|--------------------------------------------------------------------------|--------|---------------|------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|
|              |                                         | H8##                                                                     |        |               | <0.00006                                                                     |             | <0.00006                                                                                       |                 | 0.00032                                                                                |
|              |                                         | Cd##                                                                     |        |               | 0.0003                                                                       |             | 0.0004                                                                                         |                 | 0.0004                                                                                 |
| netals       |                                         | ##uZ                                                                     | (1)    |               | 0.009                                                                        |             | 0.008                                                                                          |                 | 0.006                                                                                  |
| Heavy metals | /alues)                                 | Ca##                                                                     | (mg/l) |               | 0.002                                                                        |             | 0.001                                                                                          |                 | 0.003                                                                                  |
|              | nge of v                                | Ni##                                                                     |        |               | 0.001                                                                        |             | 0.001                                                                                          |                 | 0.018                                                                                  |
|              | ılues (Ra                               | Fe##                                                                     |        |               | 1.499                                                                        |             | 1.158                                                                                          |                 | 1.076                                                                                  |
|              | erage va                                | T.<br>Cr##                                                               |        |               | 0.015                                                                        |             | 0.024                                                                                          |                 | 0.024                                                                                  |
|              | Annual Average values (Range of values) | $\operatorname{Cr}(\operatorname{VI})^{\#\#}$ $\operatorname{Cr}^{\#\#}$ |        |               | 0.005                                                                        |             | <0.002                                                                                         |                 | 0.008                                                                                  |
| ents         | A                                       | PO <sub>4</sub> 3-P                                                      | (L)    |               | 0.058 (0.002-0.277) 0.005 0.015 1.499 0.001 0.002 0.009 0.0003 <0.0006 0.004 |             | 0.125 (0.001-0.464) <0.002   0.024   1.158   0.001   0.001   0.008   0.0004   <0.00006   0.004 |                 | 0.110 (0.001-0.961)   0.008   0.024   1.076   0.018   0.003   0.006   0.0004   0.00032 |
| Nutrients    |                                         | Nitrate as NO <sub>3</sub>                                               | /gm)   |               | 3.089 (0.328-9.984)                                                          |             | 1.744 (0.438-4.531)                                                                            |                 | 2.328 (0.815-5.829)                                                                    |
|              |                                         | Sampling Location                                                        |        | Kundra nallah | 1. Joda                                                                      | dver        | Deogaon                                                                                        | Baitarani river | Naigarh                                                                                |
|              |                                         | SI.<br>No.                                                               |        | Kundra        | 1.                                                                           | Kusei River | 2.                                                                                             | Baitara         | 3.                                                                                     |



|               |                   | Nutr                       | Nutrients           |                                         |          |          | Ţ            | Heavy metals | netals |        |               |       |
|---------------|-------------------|----------------------------|---------------------|-----------------------------------------|----------|----------|--------------|--------------|--------|--------|---------------|-------|
|               |                   |                            | Aı                  | Annual Average values (Range of values) | erage va | lues (Ra | nge of v     | alues)       |        |        |               |       |
| SI.<br>No.    | Sampling Location | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> 3-P | Cr(VI)##                                | T. Cr##  | Fe##     | <b>Ni</b> ## | Cu##         | Zn##   | Cd##   | ## <b>B</b> H | Pb##  |
|               |                   | (m)                        | (l/gm)              |                                         |          |          |              | (mg/l)       | (T)    |        |               |       |
| 4.            | Unchabali         | 2.578 (1.058-4.793)        | 0.064 (0.001-0.398) | 0.003                                   | 0.027    | 1.290    | 0.016        | 0.001        | 0.007  | 0.0004 | 0.00044       | 0.002 |
| 5.            | Champua           | 2.483 (0.365-4.122)        | 0.112 (0.001-0.811) | <0.002                                  | 0.015    | 0.163    | 0.002        | 0.001        | 0.009  | 0.0006 | <0.00006      | 0.007 |
| .9            | Tribindha         | 3.247<br>(0.341-7.452)     | 0.105 (0.001-0.522) | 0.003                                   | 0.018    | 0.770    | 0.001        | 0.002        | 0.009  | 0.0002 | <0.00006      | 0.001 |
| 7.            | Joda              | 2.319<br>(0.833-4.290)     | 0.058 (0.002-0.487) | <0.002                                  | 0.015    | 0.444    | 0.001        | 0.002        | 0.011  | 0.0004 | 0.00032       | 0.003 |
| 8.            | Anandpur          | 2.303 (0.347-5.613)        | 0.077 (0.001-0.467) | <0.002                                  | 0.013    | 0.031    | 0.002        | 0.001        | 0.026  | 0.0006 | <0.00006      | 0.006 |
| 9.            | Jajpur            | 2.349 (0.055-6.001)        | 0.070 (0.002-0.190) | 0.002                                   | 0.015    | 1.127    | 0.008        | 0.002        | 0.003  | 0.0005 | 0.00044       | 0.004 |
| 10.           | Chandbali U/s     | 2.455 (0.961-7.190)        | 0.112 (0.001-0.456) | <0.002                                  | 0.018    | 4.631    | 0.011        | 0.012        | 990.0  | 0.0007 | 9200000       | 0.012 |
| 11.           | Chandbali D/s     | 2.639 (0.464-6.945)        | 0.163 (0.001-0.916) | <0.002                                  | 0.024    | 4.814    | 0.016        | 0.017        | 0.076  | 0.0009 | 0.00032       | 0.012 |
| Salandi river | river             |                            |                     |                                         |          |          |              |              |        |        |               |       |
| 12.           | Bhadrak U/s       | 1.736 (0.450-6.709)        | 0.080 (0.001-0.345) | <0.002                                  | 0.013    | 0.530    | 0.007        | 0.003        | 0.005  | 0.0004 | <0.000006     | 0.004 |
| 13.           | Bhadrak D/s       | 2.372 (0.035-8.545)        | 0.098 (0.001-0.309) | <0.002                                  | 0.018    | 0.842    | 0.009        | 0.019        | 0.004  | 0.0006 | 0.00013       | 0.012 |
| Dhamra        | Dhamra River      |                            |                     |                                         |          |          |              |              |        |        |               |       |
| 14.           | Dhamra            | 2.385 (0.026-6.988)        | 0.074 (0.001-0.198) | <0.002                                  | 0.015    | 7.711    | 0.011        | 0.007        | 0.041  | 0.0009 | 0.00044       | 0.005 |
| * Cla         | Class 'C'         | 50                         |                     | 0.05                                    | ,        | 20       | 1            | 1.5          | 15.0   | 0.01   | 1             | 0.10  |
| * Cla         | Class 'E'         |                            | •                   | ,                                       | 1        |          | 1            |              |        | -      | ı             |       |

\*

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



(D) Rushikulya river system (2018)

|           |                       | Physical parameters | sical                   | Organ                  | Organic pollution        |                            | Indicators               | Bacteriological parameter               |                          |                           | Wi                          | Mineral constituents     | nstituen               | ıts                           |                             |                         |
|-----------|-----------------------|---------------------|-------------------------|------------------------|--------------------------|----------------------------|--------------------------|-----------------------------------------|--------------------------|---------------------------|-----------------------------|--------------------------|------------------------|-------------------------------|-----------------------------|-------------------------|
| 5         | Sampling              |                     |                         |                        |                          |                            |                          | Annual Average values (Range of values) | values (R                | ange of                   | values)                     |                          |                        |                               |                             |                         |
| No.       | Location              | TSS                 | Total<br>alkal<br>inity | СОБ                    | NH <sub>4</sub> -N       | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                       | SAR                       | В                           | TDS                      | ТН                     | Cl                            | SO <sub>4</sub>             | īт                      |
|           |                       | (mg/l)              | (1/2                    |                        | m)                       | (mg/l)                     |                          | (MPN/100ml)                             | (µS/cm)                  |                           |                             |                          | (mg/l)                 |                               |                             |                         |
| Russe     | Russelkunda Reservoir | voir                |                         |                        |                          |                            |                          |                                         |                          |                           |                             |                          |                        |                               |                             |                         |
| 1.        | Russelkunda           | 24 (6-62)           | 74<br>(60-<br>84)       | 11.2<br>(7.9-<br>17.1) | 0.247<br>(BDL-<br>0.670) | 0.011<br>(0-<br>0.055)     | 2.80<br>(0.56-<br>5.60)  | 781<br>(<1.8-2800)                      | 166<br>(145-<br>185)     | 0.39<br>(0.24-<br>0.74)   | 0.037<br>(0.003-<br>0.074)  | 96<br>(81-<br>112)       | 62<br>(52-<br>76)      | 9.84<br>(7.40-<br>14.90)      | 3.26<br>(0.87-<br>7.71)     | 0.28<br>(0.18-<br>0.46) |
| Bada Nadi | Nadi                  |                     |                         |                        |                          |                            |                          |                                         |                          |                           |                             |                          |                        |                               |                             |                         |
| 2         | Aska                  | 63<br>(16-<br>208)  | 118<br>(100-<br>140)    | 10.2<br>(5.5-<br>21.1) | 0.125<br>(BDL-<br>0.330) | 0.009<br>(0-<br>0.041)     | 4.57<br>(0.56-<br>13.40) | 696<br>(45-2800)                        | 300<br>(238-<br>554)     | 0.78<br>(0.38-<br>3.11)   | 0.045<br>(<0.003-<br>0.101) | 176<br>(146-<br>352)     | 105<br>(84-<br>120)    | 30.31<br>(11.10-<br>138.90)   | 7.27<br>(1.49-<br>10.82)    | 0.29<br>(0.22-<br>0.45) |
| Rushi     | Rushikulya river      |                     |                         |                        |                          |                            |                          |                                         |                          |                           |                             |                          |                        |                               |                             |                         |
| 3.        | Aska                  | 46<br>(2-<br>104)   | 132<br>(104-<br>164)    | 9.7<br>(5.5-<br>15.0)  | 0.382<br>(BDL-<br>1.608) | 0.028<br>(0-<br>0.168)     | 4.83<br>(0.28-<br>16.24) | 1307<br>(45-2700)                       | 284<br>(222-<br>342)     | 0.44<br>(0.31-<br>0.71)   | 0.035<br>(0.003-<br>0.077)  | 163<br>(132-<br>198)     | 114<br>(78-<br>138)    | 15.72<br>(11.10-<br>25.06)    | 4.97<br>(2.24-<br>8.83)     | 0.29<br>(0.22-<br>0.44) |
| 4         | Nalabanta             | 75<br>(22-<br>186)  | 122<br>(94-<br>148)     | 10.0<br>(5.9-<br>16.8) | 0.209<br>(BDL-<br>0.670) | 0.018<br>(0-<br>0.084)     | 4.20<br>(1.12-<br>12.32) | 1038<br>(<1.8-3500)                     | 317<br>(247-<br>498)     | 0.63<br>(0.33-<br>2.02)   | 0.065<br>(0.004-<br>0.334)  | 174<br>(139-<br>298)     | 111<br>(84-<br>132)    | 25.45<br>(11.1-<br>96.10)     | 7.16<br>(2.11-<br>14.55)    | 0.29<br>(0.23-<br>0.48) |
| 5.        | Madhopur              | 95<br>(1-<br>220)   | 132<br>(112-<br>162)    | 10.2<br>(3.8-<br>17.8) | 0.126<br>(BDL-<br>0.450) | 0.007<br>(0-<br>0.036)     | 1.82<br>(0.28-<br>3.36)  | 1220<br>(<1.8-3500)                     | 506<br>(260-<br>2005)    | 1.57<br>(0.44-<br>8.21)   | 0.066<br>(0.011-<br>0.270)  | 296<br>(144-<br>1170)    | 133<br>(96-<br>264)    | 80.27<br>(14.80-<br>499.70)   | 23.80<br>(3.11-<br>143.03)  | 0.33<br>(0.24-<br>0.58) |
| .9        | Potagarh              | 164<br>(21-<br>302) | 138<br>(116-<br>186)    | 29.5<br>(5.2-<br>49.3) | 0.195<br>(BDL-<br>0.560) | 0.009 (0-0.027)            | 3.97<br>(0.28-<br>21.00) | 435<br>(<1.8 -1700)                     | 14248<br>(436-<br>34020) | 29.09<br>(1.48-<br>58.59) | 0.491<br>(0.010-<br>1.450)  | 11104<br>(242-<br>26900) | 1774<br>(116-<br>4000) | 5859.7<br>(57.84-<br>14492.7) | 839.1<br>(19.28-<br>2070.9) | 0.41<br>(0.27-<br>0.63) |
| ∵<br>≎    | Class 'C'             | -                   | -                       | ı                      | 1                        | 1                          | 1                        | -                                       | 1                        | ı                         | 1                           | 1500                     | ı                      | 009                           | 400                         | 1.5                     |
| ∵ C       | Class 'E'             | -                   |                         |                        | -                        | -                          | ı                        | _                                       | 2250                     | 26                        | 2.0                         | 2100                     | -                      | 009                           | 1000                        | -                       |

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



#### (D) Contd..

|      |                       | Nutri                      | Nutrients           |          |                                         |           | He        | Heavy metals | als   |        |          |              |
|------|-----------------------|----------------------------|---------------------|----------|-----------------------------------------|-----------|-----------|--------------|-------|--------|----------|--------------|
| 5    | Sampling              |                            |                     | Annual A | Annual Average values (Range of values) | ues (Rang | e of valu | (sa)         |       |        |          |              |
| No.  | Location              | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> 3-P | Cr(VI)## | T. Cr##                                 | Fe##      | Ni##      | Cu##         | Zn##  | Cq##   | ##BH     | <b>Pb</b> ## |
|      |                       | (L/gm)                     | 3/1)                |          |                                         |           |           | (mg/l)       |       |        |          |              |
| Rus  | Russelkunda Reservoir | voir                       |                     |          |                                         |           |           |              |       |        |          |              |
| 1.   | Russelkunda           | 1.827 (0.420-4.463)        | 0.037 (0.001-0.122) | 0.003    | 0.018                                   | 0.643     | 0.015     | 0.005        | 0.056 | 0.0006 | 0.00178  | 0.003        |
| Bada | Bada Nadi             |                            |                     |          |                                         |           |           |              |       |        |          |              |
| 2.   | Aska                  | 1.868<br>(0.638-3.437)     | 0.058 (0.001-0.273) | 0.002    | 0.024                                   | 1.239     | 0.012     | 0.008        | 0.014 | 0.0007 | 0.00051  | 0.006        |
| Rus  | Rushikulya river      |                            |                     |          |                                         |           |           |              |       |        |          |              |
| 3.   | Aska                  | 2.346<br>(1.005-6.214)     | 0.083 (0.002-0.444) | 0.013    | 0.044                                   | 0.326     | 0.011     | 0.004        | 0.009 | 200000 | 92000'0  | 0.007        |
| 4.   | Nalabanta             | 1.846<br>(0.438-4.958)     | 0.083 (0.001-0.178) | 0.003    | 0.024                                   | 2.203     | 0.011     | 0.003        | 0.019 | 0.0004 | 0.00044  | 0.011        |
| 5.   | Madhopur              | 5.063<br>(0.146-34.102)    | 0.108 (0.003-0.448) | 0.007    | 0.027                                   | 5.681     | 0.015     | 0.013        | 0.014 | 900000 | 90000'0> | 0.008        |
| 9.   | Potagarh              | 3.433<br>(0.490-7.171)     | 0.065 (0.001-0.234) | 0.022    | 0.044                                   | 2.820     | 0.009     | 0.006        | 0.018 | 0.0009 | 0.00006  | 0.009        |
| *    | Class 'C'             | 50                         | _                   | 0.05     | ı                                       | 50        | -         | 1.5          | 15.0  | 0.01   | -        | 0.10         |
| *    | Class 'E'             | 1                          | -                   | 1        | 1                                       | ı         | -         | -            | -     | -      | -        | ı            |

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection Class 'E': Irrigation water quality



(E) Nagavali river system (2018)

| SI.<br>No. | Sampling<br>Location | Physical parameters  | al<br>ters                              | Organ                  | Organic pollution I      | ion Indi                                       | ndicators                | Bacteriological   Mineral constituents parameter | Minera               | l constit               | uents                       |                      |                     |                           |                            |                         |
|------------|----------------------|----------------------|-----------------------------------------|------------------------|--------------------------|------------------------------------------------|--------------------------|--------------------------------------------------|----------------------|-------------------------|-----------------------------|----------------------|---------------------|---------------------------|----------------------------|-------------------------|
|            |                      | Annual               | Annual Average values (Range of values) | value                  | s (Range                 | of value                                       | es)                      |                                                  |                      |                         |                             |                      |                     |                           |                            |                         |
|            |                      | TSS                  | Total<br>alkal<br>-inity                | СОО                    | NH <sub>4</sub> -N       | COD NH <sub>4</sub> -N Free NH <sub>3</sub> -N | TKN                      | FC                                               | EC                   | SAR                     | В                           | TDS                  | TH                  | CI                        | SO₄                        | Ŧ                       |
|            |                      | (mg/l)               |                                         | (mg/l)                 |                          |                                                |                          | (MPN/100ml)                                      | (µS/<br>cm)          |                         | (mg/l)                      |                      |                     |                           |                            |                         |
| Naga       | Nagavali river       |                      |                                         |                        |                          |                                                |                          |                                                  |                      |                         |                             |                      |                     |                           |                            |                         |
| 1.         | Penta                | 129<br>(18-<br>440)  | 84 (66-<br>98)                          | 8.8<br>(3.6-<br>17.8)  | 0.105<br>(BDL-<br>0.330) | 0.006 (0-0.021)                                | 3.94<br>(0.56-<br>11.76) | 573<br>(<1.8-2400)                               | 191<br>(154-<br>228) | 0.28<br>(0.12-<br>0.40) | 0.017<br>(0.003-<br>0.064)  | 111<br>(88-<br>124)  | 75<br>(56-<br>84)   | 8.10<br>(3.99-<br>9.99)   | 11.46<br>(3.48-<br>16.04)  | 0.31<br>(0.20-<br>0.48) |
| 2.         | Jaykaypur<br>D/s     | 201<br>(10-<br>1470) | 96 (68-                                 | 17.0<br>(9.1-<br>29.7) | 0.163<br>(BDL-<br>0.560) | 0.013<br>(0-<br>0.063)                         | 3.90<br>(0.28-<br>8.40)  | 1185<br>(170-3500)                               | 243<br>(171-<br>346) | 0.47<br>(0.25-<br>0.83) | 0.041<br>(<0.003-<br>0.112) | 144<br>(98-<br>189)  | 90<br>(58-<br>124)  | 15.54<br>(7.71-<br>27.98) | 17.13<br>(8.33-<br>25.37)  | 0.28<br>(0.18-<br>0.41) |
| 3.         | Rayagada<br>D/s      | 201<br>(22-<br>1422) | 109<br>(72-<br>150)                     | 13.5<br>(7.4-<br>22.7) | 0.143<br>(BDL-<br>0.392) | 0.007 (0-0.041)                                | 3.10<br>(0.56-<br>7.84)  | 543<br>(45-1700)                                 | 295<br>(184-<br>435) | 0.55<br>(0.28-<br>0.97) | 0.058<br>(0.003-<br>0.225)  | 168<br>(110-<br>244) | 106<br>(76-<br>150) | 19.95<br>(9.64-<br>39.98) | 18.77<br>(11.14-<br>32.31) | 0.28<br>(0.18-<br>0.44) |
| *          | Class 'C'            | ı                    | ı                                       | ı                      | 1                        | 1                                              | 1                        | •                                                | -                    | 1                       | ı                           | 1500                 | ı                   | 009                       | 400                        | 1.5                     |
| *          | Class 'E'            | 1                    | 1                                       | 1                      | 1                        | 1                                              | 1                        |                                                  | 2250                 | 26                      | 2.0                         | 2100                 | 1                   | 009                       | 1000                       |                         |

Tolerance limit for Inland Surface water bodies (IS-2296-1982) Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality \*



(E) Contd..

|            |                     |                             | Nutrients           |          |            |           | H                                       | Heavy metals | S     |               |         |       |
|------------|---------------------|-----------------------------|---------------------|----------|------------|-----------|-----------------------------------------|--------------|-------|---------------|---------|-------|
|            | 1.1                 |                             |                     | An       | ınual Aver | age value | Annual Average values (Range of values) | ( values)    |       |               |         |       |
| SI.<br>No. | Sampung<br>Location | Nitrate as NO <sub>3</sub>  | PO <sub>4</sub> 3-P | Cr(VI)## | T. Cr##    | Fe##      | Ni##                                    | Cu##         | Zn##  | ## <b>P</b> O | Hg##    | Pb##  |
|            |                     |                             | (mg/l)              |          |            |           |                                         | (mg/l)       |       |               |         |       |
| Nag        | Nagavali river      |                             |                     |          |            |           |                                         |              |       |               |         |       |
| 1.         | Penta               | 5.206<br>(1.041-<br>29.229) | 0.153 (0.006-0.624) | <0.002   | 0.015      | 1.193     | 0.004                                   | 0.002        | 0.009 | 0.0003        | 0.00032 | 0.003 |
| 2.         | Jaykaypur D/s       | 3.135<br>(1.514-<br>5.632)  | 0.154 (0.001-0.627) | <0.002   | 0.027      | 4.355     | 900.0                                   | 0.005        | 0.035 | 0.0005        | 0.00070 | 0.007 |
| 3.         | Rayagada D/s        | 4.127<br>(1.113-<br>12.341) | 0.131 (0.029-0.346) | <0.002   | 0.019      | 5.498     | 0.006                                   | 0.005        | 0.011 | 0.0005        | 0.00089 | 0.005 |
| *          | Class 'C'           | 50                          | 1                   | 0.05     | 1          | 50        | ı                                       | 1.5          | 15.0  | 0.01          | -       | 0.10  |
| *          | Class 'E'           | ı                           | ı                   | ı        | 1          | ī         | I                                       | ı            | ı     | ı             | 1       | ı     |

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E': Irrigation water quality



## Subarnarekha river system (2018) (F)

|          |                             | Physical parameters | sical<br>teters          | Organ                  | Organic pollution Indicators                               | tion Indi                  | icators                  | Bacteriological parameter               |                      |                         | 2                          | Mineral constituents | onstitu            | ents                      |                            |                         |
|----------|-----------------------------|---------------------|--------------------------|------------------------|------------------------------------------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|----------------------------|----------------------|--------------------|---------------------------|----------------------------|-------------------------|
|          |                             |                     |                          |                        |                                                            |                            |                          | Annual Average values (Range of values) | values (R            | lange of                | values)                    |                      |                    |                           |                            |                         |
| SI.      | Sampling<br>Location        | TSS                 | Total<br>alkal<br>-inity | СОО                    | Total alkal COD $NH_4$ - $N$ $NH_3$ - $N$                  | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                   | SAR                     | В                          | TDS                  | ТН                 | Cl                        | SO₄                        | ц                       |
|          |                             | (mg/l)              | (1/3)                    |                        | lu)                                                        | (mg/l)                     |                          | (MPN/100ml)                             | (µS/cm)              |                         |                            |                      | (mg/l)             |                           |                            |                         |
| Subai    | Subarnarekha river          | 'er                 |                          |                        |                                                            |                            |                          |                                         |                      |                         |                            |                      |                    |                           |                            |                         |
| 1.       | 1. Rajghat                  | 99 (25-<br>394)     | 90<br>(48-<br>116)       | 10.8<br>(5.5-<br>21.8) | 10.8 0.168 0.010<br>(5.5- (BDL- (0-<br>21.8) 0.900) 0.059) | 0.010 (0-0.059)            | 2.49<br>(0.28-<br>10.08) | 765<br>(78-1700)                        | 285<br>(147-<br>388) | 0.69<br>(0.34-<br>0.99) | 0.139<br>(0.007-<br>0.884) | 164<br>(92-<br>212)  | 95<br>(56-<br>124) | 24.21<br>(9.64-<br>35.98) | 24.83<br>(11.19-<br>35.60) | 0.44<br>(0.13-<br>0.70) |
| <b>*</b> | <ul><li>Class 'C'</li></ul> | ı                   | ,                        | 1                      | ı                                                          | ı                          | 1                        | 1                                       | 1                    | 1                       | ı                          | 1500                 | 1                  | 009                       | 400                        | 1.5                     |
| *        | <ul><li>Class 'E'</li></ul> | 1                   | ı                        | ı                      | 1                                                          | ı                          | ı                        | 1                                       | 2250                 | 26                      | 2.0                        | 2100                 | 1                  | 009                       | 1000                       | 1                       |

#### (F) Contd..

|      |                             | Nutrients                  | S                               |                                         |          |          | He         | Heavy metals | tals          |        |                                                    |                      |
|------|-----------------------------|----------------------------|---------------------------------|-----------------------------------------|----------|----------|------------|--------------|---------------|--------|----------------------------------------------------|----------------------|
| อ    |                             |                            | Am                              | Annual Average values (Range of values) | e values | (Range c | of values, |              |               |        |                                                    |                      |
| No.  | Location                    | Nitrate as NO <sub>3</sub> | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI)## T. Cr## Fe## Ni## Cu## Zn##    | T. Cr##  | Fe##     | Ni##       | Cn##         | Zn##          | ##P    | Hg##                                               | $\mathbf{Pb}^{\#\#}$ |
|      |                             | (I/gm)                     |                                 |                                         |          |          |            | (mg/l)       |               |        |                                                    |                      |
| Suba | Subarnarekha river          | er                         |                                 |                                         |          |          |            |              |               |        |                                                    |                      |
| 1.   | 1. Rajghat                  | 2.622 (0.105-6.088)        | 0.089 (0.001-0.273) 0.002       | 0.002                                   | 0.015    | 1.158    | 900.0      | 0.009        | 0.005         | 0.0004 | 0.015 1.158 0.006 0.009 0.005 0.0004 0.00057 0.014 | 0.014                |
| *    | <ul><li>Class 'C'</li></ul> | 50                         | 1                               | 0.05                                    | 1        | 20       | ı          | 1.5          | 1.5 15.0 0.01 | 0.01   | 1                                                  | 0.10                 |
| *    | ❖ Class 'E'                 |                            |                                 |                                         | -        | -        |            | -            | -             | -      |                                                    | 1                    |

Tolerance limit for Inland Surface water bodies (IS-2296-1982) \*

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



(G) Budhabalanga river system (2018)

|            |                      | Phy<br>parar       | Physical parameters      | Orga                   | anic pollu                 | Organic pollution Indicators | cators                   | Bacteriological<br>parameter            |                      |                         | Mi                         | Mineral constituents | onstitu            | nents                      |                           |                         |
|------------|----------------------|--------------------|--------------------------|------------------------|----------------------------|------------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|----------------------------|----------------------|--------------------|----------------------------|---------------------------|-------------------------|
|            |                      |                    |                          |                        |                            |                              | Ann                      | Annual Average values (Range of values) | es (Rang             | e of valu               | res)                       |                      |                    |                            |                           |                         |
| SI.<br>No. | Sampling<br>Location | TSS                | Total<br>alkal<br>-inity | СОБ                    | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N   | TKN                      | FC                                      | EC                   | SAR                     | В                          | TDS                  | Щ                  | Cl                         | SO₄                       | Н                       |
|            |                      | u)                 | (mg/l)                   |                        | m)                         | (mg/l)                       |                          | (MPN/100ml)                             | (µS/cm)              |                         |                            |                      | (mg/l)             | (1                         |                           |                         |
| Bud        | Budhabalanga river   | ver                |                          |                        |                            |                              |                          |                                         |                      |                         |                            |                      |                    |                            |                           |                         |
| 1.         | Baripada<br>D/s      | 61<br>(8-<br>228)  | 87 (46-<br>122)          | 10.8<br>(7.3-<br>15.8) | 0.167<br>(BDL-<br>0.560)   | 0.006 (0-0.018               | 2.75<br>(0.56-<br>8.24)  | 4478<br>(200-35000)                     | 217<br>(132-<br>305) | 0.44<br>(0.29-<br>0.55) | 0.075<br>(0.003-<br>0.459) | 129<br>(74-<br>176)  | 84<br>(40-<br>116) | 13.94<br>(7.71-<br>21.98)  | 13.46<br>(7.96-<br>21.85) | 0.27<br>(0.14-<br>0.46) |
| 2.         | Balasore<br>U/s      | 102<br>(7-<br>260) | 82 (52-<br>120)          | 10.0<br>(5.5-<br>17.1) | 0.121<br>(BDL-<br>0.560)   | 0.005<br>(0-<br>0.014)       | 1.62<br>(0.56-<br>3.36)  | 1663<br>(330-5400)                      | 197<br>(118-<br>279) | 0.44<br>(0.22-<br>0.56) | 0.076<br>(0.003-<br>0.445) | 119<br>(78-<br>168)  | 76<br>(52-<br>108) | 13.06<br>(6.78-<br>17.99)  | 11.86<br>(6.96-<br>16.29) | 0.25<br>(0.13-<br>0.42) |
| 3.         | Balasore<br>D/s      | 95<br>(28-<br>138) | 91 (70-                  | 15.8<br>(7.3-<br>23.8) | 0.242<br>(BDL-<br>0.780)   | 0.011<br>(0-<br>0.041)       | 3.64<br>(1.12-<br>10.08) | 12900<br>(1700-54000)                   | 287<br>(184-<br>569) | 0.87<br>(0.36-<br>2.28) | 0.083<br>(0.007-<br>0.382) | 166<br>(113-<br>323) | 87<br>(64-<br>120) | 30.64<br>(10.99-<br>93.95) | 15.52<br>(7.83-<br>27.48) | 0.24<br>(0.17-<br>0.39) |
| Son        | Sone River           |                    |                          |                        |                            |                              |                          |                                         |                      |                         |                            |                      |                    |                            |                           |                         |
| 4.         | Hatigond             | 60<br>(6-<br>193)  | 72 (42-<br>98)           | 10.9<br>(6.8-<br>17.6) | 0.084<br>(0.056-<br>0.280) | 0.005<br>(0-<br>0.035)       | 1.91<br>(0.28-<br>3.92)  | 945<br>(45-2300)                        | 200<br>(122-<br>294) | 0.57<br>(0.23-<br>1.09) | 0.066<br>(0.003-<br>0.438) | 119<br>(74-<br>168)  | 68<br>(38-<br>100) | 14.92<br>(5.78-<br>25.06)  | 14.02<br>(6.84-<br>22.88) | 0.25<br>(0.13-<br>0.46) |
| *          | Class 'C'            | -                  | 1                        | ı                      | -                          | ı                            | -                        | 1                                       | ı                    | Ī                       | 1                          | 1500                 | -                  | 009                        | 400                       | 1.5                     |
| *          | Class 'E'            | -                  | ı                        | 1                      |                            | 1                            |                          | 1                                       | 2250                 | 26                      | 2.0                        | 2100                 | -                  | 009                        | 1000                      | 1                       |

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



(G) Contd..

|            |                    |                               | Nutrients           |          |             |                                         | Heavy metals | netals |                               |        |                |       |
|------------|--------------------|-------------------------------|---------------------|----------|-------------|-----------------------------------------|--------------|--------|-------------------------------|--------|----------------|-------|
|            | Compline           |                               |                     | Am       | ıual Averag | Annual Average values (Range of values) | ge of values | (5     |                               |        |                |       |
| SI.<br>No. | Location           | Nitrate as<br>NO <sub>3</sub> | PO <sub>4</sub> 3-P | Cr(VI)## | T. Cr##     | Fe##                                    | Ni##         | Cu##   | $\mathbf{Z}\mathbf{n}^{\#\#}$ | Cd##   | Hg##           | Pb##  |
|            |                    |                               | (mg/l)              |          |             |                                         | (mg/l)       | 1)     |                               |        |                |       |
| Bud        | Budhabalanga river |                               |                     |          |             |                                         |              |        |                               |        |                |       |
| 1.         | Baripada D/s       | 1.989<br>(0.166-<br>3.656)    | 0.206 (0.001-1.162) | <0.002   | 0.015       | 0.704                                   | 0.004        | 0.004  | 0.014                         | 0.0006 | 0.00035        | 0.008 |
| 2.         | Balasore U/s       | 1.971<br>(0.481-<br>4.758)    | 0.291 (0.001-1.990) | <0.002   | 0.018       | 2.815                                   | 0.004        | 0.003  | 0.005                         | 0.0005 | 0.0005 0.00032 | 0.001 |
| 3.         | Balasore D/s       | 3.257<br>(0.534-<br>8.118)    | 0.150 (0.002-0.380) | 0.005    | 0.037       | 6.385                                   | 0.006        | 0.005  | 0.067                         | 0.0006 | 0.00067        | 0.005 |
| Sone       | Sone River         |                               |                     |          |             |                                         |              |        |                               |        |                |       |
| 4.         | Hatigond           | 2.202<br>(0.367-<br>6.037)    | 0.158 (0.002-0.724) | <0.002   | 0.018       | 1.168                                   | 0.004        | 0.004  | 0.013                         | 0.0007 | 0.0007 0.00051 | 0.005 |
| *          | Class 'C'          | 50                            | •                   | 0.05     | 1           | 50                                      | -            | 1.5    | 15.0                          | 0.01   | -              | 0.10  |
| *          | Class 'E'          | 1                             | 1                   | ı        | 1           | 1                                       | 1            | ı      | ı                             | 1      | 1              |       |

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



## (H) Kolab river system (2018)

| SI.<br>No. | Sampling<br>Location        | Phy<br>para        | Physical parameters      | Organ                  | nic pollu                                                                                                                                                                                            | tion Indi                  | icators                  | Organic pollution Indicators Bacteriological parameter |                                       |                         | Mi                         | neral c            | Mineral constituents                  | ıts                      |                          |                         |
|------------|-----------------------------|--------------------|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------------------------------------|---------------------------------------|-------------------------|----------------------------|--------------------|---------------------------------------|--------------------------|--------------------------|-------------------------|
|            |                             |                    |                          |                        |                                                                                                                                                                                                      |                            | 7                        | Annual Average values (Range of values)                | values (Ra                            | nge of                  | values)                    |                    |                                       |                          |                          |                         |
|            |                             | TSS                | Total<br>alkal<br>-inity | СОД                    | $\begin{array}{c c} \textbf{Total} & \textbf{COD} & \textbf{NH}_4\textbf{-N} & \textbf{Free} \\ \textbf{alkal} & \textbf{NH}_3\textbf{-N} \\ \textbf{-inity} & \textbf{NH}_3\textbf{-N} \end{array}$ | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                                     | EC                                    | SAR                     | В                          | TDS                | ТН                                    | CI                       | $SO_4$                   | Ŧ                       |
|            |                             | m)                 | (mg/l)                   |                        | (m)                                                                                                                                                                                                  | (mg/l)                     |                          | (MPN/100ml) (µS/cm)                                    | (µS/cm)                               |                         |                            |                    | (mg/l)                                |                          |                          |                         |
| Kera       | Kerandi river               |                    |                          |                        |                                                                                                                                                                                                      |                            |                          |                                                        |                                       |                         |                            |                    |                                       |                          |                          |                         |
| 1.         | Sunabeda                    | 72<br>(39-<br>212) | 43 (16-<br>136(          | 10.0<br>(3.9-<br>15.8) | 43 (16- 10.0 0.168 0.006<br>136( (3.9- (0.056- (0.001<br>15.8) 0.400) 0.026)                                                                                                                         | 1                          | 2.90<br>(0.56-<br>14.00) | 539<br>(20-2400)                                       | 128 (68- 0.33<br>371) (0.02-<br>0.94) | 0.33<br>(0.02-<br>0.94) | 0.024<br>(0.004-<br>0.077) | 74<br>(39-<br>212) | 43 (18- 9.49<br>120) (3.99-<br>40.40) | 9.49<br>(3.99-<br>40.40) | 9.41<br>(3.10-<br>14.67) | 0.24<br>(0.09-<br>0.42) |
| *          | Class 'C'                   | ı                  | 1                        | -                      | ı                                                                                                                                                                                                    | -                          | ı                        | -                                                      | 1                                     | -                       |                            | 1500 -             | 1                                     | 009                      | 400                      | 1.5                     |
| *          | <ul><li>Class 'E'</li></ul> | ı                  | 1                        | 1                      | ı                                                                                                                                                                                                    | ı                          | 1                        | 1                                                      | 2250                                  | 26                      | 2.0                        | 2100  -            | -                                     | 009                      | 1000                     | -                       |

#### (H) Contd..

|          |                             | Nutrients                                     | ts                              |          |         |                                         |              | Heavy metals | etals                         |        |               |              |
|----------|-----------------------------|-----------------------------------------------|---------------------------------|----------|---------|-----------------------------------------|--------------|--------------|-------------------------------|--------|---------------|--------------|
| 5        |                             |                                               |                                 |          | A       | Annual Average values (Range of values) | ge values (R | ange of va   | lues)                         |        |               |              |
| No.      | Location                    | Nitrate as $NO_3$ PO <sub>4</sub> -P Cr(VI)## | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI)## | T. Cr## | Fe##                                    | Ni##         | Cu##         | $\mathbf{Z}\mathbf{n}^{\#\#}$ | Cd##   | ## <b>B</b> H | <b>Pb</b> ## |
|          |                             | (mg/l)                                        |                                 |          |         |                                         |              | (mg/l)       |                               |        |               |              |
| Kera     | Kerandi river               |                                               |                                 |          |         |                                         |              |              |                               |        |               |              |
| 1.       | . Sunabeda 3.180 (0.590.    | -5.834)                                       | 0.088<br>(0.005-<br>0.191)      | <0.002   | 0.011   | 0.893                                   | 0.005        | 0.004        | 0.013                         | 0.0004 | 0.00076       | 0.003        |
| <b>*</b> | Class 'C'                   | 50                                            | ı                               | 0.05     | 1       | 50                                      | -            | 1.5          | 15.0                          | 0.01   | 1             | 0.10         |
| *        | <ul><li>Class 'E'</li></ul> | -                                             | 1                               | -        | -       | 1                                       | -            | -            | 1                             | 1      | 1             | 1            |

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

\*

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



# Vansadhara river system (2018)

|      |                  | Physical parameters | ical<br>eters           | Orga                  | nic pollu                  | Organic pollution Indicators | cators                  | Bacteriological<br>parameter            |                      |                         | Mir                        | Mineral constituents | nstitue            | ints                      |                          |                         |
|------|------------------|---------------------|-------------------------|-----------------------|----------------------------|------------------------------|-------------------------|-----------------------------------------|----------------------|-------------------------|----------------------------|----------------------|--------------------|---------------------------|--------------------------|-------------------------|
| 5    |                  |                     |                         |                       |                            |                              | Ar                      | Annual Average values (Range of values) | lues (Rang           | e of valu               | les)                       |                      |                    |                           |                          |                         |
| No.  | Location         | TSS                 | Total<br>alkal<br>inity |                       | COD NH <sub>4</sub> -N     | Free<br>NH <sub>3</sub> -N   | TKN                     | FC                                      | EC                   | SAR                     | В                          | TDS                  | HI                 | כו                        | SO <sub>4</sub>          | Ħ                       |
|      |                  | (mg/l)              | (1/.                    |                       | m)                         | (mg/l)                       |                         | (MPN/100ml)                             | (µS/cm)              |                         |                            |                      | (mg/l)             | (                         |                          |                         |
| Vans | Vansadhara river | ľ                   |                         |                       |                            |                              |                         |                                         |                      |                         |                            |                      |                    |                           |                          |                         |
| 1.   | 1. Muniguda      | 80 (1-229)          | 82<br>(62-<br>132)      | 9.5<br>(3.9-<br>15.8) | 0.134<br>(0.056-<br>0.440) | 0.005<br>(0-<br>0.025)       | 2.31<br>(0.28-<br>5.88) | 255<br>(20-700)                         | 191<br>(154-<br>311) | 0.37<br>(0.26-<br>0.68) | 0.032<br>(0.003-<br>0.081) | 113<br>(92-<br>172)  | 78<br>(54-<br>136) | 10.09<br>(7.40-<br>15.99) | 9.49<br>(2.40-<br>18.53) | 0.40<br>(0.16-<br>1.57) |
| 2.   | 2. Gunupur       | 129 (4-<br>602)     | 93<br>(58-<br>136)      | 11.1 (3.6-27.8)       | 0.107<br>(ND-<br>0.336)    | 0.006 (0-                    | 1.87<br>(0.28-<br>5.60) | 703<br>(20-2400)                        | 205<br>(135-<br>261) | 0.34<br>(0.22-<br>0.73) | 0.051<br>(0.003-<br>0.105) | 119<br>(84-<br>148)  | 83<br>(44-<br>112) | 9.09<br>(7.40-<br>11.99)  | 7.57<br>(2.11-<br>11.94) | 0.27<br>(0.15-<br>0.50) |
| *    | Class 'C'        | -                   | -                       | -                     | -                          | -                            | 1                       | -                                       | -                    | 1                       | 1                          | 1500                 | 1                  | 009                       | 400                      | 1.5                     |
| *    | Class 'E'        | 1                   | ١                       | 1                     | ı                          | 1                            | 1                       | '                                       | 2250                 | 26                      | 2.0                        | 2100                 | 1                  | 009                       | 1000                     | 1                       |

#### (I) Contd..

# Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



## Indravati river system (2018)

|       |                                    | Physical parameters | ers                                                   | Organ                 | ic polluti                                     | Organic pollution Indicators               | tors                     | Bacteriological<br>parameter | Mineral constituents                                        | onstitu                 | ents                       |        |                    |                         |                          |                         |
|-------|------------------------------------|---------------------|-------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------------------------|--------------------------|------------------------------|-------------------------------------------------------------|-------------------------|----------------------------|--------|--------------------|-------------------------|--------------------------|-------------------------|
| อ     | See House                          | Annual A            | Annual Average values (Range of                       | values                | (Range o                                       | f values)                                  |                          |                              |                                                             |                         |                            |        |                    |                         |                          |                         |
| No.   | Location                           | TSS                 | Total<br>alkal<br>-inity                              | СОО                   | COD NH <sub>4</sub> -N Free NH <sub>3</sub> -N | Free<br>NH <sub>3</sub> -N                 | TKN                      | FC                           | EC                                                          | SAR                     | В                          | тря тн | ТН                 | IJ                      | ${ m SO}_4$              | <b>1</b>                |
|       |                                    | (mg/l)              |                                                       | (I/gm)                |                                                |                                            |                          | (MPN/100ml) (µS/cm)          | (mS/cm)                                                     |                         | (mg/l)                     |        |                    |                         |                          |                         |
| Indra | Indravati river                    |                     |                                                       |                       |                                                |                                            |                          |                              |                                                             |                         |                            |        |                    |                         |                          |                         |
| 1.    | Nawarangpur 75 (20- 46 274) (20-78 | 75 (20-<br>274)     | 46 9.7 0.169<br>(20-78) (3.9- (0.056-<br>20.3) 0.560) | 9.7<br>(3.9-<br>20.3) | 0.169<br>(0.056-<br>0.560)                     | 0.005 (0- 3.71<br>0,0.39) (0.28-<br>12.88) | 3.71<br>(0.28-<br>12.88) | 256<br>(<1.8-1300)           | 115 (86- 0.30 0.027 70 (0.21- (0.003- (54- 0.50) 0.077) 88) | 0.30<br>(0.21-<br>0.50) | 0.027<br>(0.003-<br>0.077) |        | 423<br>(28-<br>64) | 6.53<br>(5.50-<br>7.99) | 9.63<br>(1.24-<br>18.40) | 0.23<br>(0.10-<br>0.44) |
| *     | Class 'C'                          | 1                   | 1                                                     | 1                     | 1                                              |                                            | 1                        | 1                            | 1                                                           | -                       |                            | 1500 - | -                  | 009                     | 400                      | 1.5                     |
| *     | Class 'E'                          | ı                   | -                                                     | ı                     | -                                              | ı                                          | -                        | 1                            | 2250                                                        | 26                      | 2.0                        | 2100 - | -                  | 009                     | 1000                     | -                       |

#### ((J) Contd..

|       |                             | Nutrients                        | ıts                             |          |                       |                                         | H         | Heavy metals | tals                          |        |                                                            |       |
|-------|-----------------------------|----------------------------------|---------------------------------|----------|-----------------------|-----------------------------------------|-----------|--------------|-------------------------------|--------|------------------------------------------------------------|-------|
| SI.   |                             |                                  |                                 | Annual A | verage va             | Annual Average values (Range of values) | ge of val | nes)         |                               |        |                                                            |       |
| No.   | Location                    | Nitrate as NO <sub>3</sub>       | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI)## | Cr(VI)## T. Cr## Fe## | Fe##                                    | Ni##      | Cu##         | $\mathbf{Z}\mathbf{n}^{\#\#}$ | Cd##   | Hg##                                                       | Pb##  |
|       |                             | (l/gm)                           | (                               |          |                       |                                         |           | (mg/l)       |                               |        |                                                            |       |
| Indra | Indravati river             |                                  |                                 |          |                       |                                         |           |              |                               |        |                                                            |       |
| 1.    | Nawarangpur                 | Nawarangpur 4.147 (0.547-11.117) | 0.074 (0.003-<br>0.199)         | <0.002   | 0.015                 | 1.250                                   | 0.003     | 0.004        | 0.011                         | 0.0004 | <0.002 0.015 1.250 0.003 0.004 0.011 0.0004 0.0009 0.00019 | 900.0 |
| *     | <ul><li>Class 'C'</li></ul> | 50                               | 1                               | 0.05     | 1                     | 50                                      | -         | 1.5          | 1.5 15.0 0.01                 | 0.01   | 1                                                          | 0.10  |
| *     | ❖ Class 'E'                 | -                                | -                               | 1        | 1                     | -                                       | -         | -            | -                             | -      | -                                                          | -     |

Tolerance limit for Inland Surface water bodies (IS-2296-1982) \*

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



### Bahuda river system (2018) 因

|      |                             | Phy<br>paran       | Physical parameters      |                       | Organic pollution                                      | tion Indi                  | Indicators               | Bacteriological<br>parameter            |                      |                         | <b>Y</b>                   | Mineral constituents | nstitue             | nts                        |                          |                           |
|------|-----------------------------|--------------------|--------------------------|-----------------------|--------------------------------------------------------|----------------------------|--------------------------|-----------------------------------------|----------------------|-------------------------|----------------------------|----------------------|---------------------|----------------------------|--------------------------|---------------------------|
| อ    | Compliance                  |                    |                          |                       |                                                        |                            | 1                        | Annual Average values (Range of values) | values (R            | ange of                 | values)                    |                      |                     |                            |                          |                           |
| No.  | Sampling                    | TSS                | Total<br>alkal<br>-inity | СОД                   | TSS alkal COD NH <sub>4</sub> -N Free inity            | Free<br>NH <sub>3</sub> -N | TKN                      | FC                                      | EC                   | SAR                     | В                          | TDS                  | ТН                  | כו                         | $SO_4$                   | ц                         |
|      |                             | (m)                | (mg/l)                   |                       | m)                                                     | (mg/l)                     |                          | (MPN/100ml) (µS/cm)                     | (µS/cm)              |                         |                            |                      | (mg/l)              |                            |                          |                           |
| Bahu | Bahuda river                |                    |                          |                       |                                                        |                            |                          |                                         |                      |                         |                            |                      |                     |                            |                          |                           |
| 1.   | 1. Damodarpally             | 64<br>(13-<br>314) |                          | 9.3<br>(6.6-<br>14.5) | 149 9.3 0.201<br>(84- (6.6- (BDL-<br>238) 14.5) 0.900) | 0.018<br>(0-<br>0.113)     | 2.47<br>(0.28-<br>12.32) | 556 (45-1700)                           | 362<br>(191-<br>517) | 0.53<br>(0.28-<br>0.85) | 0.388<br>(0.004-<br>1.972) | 196<br>(118-<br>282) | 137<br>(86-<br>202) | 22.79<br>(13.00-<br>32.98) | 8.53<br>(1.99-<br>22.10) | 0.428<br>(0.280-<br>0.77) |
| *    | Class 'C'                   | -                  | ı                        |                       |                                                        | ı                          | ı                        |                                         |                      |                         | ı                          | 1500                 |                     | 009                        | 400                      | 1.5                       |
| *    | <ul><li>Class 'E'</li></ul> | -                  | 1                        |                       | ,                                                      | 1                          | ,                        |                                         | 2250                 | 26                      | 2.0                        | 2100                 |                     | 009                        | 1000                     | 1                         |

#### (K) Contd..

|              |                                         | Pb##                       |        |              | 0.013                                                          | 0.10                        | 1           |
|--------------|-----------------------------------------|----------------------------|--------|--------------|----------------------------------------------------------------|-----------------------------|-------------|
|              |                                         | Hg##                       |        |              | 0.556 0.008 0.003 0.059 0.0005 <0.00006 0.013                  | -                           | 1           |
|              |                                         | Cd##                       |        |              | 0.0005                                                         | 0.01                        | ı           |
|              |                                         | Zn##                       |        |              | 0.059                                                          | 15.0                        | -           |
| Heavy metals |                                         | Cu##                       | (mg/l) |              | 0.003                                                          | 1.5   15.0   0.01           | -           |
| Heav         | values)                                 | Ni## Cu## Zn##             | u)     |              | 0.008                                                          | -                           | -           |
|              | s (Range of                             | Fe##                       |        |              | 0.556                                                          | 20                          | 1           |
|              | Annual Average values (Range of values) | Cr(VI)## T. Cr##           |        | river        | 0.025                                                          | -                           | -           |
|              | Annual Ave                              | Cr(VI)##                   |        | Bahuda river | 0.008                                                          | 0.05                        | 1           |
| nts          |                                         | PO <sub>4</sub> 3-P        | (L     |              | 0.051 (0.001-0.172)                                            | -                           | 1           |
| Nutrients    |                                         | Nitrate as NO <sub>3</sub> | (L/gm) |              | 1. Damodarpally 6.966 (0.577-51.454) 0.051 (0.001-0.172) 0.008 | 50                          | 1           |
|              |                                         | Location                   |        |              | Damodarpally                                                   | <ul><li>Class 'C'</li></ul> | ❖ Class 'E' |
|              | SI                                      | No.                        |        |              | 1.                                                             | *                           | *           |

Tolerance limit for Inland Surface water bodies (IS-2296-1982) \*

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality



#### (A) Canal Water Quality Monitoring

Board regularly monitors the water quality of Taladanda canal at six stations and of Puri canal at three stations.

Taladanda canal originates from Mahanadi river at Jobra of Cuttack, passes through the city and finally culminates at Paradeep after covering a distance of 82 Km. The canal was constructed for the purpose of navigation and/or irrigation of a part of Mahanadi delta of Cuttack and Jagatsinghpur districts. Besides this, the canal is also a source of fresh water for industries and the port at Paradeep. The canal water is also used for bathing and other domestic activities all along its stretch.

Board monitors the water quality of Taldanda canal within Cuttack city at five locations viz. Jobra, Ranihat, Chhatrabazar, Nuabazar, Biribati and one station at Atharabanki of Paradeep. The water quality data at these five stations with respect to critical parameters such as pH, DO, BOD, TC, FC, EC, SAR and B during 2018 are given in Table-5.20 and compared with the tolerance limits for Bathing water quality prescribed under E (P) Rule, 1986 and Class B (Outdoor bathing) and Class E (Irrigation) Inland surface water quality prescribed by Bureau of Indian Standards (IS: 2296-1982). The water quality of Taladanda canal at these locations remained well within the tolerance limit prescribed for Class-E inland surface water bodies. However, so far the bathing water quality is concerned, total coliform organisms and fecal coliform organisms remain above the prescribed limit for Class-B at all the monitoring stations most of the time during the period of study in 2018, whereas BOD values exceeded the tolerance limit only once at Chhatrabazar, Biribati and Atharabanki.

Puri canal originates from Mahanadi river near Munduli barrage of Cuttack. The 42 Km long canal was constructed for the purpose of irrigation of Puri district and a part of Khordha district. The canal water is also used for bathing and other domestic activities all along its stretch. Board monitors the water quality of Puri canal at three locations viz. Hansapal, Jagannathpur and Chandanpur . The water quality of Puri canal at these locations remained well within the tolerance limit prescribed for Class-E inland surface water bodies. However, so far the bathing water quality is concerned, total coliform organisms and fecal coliform organisms remain above the prescribed limit for Class-B at all the monitoring stations most of the time during the period of study in 2018, whereas BOD values exceeded the tolerance limit only once at Hansapal and Jagannathpur.

Water quality for other parameters given in Table-5.21(a) and (b) remain well within the tolerance limit for Class - C water quality.



Table-5.20 Water Quality of Canals with respect to Criteria parameters during 2018 (January-December)

| Possible<br>Reason                                    |                   |                                     |                 | Human<br>activities                    | Human<br>activities<br>and waste<br>water of | Cuttack<br>town                 |                                          |                                          | Human<br>activities                      | lowed by                                                                   |                 |                                                                                              |
|-------------------------------------------------------|-------------------|-------------------------------------|-----------------|----------------------------------------|----------------------------------------------|---------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------|
| Parameters<br>responsible                             | for               | downgrading<br>the water<br>quality |                 | TC,FC                                  | TC,FC                                        | BOD, TC,FC                      | TC,FC                                    | BOD, TC,FC                               | BOD, TC,FC                               | Drinking water source with conventional treatment followed by disinfection |                 | Water use for organised outdoor bathing (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000) |
| Existing<br>Class                                     |                   |                                     |                 | Does not<br>conform<br>to Class<br>B,C | Does not<br>conform<br>to Class<br>B & C     | Does not conform to Class B & C | Does not<br>conform<br>to Class<br>B & C | Does not<br>conform<br>to Class<br>B & C | Does not<br>conform<br>to Class<br>B & C | onvention                                                                  |                 | oor bathin<br>742(E) Dt.                                                                     |
| olation<br>on) from                                   | a value           | FC                                  |                 | (67)                                   | (100)                                        | (100)                           | (100)                                    | (100)                                    | (20)                                     | rce with c                                                                 |                 | ised outd<br>G.S.R. No.                                                                      |
| Frequency of violation<br>(Percent of violation) from | g<br>S            | D TC                                |                 | 28<br>(67)<br>388<br>(100)             | 3s<br>(100)<br>3ss<br>(100)                  | 38<br>(100)<br>388<br>(100)     | 3s<br>(100)<br>3ss<br>(100)              | 3s<br>(100)<br>3ss<br>(100)              | 68<br>(50)<br>988<br>(75)                | water sou                                                                  | bathing         | e for orgar<br>otification                                                                   |
| Freque<br>(Percent                                    | designa           | DO BOD                              |                 | 0                                      | 0                                            | 0 1 (33)                        | 0                                        | 0 1 (33)                                 | 0 1 (8)                                  | Drinking wadisinfection                                                    | Outdoor bathing | Water use<br>(MOEF No                                                                        |
|                                                       |                   | FC<br>(MPN/<br>100 ml)              |                 | 13030<br>(790-35000)                   | 160000<br>(160000<br>-160000)                | 92000<br>(92000-<br>92000)      | 80667<br>(28000-<br>160000)              | 76667<br>(16000<br>-160000)              | 9502<br>(110-54000)                      |                                                                            |                 | 2500<br>(Maximum<br>Permissible)                                                             |
| values<br>lues)                                       |                   | TC<br>(MPN/<br>100 ml)              |                 | 16133<br>(2400-<br>35000)              | 160000<br>(160000<br>-160000)                | 114667<br>(92000-<br>160000)    | 95667<br>(35000-<br>160000)              | 112000<br>(16000-<br>160000)             | 18843<br>(330-<br>92000)                 | 5000 or<br>less                                                            | 500 or<br>less  |                                                                                              |
| Annual average values (Range of values)               | <b>Parameters</b> | BOD<br>(mg/l)                       |                 | 1.1 (0.7-1.6)                          | 1.7 (1.1-2.5)                                | 1.8 (1.1-3.2)                   | 1.6 (0.8-2.2)                            | 2.3<br>(1.5-3.3)                         | 1.7 (0.8-5.7)                            | 3 or less                                                                  | 3 or less       | 3 or less                                                                                    |
| Ann                                                   |                   | DO<br>(mg/l)                        |                 | 7.9<br>(6.6-8.8)                       | 7.2<br>(6.6-8.2)                             | 6.9<br>(6.2-8.1)                | 7.2<br>(6.8-8.0)                         | 6.6<br>(5.9-7.8)                         | 6.5<br>(1.4-8.2)                         | 4 and above                                                                | 5 and<br>above  | 5 and<br>above                                                                               |
|                                                       |                   | Hd                                  |                 | 7.7 (7.3-8.1)                          | 7.7                                          | 7.7 (7.7-7.8)                   | 7.5 (7.0-7.8)                            | 7.6 (7.3-7.7)                            | 7.8<br>(7.2-8.2)                         | 6.5-8.5                                                                    | 6.5-8.5         | 6.5-8.5                                                                                      |
| No.                                                   | Ops.              |                                     |                 | es es                                  | က                                            | es es                           | က                                        | က                                        | 12                                       |                                                                            |                 | ria for                                                                                      |
| Sampling<br>Location                                  |                   |                                     | Taladanda canal | Jobra*                                 | Ranihat*                                     | Chatrabazar*                    | Nuabazar*                                | Birribati*                               | Atharabanki                              | ***Class 'C'                                                               | ***Class 'B'    | Water quality criteria for<br>bathing water                                                  |
| SI.<br>No                                             |                   |                                     | Tala            | -i                                     | 2.                                           | က်                              | 4                                        | r.                                       | 9.                                       | []***C                                                                     | []***           | Wate<br>bath                                                                                 |

\* Data for the period January, August and October, 2018

\*\*\* Tolerance limits for Inland Surface water bodies (IS-2296-1982) \$ for Class C and \$5 for Class B

For Class C: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. For Class B: TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml. NB: The criteria of non-compliance with respect to TC has been calculated on the following basis: (Ref: IS 2296-1982 foot note)



#### Contd..

|        |                                             |        |                      | A                     | nnual avera<br>(Range of | Annual average values<br>(Range of values) |                                  | Fre<br>(Perce            | quency<br>ent of v | Frequency of violation (Percent of violation) from | ion<br>from |                                       | Parameters                                                                                   |                     |
|--------|---------------------------------------------|--------|----------------------|-----------------------|--------------------------|--------------------------------------------|----------------------------------|--------------------------|--------------------|----------------------------------------------------|-------------|---------------------------------------|----------------------------------------------------------------------------------------------|---------------------|
| SI     | Sampling                                    | No. of |                      |                       | Para                     | Parameters                                 |                                  | desi                     | gnated             | designated criteria value                          | alue        | Existing                              | responsible for                                                                              | Possible            |
| o<br>Z | Location                                    | Obs.   | Hd                   | DO<br>(mg/l)          | BOD<br>(mg/l)            | TC<br>(MPN/<br>100 ml)                     | FC<br>(MPN/<br>100 ml)           | DO                       | BOD                | TC                                                 | FC          | Class                                 | downgrading the<br>water quality                                                             | Reason              |
| (g)    | Puri canal                                  |        |                      |                       |                          |                                            |                                  |                          |                    |                                                    |             |                                       |                                                                                              |                     |
| 1      | Hansapal*                                   | 11     | 7.7<br>(6.7-<br>8.4) | 7.8<br>(6.2-<br>13.3) | 1.5 (0.7-4.9)            | 4981<br>(790-16000)                        | 2341 (330-9200)                  | 0                        | (9)                | 3s<br>(27)<br>12ss<br>(100)                        | 2 (18)      | Does not<br>conform to<br>Class B,C   | BOD, TC,FC                                                                                   | Human<br>activities |
| 2.     | Jagannathpur                                | 12     | 7.8<br>(6.8-<br>8.2) | 7.0<br>(4.6-<br>9.6)  | 1.7<br>(0.6-<br>4.0)     | 5503<br>(330-16000)                        | 2578<br>(130-9200)               | 0s<br>1 ss<br>(9)        | (9)                | 3s<br>(25)<br>11ss<br>(92)                         | 4 (33)      | Does not<br>conform to<br>Class B & C | DO, BOD, TC,FC                                                                               | Human<br>activities |
| 33     | Chandanpur**                                | 111    | 7.9<br>(7.4-<br>8.6) | 6.2<br>(2.9-<br>8.9)  | 1.1 (0.4-2.0)            | 3434 (140-16000)                           | 1678<br>(40-9200)                | 18<br>(9)<br>388<br>(27) | 0                  | 2s<br>(18)<br>8ss<br>(73)                          | 2 (18)      | Does not<br>conform to<br>Class B & C | DO, TC,FC                                                                                    |                     |
| )***   | ***Class 'C'                                |        | 6.5-                 | 4 and above           | 3 or<br>less             | 5000 or<br>less                            |                                  | Dr                       | inking             | water soc                                          | ırce wi     | th convention<br>disinfection         | Drinking water source with conventional treatment followed by disinfection                   | ved by              |
| C      | ***Class 'B'                                |        | 6.5-                 | 5 and<br>above        | 3 or<br>less             | 500 or less                                |                                  |                          |                    |                                                    | Ō           | Outdoor bathing                       | g,                                                                                           |                     |
| Wa     | Water quality criteria for<br>bathing water | ia for | 6.5-<br>8.5          | 5 and<br>above        | 3 or<br>less             |                                            | 2500<br>(Maximum<br>Permissible) |                          | (MC                | Water u<br>JEF Notifi                              | se for      | organised ou<br>G.S.R. No. 74,        | Water use for organised outdoor bathing (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000) |                     |

\* Data for the period January - December 2018 excluding March

\*\* Data for the period January - December 2018 excluding January

\*\*\* Tolerance limits for Inland Surface water bodies (IS-2296-1982) \* for Class C and \*\* for Class B

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis: (Ref : IS 2296-1982 foot note)

For Class B: TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/ 100

For Class C: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/



|              |                      |       |                      | Annual av<br>(Range   | Annual average value<br>(Range of values) |                   | Freq<br>violation | Frequency of violation (Percent   | of<br>Sent |                       | Parameters                                                     |                    | AD. |
|--------------|----------------------|-------|----------------------|-----------------------|-------------------------------------------|-------------------|-------------------|-----------------------------------|------------|-----------------------|----------------------------------------------------------------|--------------------|-----|
| <b>3</b> , — | Sampling<br>Location | of of |                      | Para                  | Parameters                                |                   | from crite        | from designated<br>criteria value |            | Existing Class        | responsible for downgrading                                    | Possible<br>Reason |     |
|              |                      | Sao   | Hd                   | EC (microSiemens /cm) | SAR                                       | B<br>(mg/l)       | EC                | SAR                               | В          |                       | tne water<br>quality                                           |                    |     |
| <b> </b>     | Taladanda canal      |       |                      |                       |                                           |                   |                   |                                   |            |                       |                                                                |                    |     |
| 0            | Jobra*               | 8     | 7.7 (7.3-8.1)        | 190 (174-199)         | 0.44 (0.33-0.50)                          | 0.0 (0.014-0.06)  | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
| g            | Ranihat*             | æ     | 7.7 (7.6-            | 192<br>(184-198)      | 0.42 (0.35-0.49)                          | 0.0 (0.01-0.46)   | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
| ==           | Chatrabazar*         | 3     | 7.7 (7.7-7.8)        | 199<br>(195-202)      | 0.51 (0.34-0.63)                          | 0.063-0.091)      | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    | r   |
| 15           | Nuabazar*            | æ     | 7.5<br>(7.0-<br>7.8) | 195 (177-208)         | 0.38 (0.29-0.51)                          | 0.038-0.091)      | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
| :∄           | Birribati*           | 3     | 7.6 (7.3-7.7)        | 220<br>(154-299)      | 0.78 (0.35-1.49)                          | 0.035-0.077)      | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
| =            | Atharabanki**        | 12    | 7.8<br>(7.2-<br>8.2) | 343<br>(139-984)      | 1.59 (0.30-8.32)                          | 0.0 (0.004-0.224) | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
|              | (b) Puri canal       |       |                      |                       |                                           |                   |                   |                                   |            |                       |                                                                |                    |     |
| 1            | Hansapal#            | 11    | (6.7-8.4)            | 191<br>(134-248)      | 0.65 (0.22-3.60)                          | 0.1 (0.01-0.256)  | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
| g            | Jagannathpur         | 12    | 7.8<br>(6.7-8.4)     | 203<br>(161-284)      | 0.45<br>(0.28-0.82)                       | 17.9 (0.003-143)  | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
|              | Chandanpur##         | 11    | 7.9 (7.4-8.6)        | 225<br>(153-326)      | 0.58 (0.23-1.88)                          | 0.03-0.126)       | 0                 | 0                                 | 0          | Conform to<br>Class E |                                                                |                    |     |
| l re         | *** Class 'E'        |       | 6.5-8.5              | 2250 or less          | 26 or less                                | 2 or less         |                   |                                   |            | Irrigation, Ind       | Irrigation, Industrial Cooling or controlled<br>waste disposal | controlled         | r   |

<sup>\*</sup> Data for the period January, August, October, 2018 \*\* Data for the period January-December, 2018 # Data for the period January-December, 2018 excluding March ## Data for the period January-December, 2018 excluding January \*\*\* Tolerance limits for Inland Surface water bodies (IS-2296-1982)



Table-5.21 (a) Water Quality of Taladanda Canal with respect to other parameters during 2018

|     |               |               | ysical<br>meters    | Organ                   | ic polluti                 | on Indica                  | ators                    |                      | Min                | eral cons                  | tituents                   |                         |
|-----|---------------|---------------|---------------------|-------------------------|----------------------------|----------------------------|--------------------------|----------------------|--------------------|----------------------------|----------------------------|-------------------------|
| Sl. | Sampling      |               |                     | A                       | nnual ave                  | erage valu                 | ies (Ran                 | ge of va             | lues)              |                            |                            |                         |
| No. | Location      | TSS           | Total<br>alkalinity | COD                     | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | TDS                  | ТН                 | Cl                         | SO <sub>4</sub>            | F                       |
|     |               | (n            | ng/l)               |                         | (mg                        | /l)                        |                          |                      |                    | (mg/l                      | )                          |                         |
| 1.  | Jobra*        | 25<br>(4-50)  | 79<br>(68-94)       | 9.1<br>(7.5-<br>11.2)   | 0.056<br>(0.056-<br>0.056) | 0.002<br>(0.001-<br>0.004) | 2.80<br>(1.12-<br>5.60)  | 118<br>(106-<br>127) | 71<br>(66-<br>76)  | 9.01<br>(7.40-<br>9.99)    | 16.37<br>(8.58-<br>24.87)  | 0.29<br>(0.25-<br>0.33) |
| 2.  | Ranihat*      | 57<br>(7-146) | 75<br>(68-82)       | 16.9<br>(8.5-<br>27.3)  | 0.206<br>(0.056-<br>0.450) | 0.008<br>(0.001-<br>0.018) | 5.60<br>(3.36-<br>8.96)  | 119<br>(112-<br>126) | 71<br>(66-<br>74)  | 11.60<br>(9.30-<br>13.50)  | 17.07<br>(13.30-<br>22.38) | 0.29<br>(0.26-<br>0.33) |
| 3.  | Chhatrabazar* | 39<br>(3-86)  | 79<br>(68-96)       | 15.4<br>(13.1-<br>18.7) | 0.246<br>(0.056-<br>0.570) | 0.008<br>(0.002-<br>0.020) | 5.79<br>(1.68-<br>7.84)  | 124<br>(122-<br>125) | 74<br>(72-<br>78)  | 11.71<br>(7.40-<br>17.75)  | 17.78<br>(12.18-<br>23.01) | 0.29<br>(0.26-<br>0.32) |
| 4.  | Nuabazar*     | 52<br>(5-96)  | 77<br>(64-84)       | 17.0<br>(13.1-<br>19.3) | 0.541<br>(0.168-<br>1.230) | 0.016<br>(0-<br>0.043)     | 8.77<br>(3.92-<br>15.12) | 116<br>(106-<br>122) | 70<br>(64-<br>74)  | 8.98<br>(8.30-<br>9.64)    | 16.62<br>(11.69-<br>21.51) | 0.30<br>(0.26-<br>0.33) |
| 5.  | Biribati*     | 41 (8-98)     | 72<br>(36-96)       | 19.6<br>(16.1-<br>22.4) | 0.559<br>(0.112-<br>1.340) | 0.016<br>(0.007-<br>0.040) | 5.71<br>(1.68-<br>12.32) | 134<br>(86-<br>187)  | 68<br>(52-<br>76)  | 20.97<br>(8.30-<br>44.97)  | 17.16<br>(11.32-<br>21.51) | 0.29<br>(0.25-<br>0.33) |
| 6.  | Atharabanki** | 55<br>(7-120) | 97<br>(48-176)      | 16.4<br>(7.6-<br>57.8)  | 0.214<br>(0.056-<br>0.900) | 0.027<br>(0.001-<br>0.224) | 4.36<br>(0.56-<br>12.88) | 190<br>(76-<br>655)  | 94<br>(52-<br>188) | 40.24<br>(7.71-<br>299.85) | 18.07<br>(4.10-<br>66.90)  | 0.40<br>(0.19-<br>0.60) |
|     | ***Class 'C'  | -             | -                   | -                       | -                          | -                          | -                        | 1500                 | -                  | 600                        | 400                        | 1.5                     |
|     | ***Class 'E'  | -             | -                   | -                       | -                          | -                          | -                        | 2100                 | -                  | 600                        | 1000                       | -                       |

|     |               | Nutr                       | ients                            |           |          |        | Н        | leavy m  | etals      |      |      |      |
|-----|---------------|----------------------------|----------------------------------|-----------|----------|--------|----------|----------|------------|------|------|------|
| Sl. | Sampling      |                            |                                  | F         | Annual a | verage | values ( | (Range ( | of values) |      |      |      |
| No. | Location      | NO <sub>3</sub>            | PO <sub>4</sub> <sup>3-</sup> -P | Cr(VI) ## | T. Cr##  | Fe##   | Ni##     | Cu##     | Zn##       | Cd## | Hg## | Pb## |
|     |               | (m                         | g/l)                             |           |          |        |          | (mg/     | l)         |      |      |      |
| 1.  | Jobra*        | 1.385<br>(0.174-<br>2.248) | 0.048<br>(0.015-<br>0.095)       |           |          |        | N        | Not anal | ysed       |      |      |      |
| 2.  | Ranihat*      | 3.334<br>(2.781-<br>4.116) | 0.104<br>(0.019-<br>0.186)       |           |          |        | N        | Not anal | ysed       |      |      |      |
| 3.  | Chhatrabazar* | 1.864<br>(1.015-<br>3.105) | 0.065<br>(0.019-<br>0.150)       |           |          |        | N        | Not anal | ysed       |      |      |      |
| 4.  | Nuabazar*     | 2.514<br>(2.117-<br>3.262) | 0.065<br>(0.022-<br>0.150)       |           |          |        | N        | Not anal | ysed       |      |      |      |

<sup>\*</sup> Data for the period January, August, October, 2018 \*\* Data for the period January-December, 2018 \*\*\* Tolerance limits for Inland Surface water bodies (IS-2296-1982)



|       |               | Nutr                        | ients                            |           |          |        | Н        | leavy m  | etals      |        |          |       |
|-------|---------------|-----------------------------|----------------------------------|-----------|----------|--------|----------|----------|------------|--------|----------|-------|
| Sl.   | Sampling      |                             |                                  | A         | Annual a | verage | values ( | (Range   | of values) | )      |          |       |
| No.   | Location      | NO <sub>3</sub>             | PO <sub>4</sub> <sup>3-</sup> -P | Cr(VI) ## | T. Cr##  | Fe##   | Ni##     | Cu##     | Zn##       | Cd##   | Hg##     | Pb##  |
|       |               | (m                          | g/l)                             |           |          |        |          | (mg/     | l)         |        |          |       |
| 5.    | Biribati*     | 2.289<br>(2.003-<br>2.598)  | 0.082<br>(0.014-<br>0.141)       |           |          |        | N        | Not anal | ysed       |        |          |       |
| 6.    | Atharabanki** | 3.283<br>(0.833-<br>12.595) | 0.157<br>(0.002-<br>1.199)       | 0.015     | 0.032    | 2.157  | 0.004    | 0.013    | 0.026      | 0.0008 | <0.00006 | 0.009 |
| ***Cl | lass 'C'      | 50                          | -                                | 0.05      | -        | 50     | -        | 1.5      | 15.0       | 0.01   | -        | 0.10  |
| ***Cl | lass 'E'      | -                           | -                                | -         | -        | -      | -        | -        | -          | -      | -        | -     |

<sup>\*</sup> Data for the period January, August and October, 2018 Data for the period January-December, 2018

DO: Dissolved Oxygen, BOD: Biochemical Oxygen Demand, TC: Total Coliform, TSS: Total Suspended Solids; COD: Chemical Oxygen Demand, NH<sub>4</sub>-N: Ammonical nitrogen, TKN: Total Kjeldahl Nitrogen;

FC: Fecal Coliform, EC: Electrical Conductivity, TDS: Total Dissolved Solids, B: Boron; SAR: Sodium Absorption Ratio,

TH : Total hardness; Cl : chloride,  $SO_4$  : Sulphate; F : Fluoride;  $PO_4^{3}$  : Phosphate, : Cr(VI) : Hexavalent Chromium; T.Cr : Total Chromium, Fe : Iron, Ni : Nickel, Cu : Copper, Zn : Zinc;

Cd: Cadmium; Hg: Mercury; Pb: Lead

Table- 5.21 (b) Water Quality of Puri Canal with respect to other parameters during 2018

|      |                      | Physical p     | arameters           | Orga                   | nic pollu                  | tion Indi                  | cators                   |                     | Mine              | eral cons                 | tituents                  |                         |
|------|----------------------|----------------|---------------------|------------------------|----------------------------|----------------------------|--------------------------|---------------------|-------------------|---------------------------|---------------------------|-------------------------|
| Sl.  | Compling             |                |                     | Aı                     | nnual av                   | erage va                   | lues (Rai                | nge of w            | alues)            |                           |                           |                         |
| No.  | Sampling<br>Location | TSS            | Total<br>alkalinity | COD                    | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | TDS                 | ТН                | Cl                        | SO <sub>4</sub>           | F                       |
|      |                      | (mg            | g/l)                |                        | (m                         | g/l)                       |                          |                     |                   | (mg/l)                    | )                         |                         |
| 1.   | Hansapal*            | 44<br>(11-120) | 79<br>(60-100)      | 13.9<br>(5.7-<br>41.2) | 0.097<br>(0.056-<br>0.220) | 0.008<br>(0-<br>0.036)     | 2.11<br>(0.28-<br>5.04)  | 111<br>(68-<br>145) | 72<br>(52-<br>88) | 11.98<br>(7.40-<br>20.20) | 11.86<br>(4.85-<br>19.65) | 0.35<br>(0.22-<br>0.64) |
| 2.   | Jagannathpurs        | 45<br>(6-96)   | 77<br>(60-96)       | 16.4<br>(8.5-<br>48.9) | 0.149<br>(0.056-<br>0.330) | 0.014<br>(0<br>-0.090)     | 2.36<br>(0.28-<br>5.60)  | 119<br>(94-<br>154) | 72<br>(60-<br>88) | 14.58<br>(9.99-<br>25.98) | 12.91<br>(5.84-<br>20.89) | 0.33<br>(0.20-<br>0.57) |
| 3.   | Chandanpur**         | 41<br>(14-80)  | 82<br>(60-98)       | 11.7<br>(7.8-<br>17.8) | 0.132<br>(0.056-<br>0.224) | 0.011<br>(0.001-<br>0.055) | 2.55<br>(0.56-<br>11.20) | 132<br>(92-<br>184) | 79<br>(60-<br>94) | 14.75<br>(7.71-<br>41.97) | 16.54<br>(6.22-<br>26.86) | 0.40<br>(0.21-<br>0.61) |
| ***C | lass 'C'             | -              | -                   | -                      | -                          | -                          | -                        | 1500                | -                 | 600                       | 400                       | 1.5                     |
| ***C | lass 'E'             | -              | -                   | -                      | -                          | -                          | -                        | 2100                | -                 | 600                       | 1000                      | -                       |

Annual Report 2018-19 —

<sup>##</sup> Data for the April, 2018

<sup>\*\*\*</sup> Tolerance limits for Inland Surface water bodies (IS-2296-1982)



|            |                      | Nutri                      | ents                             |        |           |          | Не               | eavy me | etals  |        |          |       |
|------------|----------------------|----------------------------|----------------------------------|--------|-----------|----------|------------------|---------|--------|--------|----------|-------|
|            | Compling             |                            |                                  | A      | nnual ave | erage va | lues (R          | ange of | values | )      |          |       |
| Sl.<br>No. | Sampling<br>Location | NO <sub>3</sub> -          | PO <sub>4</sub> <sup>3-</sup> -P | Cr(VI) | T. Cr##   | Fe##     | Ni <sup>##</sup> | Cu##    | Zn##   | Cd##   | Hg##     | Pb##  |
|            |                      | (mg                        | /l)                              |        |           |          |                  | (mg/l)  | )      |        |          |       |
| 1.         | Hansapal*            | 2.411<br>(0.426-<br>5.834) | 0.117<br>(0.004-<br>0.750)       | 0.015  | 0.032     | 2.157    | 0.004            | 0.013   | 0.026  | 0.0008 | <0.00006 | 0.009 |
| 2.         | Jagannathpur         | 2.183<br>(0.446-<br>6.780) | 0.095<br>(0.001-<br>0.280)       | <0.002 | 0.013     | 2.540    | 0.011            | 0.004   | 0.030  | 0.0007 | 0.00013  | 0.004 |
| 3.         | Chandanpur**         | 2.269<br>(0.087-<br>4.415) | 0.333<br>(0.001-<br>2.177)       | <0.002 | 0.018     | 0.678    | 0.011            | 0.012   | 0.008  | 0.0006 | 0.00013  | 0.005 |
| ***C       | lass 'C'             | 50                         | -                                | 0.05   | <0.002    | 50       | -                | 1.5     | 15.0   | 0.01   | -        | 0.10  |
| ***C       | lass 'E'             | -                          | -                                | -      | -         | -        | -                | -       | -      | -      | -        | -     |

- \* Data for the period January-December, 2018 excluding March
- \*\* Data for the period January-December, 2018 excluding January
- \$ Data for the period January-December, 2018
- ## Data for the April, 2018
- \*\*\* Tolerance limits for Inland Surface water bodies (IS-2296-1982)

## (B) Ponds Water Quality Monitoring

Board is regularly monitoring the water quality of eight ponds such as Bindusagar pond in Bhubaneswar, five religious ponds (Narendra, Markanda, Indradyumna, Swetaganga and Parvati Sagar) in Puri town, Jagannathsagar pond in Jeypore town, and Raniguda pond in Angul town. The annual average and range values of the criteria parameters such as pH, DO, BOD, TC and FC during 2018 in these eight ponds are given in Table-5.22. As these ponds are mostly used for bathing purposes, water quality data are compared with the bathing water quality. Comparison of the data with the tolerance limits for Class-B (Bathing water quality), specified by CPCB and water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000) reveals non-compliance at these monitoring stations excluding Jagannath Sagar pond with respect to DO, BOD, TC and FC for most time of the observation period during 2018 . Frequent deviation in pH values in all the five ponds in Puri town have also been observed. In Jagannath sagar pond only total coliform population has been observed to exceed the tolerance limit of 500 MPN/ 100 ml for most period of the observation during 2018. Water quality with respect to other parameters are given in Table-5.23 which remained within the tolerance limits for Class 'C'.

### (C) Lakes Water Quality Monitoring

The Board is regularly monitoring the water quality of Chilika lake at two stations (Rambha and Satapada), four stations on Anshupa lake (Kadalibari, Bishnupur Subarnapur and Sarandagarh) and one station on Tampara lake (Tampara). Annual average and range values of the water quality parameters of these lakes during the year 2018 are given in Table-5.24 and Table-5.25. Assessment of the water quality status of the lakes have been done based on the best use of water body made by the society as well as the type of water body.

As Chilka is a brackish water lake and the predominant activities at the monitoring stations such as Rambha and Satapada are contact water sports and commercial fishing, the water



quality criteria parameters are compared with Class SW-II. Comparison of the water quality data of Chilka lake with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) (Table-5.24(a)) reveals non-compliance with respect to fecal coliform values at both Rambha and Satapada. The probable cause of downgrading the water quality of lake may be due to human activities in the lake.

Anshupa and Tampara lakes are sweet water lakes and the predominant activity in these lake are fish propagation. Comparison of the water quality data of Anshupa lake and Tampara lake (Table-5.24(b))with the water quality criteria for Class-D surface water bodies (Fish culture and wild life propagation) reveals compliance with respect to all the criteria parameters. However, frequent deviation in Biochemical Oxygen Demand (BOD) and Total coliform (TC) values (Table-5.25(b) from the tolerance limits (3.0 mg/l and 5000 MPN/100 ml respectively) laid down for Class-C (drinking water source with conventional treatment followed by disinfection) are observed at all the monitored locations of Anshupa and Tampara lake. The probable cause of downgrading the water quality of lake may be due to eutrophic condition of the lakes, human activities etc in the lake.

## (D) Coastal Water Quality Monitoring

Coastal water quality near Puri town at three locations (Swargadwara, Baliapanda and Bankimuhan), Gopalpur at one location and Paradeep at one location are being regularly monitored by the Board. Annual average and range values of the water quality parameters of the sea at these five locations during the year 2018 are given in Table -5.26 and Table-5.27. Assessment of the coastal water quality status have been done based on the best use and type of activities in the coastal segment.

Comparison of the coastal water quality data at Puri with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) reveals frequent non-compliance with respect to fecal coliform values at all the three locations of Puri and single non-compliance at Gopalpur and Paradeep. This may be attributed to the human activities and discharge of domestic wastewater into the sea.

Comparison of the coastal water quality at Gopalpur and Paradeep with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) and SW-IV (for Harbour water) reveals compliance with the desired class.

2 — Annual Report 2018-19 –



Table -5.22 (a) Water Quality of Ponds with respect to Criteria parameters during 2018 (January- December)

|                               |                                                                                                        |                              |                      | Ā                   | nnual ave<br>(Range o | Annual average values (Range of values) |                                  | H. H.           | equen<br>ercen | Frequency of violation (Percent of violation) | riolati<br>olatio | on (u  |                                         | Parameters                          |                     |
|-------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|----------------------|---------------------|-----------------------|-----------------------------------------|----------------------------------|-----------------|----------------|-----------------------------------------------|-------------------|--------|-----------------------------------------|-------------------------------------|---------------------|
| SI.                           | Sampling                                                                                               | No. of                       |                      |                     | Paran                 | Parameters                              |                                  | lro<br>Tro      | m des          | from designated criteria<br>value             | d crite           | eria   | Existing                                | responsible<br>for                  | Possible            |
|                               | Location                                                                                               | i consi                      | Hd                   | DO<br>(mg/l)        | BOD<br>(mg/l)         | TC<br>(MPN/<br>100 ml)                  | FC<br>(MPN/<br>100 ml)           | Hd              | DO             | ВОD                                           | TC                | FC     | Class                                   | downgrading<br>the water<br>quality | Keason              |
| (a) ]                         | (a) Bindusagar Pond                                                                                    | nd in Bl                     | hubanes              | in Bhubaneswar City |                       |                                         |                                  |                 |                |                                               |                   |        |                                         |                                     |                     |
| 1.                            | Lingaraj<br>Temple side                                                                                | 12                           | 7.7<br>(7.1-<br>8.4) | 6.0 (3.5-7.7)       | 2.8 (1.0-4.9)         | 62561<br>(170-<br>160000)               | 57600<br>(78-160000)             | 0               | 2 (17)         | 2 5 (17) (42)                                 | 10 (83)           | (58)   |                                         | DO,BOD,<br>TC,FC                    |                     |
| 2                             | Ananta<br>Vasudev                                                                                      | 12                           | 7.7<br>(6.7-<br>8.6) | 6.9<br>(4.5-12.4)   | 2.7<br>(1.0-<br>5.3)  | 23584<br>(230-<br>160000)               | 17971 1<br>(78-160000) (8)       | (8)             | 1 (8)          | (33)                                          | 10 (83)           | 5 (42) | Does not                                | pH, DO,BOD,<br>TC,FC                | , and a second      |
| 3.                            | Gyananagar                                                                                             | 12                           | 7.6<br>(6.8-<br>8.4) | 5.5 (1.2-8.9)       | 3.5 (0.9-6.9)         | 79659<br>(98-<br>>160000)               | 57524<br>(20-160000)             | 0               | 4 (33)         | 5 (42)                                        | 10 (83)           | 8 (67) | conform to<br>Class B                   | DO,BOD,<br>TC,FC                    | numan<br>activities |
| 4                             | Near<br>Kedarnath<br>Research<br>Centre                                                                | 12                           | 7.9<br>(7.0-<br>8.4) | 7.5 (2.4-11.5)      | 2.6 (1.0-4.3)         | 18361<br>(330-<br>>160000)              | 15429<br>(130-<br>160000)        | 0               | 1 (8)          | 4 (33)                                        | (92)              | 5 (42) |                                         | DO,BOD,<br>TC,FC                    |                     |
| *Cla                          | *Class 'B'                                                                                             |                              | 6.5-8.5 5 and above  |                     | 3 or<br>less          | 500 or<br>less                          |                                  | Outdoor bathing | bathi          | gu                                            |                   |        |                                         |                                     |                     |
| Wati<br>for I<br>Noti<br>742( | Water quality criteria<br>for bathing water (MOEF<br>Notification G.S.R. No.<br>742(E) Dt. 25.09.2000) | eria<br>(MOEF<br>No.<br>)00) | 6.5-8.5 5 and above  |                     | 3 or<br>less          |                                         | 2500<br>(Maximum<br>Permissible) | Water us        | se for         | organi                                        | sed or            | utdoo  | Water use for organised outdoor bathing |                                     |                     |

<sup>\*</sup> Tolerance limit for Inland Surface water bodies (IS-2296-1982)

**Note:** The criteria of non-compliance with respect to TC has been calculated on the following basis: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref: 1S 2296-1982 foot note)



| A                                                                      |                    |                                     |                  |                                      |                                      |                                      |                                      |                                      |                 |                                                                                                        |
|------------------------------------------------------------------------|--------------------|-------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|
|                                                                        | Possible           | Reason                              |                  |                                      |                                      | Human<br>activities                  |                                      |                                      |                 |                                                                                                        |
| Parameters                                                             | responsible<br>for | downgrading<br>the water<br>quality |                  | pH, BOD,<br>TC,FC                    | pH, DO, BOD,<br>TC,FC                | pH, DO, BOD,<br>TC,FC                | pH, DO, BOD,<br>TC,FC                | pH, DO, BOD,<br>TC,FC                |                 | or bathing                                                                                             |
|                                                                        | Existing           | Class                               |                  | Does not<br>conform<br>to Class<br>B | Outdoor bathing | Water use for organised outdoor bathing                                                                |
| ent of<br>riteria                                                      |                    | FC                                  |                  | (9)                                  | 5 (42)                               | 3 (25)                               | 3 (25)                               | (33)                                 | utdoor          | organi                                                                                                 |
| on (Perc                                                               | ,                  | TC                                  |                  | 9 (75)                               | 9 (75)                               | (92)                                 | 12 (100)                             | 10 (83)                              | 0               | use for                                                                                                |
| Frequency of violation (Percent of violation) from designated criteria | value              | ВОБ                                 |                  | (100)                                | (100)                                | (100)                                | 12 (100)                             | (100)                                |                 | Wateı                                                                                                  |
| nency (tion) fr                                                        |                    | DO                                  |                  | 0                                    | 2 (17)                               | 3 (25)                               | (58)                                 | (8)                                  |                 |                                                                                                        |
| Freque violat                                                          |                    | Hd                                  |                  | (50)                                 | 3 (25)                               | 2 (17)                               | (8)                                  | 2 (17)                               |                 |                                                                                                        |
|                                                                        |                    | FC<br>(MPN/<br>100 ml)              |                  | 1782 (<1.8-16000)                    | 3625<br>(<1.8-16000)                 | 3222<br>(78-16000)                   | 3150<br>(330-16000)                  | 4260<br>(20-16000)                   | ı               | 2500<br>(Maximum<br>Permissible)                                                                       |
| ge values<br>alues)                                                    | ers                | TC<br>(MPN/<br>100<br>ml)           |                  | 5353<br>(<1.8-<br>>16000)            | 7922<br>(<1.8-<br>>16000)            | 11639<br>(270-<br>54000)             | 8166<br>(790-<br>16000)              | 6413<br>(130-<br>16000)              | 500 or<br>less  |                                                                                                        |
| Annual average values<br>(Range of values)                             | Paramet            | BOD<br>(mg/l)                       |                  | 7.1<br>(3.8-<br>11.3)                | 6.3 (3.6-8.1)                        | 4.7 (3.2-7.0)                        | 9.2<br>(4.1-<br>16.4)                | 9.9<br>(3.1-<br>17.8)                | 3 or<br>less    | 3 or<br>less                                                                                           |
| Ann<br>(F                                                              |                    | OQ I                                |                  | 10.0 (5.0-13.4)                      | 11.6 (4.7-18.3)                      | 7.8 (3.3-12.9)                       | 6.3<br>(1.6-12.9)                    | 10.4 (4.8-14.8)                      | 5 and<br>above  | 5 and<br>above                                                                                         |
|                                                                        |                    | Hd                                  |                  | 8.5<br>(8.0-<br>9.1)                 | 8.1<br>(7.3-<br>9.0)                 | 8.1<br>(7.6-<br>8.8)                 | 7.9<br>(6.6-<br>9.0)                 | 7.9<br>(6.6-<br>8.9)                 | 6.5-            | 6.5-                                                                                                   |
|                                                                        | Jo. oN             | Obs.                                |                  | 12                                   | 12                                   | 12                                   | 12                                   | 12                                   |                 | eria<br>MOEF<br>No.                                                                                    |
|                                                                        | Sampling           |                                     | (b) Ponds (Puri) | Narendra                             | Markanda                             | Indradyumna                          | Swetaganga                           | Parvati sagar                        | *Class 'B'      | Water quality criteria<br>for bathing water (MOEF<br>Notification G.S.R. No.<br>742(E) Dt. 25.09.2000) |
|                                                                        | SI.                | S <sub>o</sub>                      | <b>(9)</b>       | 1.                                   | ~i                                   | e.                                   | 4.                                   | 5.                                   |                 | for                                                                                                    |

\* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis: TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml. (Ref: IS 2296-1982 foot note)



|                     |                                                                                               |                      | Annua<br>(Rar      | Annual average values<br>(Range of values) | e values<br>dues)       |                                  | Fre<br>(Pe | quen   | y of to of to of to of to of to | Frequency of violation (Percent of violation) | u a    |                                         | Parameters                              |                     |
|---------------------|-----------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------|-------------------------|----------------------------------|------------|--------|---------------------------------|-----------------------------------------------|--------|-----------------------------------------|-----------------------------------------|---------------------|
| SI.                 | Sampling Location of                                                                          |                      |                    | Parameters                                 | rs                      |                                  | ILOII      | n ues  | gnate<br>value                  | iroin uesignateu criteria<br>value            |        | Existing                                | for                                     | Possible            |
|                     | Obs.                                                                                          | Hd                   | DO<br>(mg/l)       | BOD<br>(mg/l)                              | TC<br>(MPN/<br>100 ml)  | FC<br>(MPN/<br>100 ml)           | Hd         | DO     | pH DO BOD                       | TC                                            | FC     | Cidss                                   | cowngrading<br>the water<br>quality     | кеазоп              |
| (c)                 | (c) Pond in Jeypore town                                                                      |                      |                    |                                            |                         |                                  |            |        |                                 |                                               |        |                                         |                                         |                     |
| 1.                  | Jagannathsagar Pond 12                                                                        | 7.7<br>(6.8-<br>8.5) | 7.0 (6.5-7.6)      | 1.7 (0.7-2.8)                              | 1525<br>(45-<br>4300)   | (20-2500)                        | 0          | 0      | 0                               | (58)                                          | 0      | Does<br>not<br>conform<br>to Class<br>B | TC                                      | Human<br>activities |
| (p)                 | Pond in Angul Town                                                                            |                      |                    |                                            |                         |                                  |            |        |                                 |                                               |        |                                         |                                         |                     |
| 1.                  | Raniguda Pond                                                                                 | 8.0<br>(7.4-<br>8.8) | 8.0 (2.3-<br>16.2) | 8.7<br>(2.5-<br>18.1)                      | 2732<br>(170-<br>16000) | (20-16000)                       | (8)        | 4 (33) | 11 (92)                         | (50)                                          | (8)    | Does<br>not<br>conform<br>to Class<br>B | pH, DO, BOD,<br>TC, FC                  | Human<br>activities |
| *Cla                | «Class 'B'                                                                                    | 6.5-8.5              | 5 and<br>above     | 3 or<br>less                               | 500 or<br>less          |                                  |            |        |                                 |                                               | Outd   | Outdoor bathing                         | ing                                     |                     |
| Wate<br>wate<br>No. | Water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000) | 6.5-8.5              | 5 and<br>above     | 3 or<br>less                               |                         | 2500<br>(Maximum<br>Permissible) |            |        | Wate                            | r use f                                       | or org | ,<br>ganised o                          | Water use for organised outdoor bathing |                     |

\* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/ 100 ml. (Ref: IS 2296-1982 foot note)



Table- 5.23 Water quality of Ponds with respect to other parameters during 2018 (January- December)

|            |                                         | Physical parameters | rameters                 | Orga                    | nic pollu                  | Organic pollution Indicators | ıtors                    |                                         |                         | 2                          | fineral o            | Mineral constituents | ıts                        |                           |                         |
|------------|-----------------------------------------|---------------------|--------------------------|-------------------------|----------------------------|------------------------------|--------------------------|-----------------------------------------|-------------------------|----------------------------|----------------------|----------------------|----------------------------|---------------------------|-------------------------|
|            |                                         |                     |                          |                         |                            | Ann                          | ual aver                 | Annual average values (Range of values) | ; (Range                | of values                  |                      |                      |                            |                           |                         |
| SI.<br>No. | Sampling<br>Location                    | SSL                 | Total<br>alkal<br>-inity | COD                     | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N   | TKN                      | EC                                      | SAR                     | В                          | TDS                  | ТН                   | Cl                         | $\mathrm{SO}_4$           | F                       |
|            |                                         | (I/gm)              | (1)                      |                         | m)                         | (mg/l)                       |                          | (µS/cm)                                 |                         |                            |                      | (n                   | (mg/l)                     |                           |                         |
| (a)        | Bindusagar Pond in Bhubaneswar City     | ond in Bhuk         | oaneswar (               | City                    |                            |                              |                          |                                         |                         |                            |                      |                      |                            |                           |                         |
| 1.         | Lingaraj<br>Temple side                 | 20<br>(4-38)        | 126<br>(104-<br>150)     | 24.4<br>(6.6-<br>49.5)  | 0.330<br>(0.056-<br>0.840) | 0.017<br>(0.001-<br>0.084)   | 3.57<br>(0.56-<br>14.00) | 432<br>(387-<br>477)                    | 1.85<br>(1.18-<br>3.24) | 0.089<br>(0.035-<br>0.148) | 259<br>(224-<br>298) | 97 (76-116)          | 61.82<br>(40.70-<br>99.95) | 17.12<br>(2.86-<br>67.20) | 0.33<br>(0.20-<br>0.48) |
| 2.         | Ananta<br>Vasudev                       | 12<br>(2-32)        | 122<br>(102-<br>140)     | 23.1<br>(10.0-<br>43.3) | 0.425<br>(0.056-<br>2.240) | 0.029 (0-0.146)              | 2.33<br>(0.56-<br>11.20) | 425<br>(369-<br>458)                    | 1.66<br>(1.10-<br>2.16) | 0.090<br>(0.017-<br>0.186) | 250<br>(218-<br>281) | 96 (72-112)          | 60.53<br>(43.50-<br>79.96) | 13.80<br>(1.36-<br>31.46) | 0.33<br>(0.21-<br>0.49) |
| 3.         | Gyananagar                              | 20<br>(4-38)        | 130<br>(104-<br>156)     | 26.5<br>(6.6-<br>53.5)  | 0.154<br>(0.056-<br>0.560) | 0.005 (0-0.022)              | 2.36<br>(0.28-<br>8.96)  | 436<br>(384-<br>480)                    | 1.71<br>(1.10-<br>2.30) | 0.080<br>(0.003-<br>0.164) | 257<br>(222-<br>311) | 98 (80-118)          | 62.73<br>(44.40-<br>89.95) | 13.54<br>(3.60-<br>46.30) | 0.35<br>(0.23-<br>0.55) |
| 4.         | Near<br>Kedarnath<br>research<br>Centre | 27<br>(6-163)       | 123<br>(92-154)          | 22.7<br>(10.0-<br>39.1) | 0.200<br>(0.056-<br>0.560) | 0.014 (0-0.070)              | 2.36<br>(0.56-<br>5.04)  | 416<br>(341-<br>477)                    | 1.81<br>(1.15-<br>2.67) | 0.068<br>(0.003-<br>0.172) | 247<br>(204-<br>308) | 92<br>(60-104)       | 60.38<br>(40.70-<br>99.95) | 12.31<br>(2.61-<br>26.90) | 0.33<br>(0.21-<br>0.48) |
| *Cla       | *Class 'C'                              | -                   | 1                        | 1                       | ,                          | 1                            | 1                        | ı                                       | -                       | •                          | 1500                 | -                    | 009                        | 400                       | 1.5                     |

\* Tolerance limit for Inland Surface water bodies (IS-2296-1982) Class 'C' : Drinking water source with conventional treatment followed by disinfection

## Contd..

|     |                                         | Nutrients               | ıts                                                                                                 |                                                       |          |          | Hea       | Heavy metals | S      |              |         |                               |
|-----|-----------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|----------|-----------|--------------|--------|--------------|---------|-------------------------------|
| SI. |                                         |                         | Ann                                                                                                 | Annual average values (Range of values)               | e values | (Range c | f values) |              |        |              |         |                               |
| No. | Sampung rocanon                         | $NO_3$                  | PO <sub>4</sub> 3-P                                                                                 | Cr(VI) *** T. Cr*** Fe** Ni** Cu*** Zn*** Cd*** Hg*** | T. Cr##  | Fe##     | Ni##      | Cu##         | Zn##   | <b>Cd</b> ## | Hg##    | $\mathbf{P}\mathbf{b}^{\#\#}$ |
|     |                                         | (Ing/I)                 | (                                                                                                   |                                                       |          |          |           | (mg/l)       |        |              |         |                               |
| (a) | (a) Bindusagar Pond in Bhubaneswar City | nubaneswar City         |                                                                                                     |                                                       |          |          |           |              |        |              |         |                               |
| l.  | 1. Lingaraj Temple side                 | 6.630<br>(1.067-16.714) | 0.188 (0.002-0.637) 0.002 0.015 1.4076 0.00613 0.0014 0.0052 0.0006 0.00063 0.0031                  | 0.002                                                 | 0.015    | 1.4076   | 0.00613   | 0.0014       | 0.0052 | 0.0006       | 0.00063 | 0.0031                        |
| 2.  | 2. Ananta Vasudev                       | 5.751 (0.717-14.484)    | 0.165 (0.001-0.494)   0.015   0.029   1.448   0.00981   0.0036   0.0083   0.0006   0.00057   0.0086 | 0.015                                                 | 0.029    | 1.448    | 0.00981   | 0.0036       | 0.0083 | 0.0006       | 0.00057 | 0.0086                        |



|       |                                      | Nutrients            | ıts                                                                                |                                                 |          |          | Неа       | Heavy metals  | sı     |              |         |        |
|-------|--------------------------------------|----------------------|------------------------------------------------------------------------------------|-------------------------------------------------|----------|----------|-----------|---------------|--------|--------------|---------|--------|
| SI.   |                                      |                      | Ann                                                                                | Annual average values (Range of values)         | e values | (Range o | f values) |               |        |              |         |        |
| No.   | Sampinig Location                    | NO <sub>3</sub> .    | PO <sub>4</sub> 3-P                                                                | Cr(VI) ** T. Cr** Fe** NI** Cu** Cu** Pb** Pb** | T. Cr##  | Fe##     | Ni##      | Cu##          | Zn##   | <b>Cd</b> ## | Hg##    | Pb##   |
|       |                                      | (I/gm)               | (1                                                                                 |                                                 |          |          |           | (mg/l)        |        |              |         |        |
| 3.    | 3. Gyananagar                        | 3.855 (0.411-14.746) | 0.077 (0.002-0.391) 0.012 0.021 1.1985 0.00569 0.0031 0.008 0.0006 0.00063 0.0026  | 0.012                                           | 0.021    | 1.1985   | 0.00569   | 0.0031        | 0.008  | 0.0006       | 0.00063 | 0.0026 |
| 4.    | 4. Near Kedarnath<br>Research Centre | 3.757 (0.446-14.877) | 0.139 (0.001-0.547) 0.008 0.017 1.7748 0.00338 0.0049 0.0069 0.0006 0.00070 0.0046 | 0.008                                           | 0.017    | 1.7748   | 0.00338   | 0.0049        | 0.0069 | 0.0006       | 0.00070 | 0.0046 |
| *Clas | *Class 'C'                           | 50                   |                                                                                    | 0.05                                            | 1        | 50       | 1         | 1.5 15.0 0.01 | 15.0   | 0.01         | 1       | 0.10   |

\* Tolerance limit for Inland Surface water bodies (IS-2296-1982) ## Data for the period April, 2018 Class 'C' : Drinking water source with conventional treatment followed by disinfection

|       |                    | Physical parameters | al<br>ers               | Organi                   | nic pollut                 | c pollution Indicators     | ators                    |                                         |                          |                            | Mineral constituents  | onstitue             | ents                         |                            |                         |
|-------|--------------------|---------------------|-------------------------|--------------------------|----------------------------|----------------------------|--------------------------|-----------------------------------------|--------------------------|----------------------------|-----------------------|----------------------|------------------------------|----------------------------|-------------------------|
| อ     | Committee          |                     |                         |                          |                            | Aı                         | ınual ave                | Annual average values (Range of values) | les (Rang                | e of value                 | (Si                   |                      |                              |                            |                         |
| No.   | Location           | SSL                 | Total<br>alkal<br>inity | COD                      | NH <sub>4</sub> -N         | Free<br>NH <sub>3</sub> -N | TKN                      | EC (µS/cm                               | SAR                      | В                          | TDS                   | HI                   | מ                            | SO <sub>4</sub>            | ĽΉ                      |
|       |                    | (I/gm)              |                         |                          | (mg/l)                     | (1/3                       |                          |                                         |                          |                            |                       |                      | (mg/l)                       |                            |                         |
| Pond  | Ponds in Puri town |                     |                         |                          |                            |                            |                          |                                         |                          |                            |                       |                      |                              |                            |                         |
| 1.    | Narendra           | 27<br>(4-136)       | 177<br>(130-<br>268)    | 40.3<br>(20.4-<br>80.3)  | 0.330<br>(0.056-<br>1.120) | 0.063<br>(0.003-<br>0.168) | 5.30<br>(0.56-<br>18.76) | 863<br>(642-<br>1007)                   | 2.02<br>(0.88-<br>6.67)  | 0.162<br>(0.039-<br>0.453) | 579<br>(378-<br>1240) | 175<br>(136-<br>252) | 187.6<br>(60.0-<br>599.7)    | 41.5<br>(26.4-<br>57.1)    | 0.30<br>(0.16-<br>0.47) |
| 2.    | Markanda           | 24<br>(2-42)        | 197<br>(162-<br>232)    | 42.8<br>(21.8-<br>73.9)  | 0.248<br>(0.056-<br>0.670) | 0.044<br>(0.002-<br>0.190) | 4.69<br>(0.56-<br>12.88) | 802<br>(608-<br>1517)                   | 4.38<br>(1.30-<br>15.20) | 0.241<br>(0.007-<br>1.544) | 427<br>(336-<br>560)  | 200<br>(146-<br>250) | 93.06<br>(49.97-<br>199.90)  | 50.34<br>(23.25-<br>74.87) | 0.28<br>(0.11-<br>0.39) |
| .3    | Indradyumna        | 14<br>(2-38)        | 103<br>(78-<br>152)     | 37.8<br>(22.1-<br>67.5)  | 0.364<br>(0.056-<br>1.008) | 0.029<br>(0.002-<br>0.148) | 6.35<br>(0.56-<br>21.28) | 514<br>(332-<br>701)                    | 3.72<br>(1.06-<br>14.20) | 0.097<br>(0.003-<br>0.425) | 362<br>(194-<br>1160) | 91<br>(66-<br>126)   | 135.16<br>(39.98-<br>599.70) | 25.72<br>(14.43-<br>47.38) | 0.28<br>(0.14-<br>0.39) |
| 4.    | Swetaganga         | 32<br>(12-64)       | 205<br>(108-<br>308)    | 55.6<br>(21.0-<br>86.7)  | 0.382<br>(0.056-<br>1.120) | 0.043<br>(0-<br>0.280)     | 5.93<br>(1.12-<br>15.12) | 958<br>(528-<br>1266)                   | 1.89<br>(0.87-<br>3.93)  | 0.230<br>(0.003-<br>1.190) | 643<br>(318-<br>1570) | 197<br>(104-<br>280) | 232.66<br>(69.96-<br>849.90) | 41.13<br>(6.21-<br>61.44)  | 0.28<br>(0.09-<br>0.49) |
| 5.    | Parvati sagar      | 32<br>(14-58)       | 123<br>(76-<br>202)     | 70.5<br>(45.9-<br>109.8) | 0.369<br>(0.056-<br>1.120) | 0.030<br>(0-<br>0.174)     | 5.37<br>(0.56-<br>13.44) | 412<br>(249-<br>683)                    | 3.89<br>(0.99-<br>10.80) | 0.075<br>(0.004-<br>0.143) | 293<br>(148-<br>783)  | 116<br>(62-<br>240)  | 80.83<br>(30.85-<br>349.90)  | 24.24<br>(10.07-<br>99.62) | 0.28<br>(0.12-<br>0.40) |
| *Clas | *Class 'C'         |                     | ı                       |                          | 1                          | ı                          | 1                        | 1                                       | 1                        | 1                          | 1500                  | ı                    | 009                          | 400                        | 1.5                     |

 $^{\ast}$  Tolerance limit for Inland Surface water bodies (IS-2296-1982) Class 'C' : Drinking water source with conventional treatment followed by disinfection



|            |                    | Nutrients              | ts                                                                                        |                                         |          |        | I            | Heavy metals | stals  |              |                              |       |
|------------|--------------------|------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|----------|--------|--------------|--------------|--------|--------------|------------------------------|-------|
| 5          |                    |                        | Annu                                                                                      | Annual average values (Range of values) | e values | (Range | of value     | es)          |        |              |                              |       |
| No.        | Sampling Location  | NO <sub>3</sub> .      | PO <sub>4</sub> 3-P                                                                       | Cr(VI) ## T. Cr## Fe##                  | T. Cr##  | Fe##   | **! <b>X</b> | Cu##         | Zn##   | <b>Cd</b> ## | ## <b>B</b> H                | Pb##  |
|            |                    | (l/gm)                 |                                                                                           |                                         |          |        |              | (mg/l)       |        |              |                              |       |
| Pond       | Ponds in Puri town |                        |                                                                                           |                                         |          |        |              |              |        |              |                              |       |
| J.         | Narendra           | 6.170 (0.367-12.787)   | 0.311 (0.178-0.531) <0.002 0.005 0.286 0.009 0.004                                        | <0.002                                  | 0.005    | 0.286  | 0.009        | 0.004        | 0.004  | 0.0019       | 0.004 0.0019 0.00032         | 0.011 |
| 2.         | 2. Markanda        | 29.771 (11.815 68.878) | 0.989 (0.240-3.733) <0.002 0.015 0.418 0.007 0.005                                        | <0.002                                  | 0.015    | 0.418  | 0.007        |              | 90000  | 0.0005       | 0.006 0.0005 0.00019         | 0.012 |
| 3.         | Indradyumna        | 4.448 (0.638-10.057)   | 0.126 (0.001-0.637)   <0.002   0.005   0.223   0.011   0.0033                             | <0.002                                  | 0.005    | 0.223  | 0.011        | 0.0033       | 0.0059 | 0.0006       | 0.0059 0.0006 0.00019        | 0.005 |
| 4.         | Swetaganga         | 11.408 (2.440-34.697)  | 0.475 (0.044-1.506)   <0.002   0.007   0.750   0.009   0.0061   0.0061   0.0019   0.00013 | <0.002                                  | 0.007    | 0.750  | 0.009        | 0.0061       | 0.0061 | 0.0019       | 0.00013                      | 0.017 |
| 5.         | Parvati sagar      | 3.401 (0.499-7.772)    | 0.097 (0.001-0.403) <0.002 0.018 0.556 0.009                                              | <0.002                                  | 0.018    | 0.556  | 0.009        | 0.0171       | 0.0084 | 0.0011       | 0.0171 0.0084 0.0011 0.00063 | 0.008 |
| *Class 'C' | ,C,                | 50                     | -                                                                                         | 0.05                                    | -        | 20     | -            | 1.5          | 15.0   | 0.01         | -                            | 0.10  |

\* Tolerance limit for Inland Surface water bodies (IS-2296-1982) ## Data for the period April, 2018 Class 'C': Drinking water source with conventional treatment followed by disinfection

|      |                      | Ph<br>para        | Physical parameters     | Organi               | Organic pollution Indicators | ndicator                                 | Ş                        |                       |                                         |                            | Mineral constituents        | constit              | uents                        |                            |                  |
|------|----------------------|-------------------|-------------------------|----------------------|------------------------------|------------------------------------------|--------------------------|-----------------------|-----------------------------------------|----------------------------|-----------------------------|----------------------|------------------------------|----------------------------|------------------|
| ี่อ  |                      |                   |                         |                      |                              | Ann                                      | ual aver                 | age valı              | Annual average values (Range of values) | ge of valu                 | res)                        |                      |                              |                            |                  |
| No.  | Sampung              | TSS               | Total<br>alkal<br>inity | СОО                  | NH <sub>4</sub> -N           | Free<br>NH <sub>3</sub> -N               | TKN                      | EC<br>(µS/            | SAR                                     | В                          | TDS                         | HI                   | C                            | SO <sub>4</sub>            | ĬŦ               |
|      |                      | J                 | (mg/l)                  |                      | (mg/l)                       |                                          |                          | <u> </u>              |                                         |                            |                             |                      | (mg/l)                       |                            |                  |
| Pon  | Pond in Jeypore town | vn                |                         |                      |                              |                                          |                          |                       |                                         |                            |                             |                      |                              |                            |                  |
| 1.   | 1. Jagannathsagar    | 39<br>(6-<br>134) | 164 (34-256)            | 20.0 (9.7-41.6)      | 0.265<br>(0.056-<br>0.780)   | 0.018 2.64<br>(0- (0.28-<br>0.104) 7.28) | 2.64<br>(0.28-<br>7.28)  | 451<br>(93-<br>639)   | 1.21<br>(0.35-<br>1.55)                 | 0.177<br>(0.004-<br>1.544) | 262<br>(58-352)             | 135<br>(30-<br>196)  | 52.60<br>(6.70-<br>71.96)    | 9.95<br>(1.12-<br>24.62)   | 0.24 (0.11-0.40) |
| Pon  | Pond in Angul town   |                   |                         |                      |                              |                                          |                          |                       |                                         |                            |                             |                      |                              |                            |                  |
| 1.   | 1. Raniguda          | 66<br>(6-<br>408) | 236<br>(142-<br>326)    | 65.4<br>(32.3-118.8) | (32.3-118.8) (BDL-0.670)     | 0.017<br>(0-<br>0.087)                   | 3.66<br>(0.28-<br>12.80) | 795<br>(595-<br>1020) | 2.19<br>(0.69-<br>6.25)                 | 0.131<br>(0.003-<br>0.560) | 449 227 (58-722) (168- 302) | 227<br>(168-<br>302) | 114.59<br>(51.97-<br>299.85) | 41.25<br>(13.18-<br>96.60) | 0.70 (0.48-0.96) |
| *Cle | *Class 'C'           | -                 | -                       | -                    | 1                            | -                                        | -                        | -                     | 1                                       | -                          | 1500                        | -                    | 009                          | 400                        | 1.5              |



| Sl.   | Sampling<br>Location | Nutr                         | ients                            |           |          |        | 1      | Heavy 1 | netals   |        |          |       |
|-------|----------------------|------------------------------|----------------------------------|-----------|----------|--------|--------|---------|----------|--------|----------|-------|
| No.   | Location             |                              |                                  | 1         | Annual a | verage | values | (Range  | of value | es)    |          |       |
|       |                      | NO <sub>3</sub>              | PO <sub>4</sub> <sup>3-</sup> -P | Cr(VI) ## | T. Cr##  | Fe##   | Ni##   | Cu##    | Zn##     | Cd##   | Hg##     | Pb##  |
|       |                      | (m                           | g/l)                             |           |          |        |        | (mg     | /l)      |        |          |       |
| Pond  | in Jeypore tow       | n                            |                                  |           |          |        |        |         |          |        |          |       |
| 1.    | Jagannathsagar       | 3.947<br>(0.505-<br>11.285)  | 0.104<br>(0.003-<br>0.223)       | <0.002    | 0.009    | 1.566  | 0.004  | 0.009   | 0.045    | 0.0006 | <0.00006 | 0.004 |
| Pond  | in Angul town        |                              |                                  |           |          |        |        |         |          |        |          |       |
| 1.    | Raniguda             | 10.249<br>(2.043-<br>28.715) | 0.431<br>(0.031-<br>1.242)       | 0.002     | 0.005    | 0.153  | 0.008  | 0.006   | 0.064    | 0.0004 | 0.00013  | 0.017 |
| *Clas | s 'C'                | 50                           | -                                | 0.05      | -        | 50     | -      | 1.5     | 15.0     | 0.01   | -        | 0.10  |

<sup>\*</sup> Tolerance limit for Inland Surface water bodies (IS-2296-1982) ## Data for the period April, 2018

Class 'C': Drinking water source with conventional treatment followed by disinfection

Table 5.24 Water Quality of Lakes with respect to Criteria parameters during 2018 (January-December)

## (a) Brackish Water Lake

|                         | Sampling<br>Location                                                                          | No.<br>of<br>Obs. |                      |                       | (Range               | verage values)<br>of values)<br>ameters | es                      | vio | of vi<br>(Percolation)<br>design | uency<br>olation<br>cent on<br>on) fr<br>gnate<br>ia val | n<br>f<br>om<br>d | Existing<br>Class                            | Parameters<br>responsible<br>for<br>downgrading | Possible<br>Reason  |
|-------------------------|-----------------------------------------------------------------------------------------------|-------------------|----------------------|-----------------------|----------------------|-----------------------------------------|-------------------------|-----|----------------------------------|----------------------------------------------------------|-------------------|----------------------------------------------|-------------------------------------------------|---------------------|
|                         |                                                                                               |                   | pН                   | DO<br>(mg/l)          | BOD<br>(mg/l)        | Turbidity,<br>NTU                       | FC<br>(MPN/100<br>ml)   | pН  | DO                               | BOD                                                      | FC                |                                              | the water<br>quality                            |                     |
| Chi                     | ilka lake                                                                                     |                   |                      |                       |                      |                                         |                         |     |                                  |                                                          |                   |                                              |                                                 |                     |
| 1.                      | Rambha                                                                                        | 12                | 8.2<br>(7.9-<br>8.1) | 8.2<br>(6.2-<br>11.0) | 1.1<br>(0.3-<br>2.0) | 9.7<br>(0.9-48.0)                       | 252<br>(<1.8-<br>2200)  | 0   | 0                                | 0                                                        | 4 (33)            | Does<br>not<br>conform<br>to Class-<br>SW-II | FC                                              | Human<br>activities |
| 2.                      | Satapada                                                                                      | 12                | 7.9<br>(7.4-<br>8.3) | 6.6<br>(5.1-<br>8.1)  | 1.7<br>(1.0-<br>2.7) | 26.8<br>(7.3-85.0)                      | 1163<br>(<1.8-<br>9200) | 0   | 0                                | 0                                                        | 6<br>(50)         | Does<br>not<br>conform<br>to Class-<br>SW-II | FC                                              | Human<br>activities |
| crit<br>Cla<br>Wa<br>No | ter quality<br>teria for<br>ss SW-II<br>ters (MOEI<br>tification (<br>. 742(E) Dt<br>09.2000) | F<br>G.S.R.       | 6.5-<br>8.5          | 4.0 or<br>more        | 3.0<br>or<br>less    | 30 or less                              | 100 or<br>less          |     | Bat<br>ning                      | hing,                                                    | Con               | tact Wate                                    | er Sports and                                   | Commercial          |



(b) Fresh Water Lake

|          |                  |      | A         | Annual average       | Annual average values (Range of values) | of values)                              | Frequ | nency o | Frequency of violation from | om    |            | Parameters                             |        |
|----------|------------------|------|-----------|----------------------|-----------------------------------------|-----------------------------------------|-------|---------|-----------------------------|-------|------------|----------------------------------------|--------|
| SI.      | <b>J</b> ,       | No.  |           |                      | Parameters                              |                                         | des   | ignated | designated criteria value   |       | Existing   |                                        |        |
| S<br>N   | Location         | Obs. | Hď        | DO (mg/l)            | Free ammonia (mg/l)                     | e ammonia EC (micro Siemens (mg/l) /cm) | Hd    | DO      | Free ammonia                | EC    | Class      | downgrading the<br>water quality       | Reason |
| (a)      | (a) Anshupa Lake |      |           |                      |                                         |                                         |       |         |                             |       |            |                                        |        |
| 1.       | 1. Kadalibari    | 12   | 7.7       | 9.2                  | 0.014                                   | 171                                     | 0     | 0       | 0                           | 0     | D          | •                                      | 1      |
|          |                  |      | (6.8-8.3) | (5.4-10.0)           | (0-0.081)                               | (106-247)                               |       |         |                             |       |            |                                        |        |
| 2.       | Bishnupur        | 12   | 9.7       | 7.2                  | 900'0                                   | 162                                     | 0     | 1       | 0                           | 0     | D          | -                                      | 1      |
|          | ı                |      | (6.7-8.3) | (3.4-9.4)            | (0-0.017)                               | (106-199)                               |       | (8)     |                             |       |            |                                        |        |
| 3.       | Subarnapur       | 12   | 7.5       | 9.2                  | 0.005                                   | 158                                     | 0     | 0       | 0                           | 0     | D          | 1                                      | 1      |
|          |                  |      | (6.6-8.1) | (6.3-9.4)            | (0-0.017)                               | (104-240)                               |       |         |                             |       |            |                                        |        |
| 4.       | Sarandagarh      | 12   | 9.7       | 7.7                  | 0.008                                   | 166                                     | 0     | 0       | 0                           | 0     | D          | 1                                      | 1      |
|          |                  |      | (6.9-8.2) | (4.8-11.0)           | (0-0.028)                               | (105-206)                               |       |         |                             |       |            |                                        |        |
| <b>g</b> | (b) Tampara Lake |      |           |                      |                                         |                                         |       |         |                             |       |            |                                        |        |
| 5.       | Tampara          | 12   | 8.0       | 8.2                  | 0.009                                   | 558                                     | 0     | 0       | 0                           | 0     | D          |                                        |        |
|          |                  |      | (7.3-8.5) | (7.3-8.5) (4.5-12.5) | (0-0.033)                               | (323-934)                               |       |         |                             |       |            |                                        |        |
| *Cla     | *Class 'D'       |      | 6.5-8.5   | 6.5-8.5 4 and above  | 1.2 or less                             | 1000 or less                            |       |         | Fish Cultu                  | re an | d Wild lii | Fish Culture and Wild life propagation |        |

 $^{\ast}$  Tolerance limit for Inland  $\,$  Surface water bodies (IS-2296-1982)

Table 5.25 Water Quality of Lakes with respect to other parameters during 2018 (January-December)

# (a) Brackish Water Lake

|       |             | Physical<br>parameters | ical                    | Organ           | Organic pollution  | tion Indicators            | itors            | Bacteri-<br>ological<br>Parame-<br>ter  |                   |                    | 2                | Mineral constituents | nstituen       | ts                   |                      |             |
|-------|-------------|------------------------|-------------------------|-----------------|--------------------|----------------------------|------------------|-----------------------------------------|-------------------|--------------------|------------------|----------------------|----------------|----------------------|----------------------|-------------|
| SI.   | Sampling    |                        |                         |                 |                    |                            | Aı               | Annual average values (Range of values) | age values        | (Range o           | f values)        |                      |                |                      |                      |             |
| No.   |             | Total TSS alkal -imity | Total<br>alkal<br>inity | СОД             | NH <sub>4</sub> -N | Free<br>NH <sub>3</sub> -N | TKN              | TC                                      | EC                | SAR                | TDS              | В                    | ТН             | CI                   | $\mathrm{SO}_4$      | F           |
|       |             | (mg/l)                 | (1)                     |                 | im)                | (mg/l)                     |                  | (MPN/<br>100 ml)                        | (mS/<br>cm)       |                    |                  |                      | m)             | (mg/l)               |                      |             |
| Chill | Chilka lake |                        |                         |                 |                    |                            |                  |                                         |                   |                    |                  |                      |                |                      |                      |             |
| 1.    | 1. Rambha   | 129                    | 140                     | 28.2            | 0.227              | 0.025 (0-                  |                  | 476                                     | 19549             |                    | 14069            | 686.0                | 1740           | 7659.1               | 738.4                | 0.49        |
|       |             | (24- (04- (190)        | (100-220)               | (11.8-38.4)     | (BDL-<br>1.000)    | 0.125)                     | (0.28-<br>12.32) | (<1.8-<br>3500)                         | (12580-<br>31890) | (15.76-<br>100.10) | (4820-<br>25800) | (0.221-<br>1.612)    | (900-3000)     | (2099.0-<br>14992.5) | (155.50-<br>1358.85) | (0.33-0.57) |
| 2.    | 2. Satapada | 362                    | 122                     | 39.6            | 0.223              | 0.011                      | 3.45             | 1743                                    | 25687             | 50.11              | 21465            | 1.462                | 2785           | 11771.4              | 1063.8               | 0.48        |
|       |             | (76-<br>784)           | (64-<br>264)            | (17.2-<br>49.8) | (0.056-            | (0.001 - 0.045)            | (0.28-<br>10.36) | (<1.8-<br>9200)                         | (1950-<br>55320)  | (7.63-<br>99.82)   | (1290-<br>49100) | (0.003-<br>3.532)    | (240-<br>6300) | (530.2-<br>26986.5)  | (154.9-<br>3662.9)   | (0.23-0.77) |
|       |             |                        |                         |                 |                    |                            |                  |                                         |                   |                    |                  |                      |                |                      |                      |             |



| SI.   | Sl. Sampling Location | Nutrients                               |                                              | Heavy metals | [S      |       |       |       |              |                                       |                                                                                                             |              |
|-------|-----------------------|-----------------------------------------|----------------------------------------------|--------------|---------|-------|-------|-------|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------|
| 0     |                       | Annual average values (Range of values) | es (Range of values)                         |              |         |       |       |       |              |                                       |                                                                                                             |              |
|       |                       | NO <sub>3</sub> .                       | PO <sub>4</sub> <sup>3</sup> -P              | Cr(VI) ##    | T. Cr## | Fe##  | Ni##  | Cn##  | <b>Zn</b> ## | T. Cr** Fe** Ni** Cu** Zn** Gd** Hg** |                                                                                                             | <b>Pb</b> ## |
|       |                       | (mg/l)                                  |                                              | (mg/l)       |         |       |       |       |              |                                       |                                                                                                             |              |
| Chill | Chilka lake           |                                         |                                              |              |         |       |       |       |              |                                       |                                                                                                             |              |
| 1.    | 1. Rambha             | 2.424 (0.103-7.940)                     | 2.424 (0.103-7.940) 0.061(0.001-0.447) 0.008 |              | 0.021   | 1.158 | 0.005 | 0.008 | 0.026        | 0.0008                                | 0.021         1.158         0.005         0.008         0.026         0.0008         0.00032         0.0008 | 0.008        |
| 2.    | 2. Satapada           | 2.907 (0.017-8.788)   0.091             | 0.091 (0.002-0.676) <0.002                   |              | 0.027   | 7.660 | 0.007 | 0.010 | 0.043        | 900000                                | 0.027 7.660 0.007 0.010 0.043 0.0006 0.00013 0.006                                                          | 900.0        |

## Data for the period April, 2018

## (b) Fresh Water Lake

|       |                      | Phy           | Physical                 | Or    | ganic poll | Organic pollution Indicators | itors     | Bacteriologic                           | Bacteriological |           |         | Mineral constituents | constit | tuents  |                 |        |
|-------|----------------------|---------------|--------------------------|-------|------------|------------------------------|-----------|-----------------------------------------|-----------------|-----------|---------|----------------------|---------|---------|-----------------|--------|
| 5     | ;                    | рагат         | incici s                 |       |            |                              | Annual av | Annual average values (Range of values) | es (Range       | of values |         |                      |         |         |                 |        |
| No.   | Sampling<br>Location | TSS           | Total<br>alkal<br>-inity | ВОД   | СОО        | NH <sub>4</sub> -N           | TKN       | TC                                      | FC              | TDS       | B       | SAR                  | HI      | Cl      | SO <sub>4</sub> | Ħ      |
|       |                      | (m)           | (mg/l)                   |       |            | mg/l)                        |           | (MPN/                                   | (MPN/ 100 ml)   | (m)       | (mg/l)  |                      |         | (m)     | (mg/l)          |        |
| (a) A | (a) Anshupa Lake     |               |                          |       |            |                              |           |                                         |                 |           |         |                      |         |         |                 |        |
| 1.    | Kadlibari            | 38            | 69 (42-                  | 2.4   | 20.3       | 0.289                        | 4.69      | 2835                                    | 1031            |           | 0.064   | 0.42                 | 61      | 11.76   | 89.9            | 0.31   |
|       |                      | (9-72)        |                          | (1.0- | (10.2-     | (0.056-                      | (1.12-    | (230-                                   | (20-            |           | -200.0) | (0.27-               | (44-    | (7.40-  | (1.37-          | (0.12- |
|       |                      |               |                          | 3.9)  | 45.6)      | 1.008)                       | 10.08)    | 9200)                                   | 3500)           |           | 0.180)  | 0.58)                |         | 19.28)  | 21.64)          | 0.50)  |
| 2.    | Bishnupur            | 20            | 66 (42-   2.4            | 2.4   | 19.1       | 0.215                        | 4.27      | 2384                                    | 206             | -65) 26   | 0.049   |                      |         | 12.73   | 6.04            | 0.30   |
|       | ı                    | (3-32)        | (88)                     | (0.5- | (8.2-      | (0.056-                      | (0.56-    | -82                                     | (20-            | 118)      | (0.003- | .036-                |         | (7.40-  | (2.11-          | (0.17- |
|       |                      |               |                          | 4.4)  | 33.9)      | 0.570)                       | 8.40)     | 5400)                                   | 2400)           |           | 0.147)  |                      |         | 17.99)  | 23.13)          | 0.42)  |
| 3.    | Subarnapur           | 27            | 64 (44-                  | 2.0   | 17.6       | 0.228                        | 2.96      | 1602                                    | 722             | 95 (58-   | 0.039   | 0.45                 |         | 11.84   | 6.94            | 0.30   |
|       |                      | (1-302)       | 92) (0.6-                | -9.0) | (6.1-      | (0.056-                      | (0.56-    | -82                                     | (20-            | 148)      | (0.004- | (0.23-               | -98)    | (5.50-  | (1.36-          | (0.20- |
|       |                      |               |                          | 4.3)  | 28.8)      | (006.0                       | 6.72)     | 2800)                                   | 2400)           |           | 0.133)  | (06.0                |         | 21.98)  | 22.63)          | 0.59)  |
| 4.    | Sarandagarh          | 96            | -86 (38-                 | 2.4   | 18.2       |                              | 4.55      | 2648                                    | 1113            | 97 (58-   | -       | 0.44                 | 09      | 12.35   | 29.7            | 0.31   |
|       |                      | (1-264)       | (96                      | -8.0) | (1.2-      | (0.056-                      | (1.40-    | (93-                                    | (20-            | 118)      | (0.003- | (0.28-               |         | (7.40-  | (1.24-          | (0.19- |
|       |                      |               |                          | 4.8)  | 34.5)      |                              | 11.20)    | 9200)                                   | 3500)           |           | 0.136)  | 0.72)                | (08     | 19.99)  | 24.87)          | 0.48)  |
| (b) ] | (b) Tampara Lake     |               |                          |       |            |                              |           |                                         |                 |           |         |                      |         |         |                 |        |
| 5.    | Tampara              | 35            |                          | 8.6   | 60.3       | 0.125                        |           | 2083                                    | 836             | 357       | 0.147   | 2.30                 | 145     | 95.45   | 28.72           | 0.44   |
|       |                      | (16-71) (106- |                          | (4.4- | (29.9-     | (BDL-                        | (0.56-    | (40-                                    | (20-            | (198-     | (0.032- | -09.0)               | (112-   | (19.22- |                 | (0.34- |
|       |                      |               |                          | 16.9) | 90.3)      | 0.336)                       |           | 11000)                                  | 3300)           | (869      | 0.468)  | 7.25)                | 182)    | 289.85) | 62.28)          | 0.58)  |
| * Cla | * Class 'C'          | 1             | 1                        | 3.0   | ,          | -                            |           | 2000                                    |                 | 1500      | 1       | 1                    |         | 009     | 400             | 1.5    |

 $^{\ast}$  Tolerance limit for Inland Surface water bodies (IS-2296-1982) Class 'C' : Drinking water source with conventional treatment followed by disinfection



|             |                  | Nutrients                                               | ents                                      |           |                   |            |                                         | Heavy metals | etals |        |          |                               |
|-------------|------------------|---------------------------------------------------------|-------------------------------------------|-----------|-------------------|------------|-----------------------------------------|--------------|-------|--------|----------|-------------------------------|
| SI.         | Sampling         |                                                         |                                           | Annu      | al average        | e values ( | Annual average values (Range of values) | values)      |       |        |          |                               |
| No.         |                  | NO <sub>3</sub> .                                       | PO <sub>4</sub> <sup>3</sup> -P           | Cr(VI) ## | Cr(VI) ## T. Cr## | Fe##       | "iN                                     | Cu##         | Zn##  | Cq##   | Hg##     | $\mathbf{P}\mathbf{b}^{\#\#}$ |
|             |                  | (I/gm)                                                  | (1)                                       |           |                   |            |                                         | (mg/l)       | 1)    |        |          |                               |
| (a) A       | (a) Anshupa Lake |                                                         |                                           |           |                   |            |                                         |              |       |        |          |                               |
| 1.          | Kadlibari        | 2.913 (0.055-6.482)                                     | 2.913 (0.055-6.482)   0.128 (0.001-0.356) | 0.005     | 0.018             | 0.163      | 0.001                                   | 0.001        | 0.003 | 0.0005 | 9000000> | 0.005                         |
| 2.          | Bishnupur        | 3.566 (0.385-7.102)   0.129 (0.005-0.653)               | 0.129 (0.005-0.653)                       | 0.003     | 0.027             | 1.158      | 0.008                                   | 900.0        | 0.040 | 0.0004 | 0.00032  | 0.007                         |
| 3.          | Subarnapur       | Subarnapur   3.410 (0.158-18.744)   0.175 (0.001-0.001) | 0.175 (0.001-0.746)                       | 0.01      | 0.03              | 0.245      | 0.002                                   | 0.003        | 0.002 | 0.0004 | 0.00025  | 0.002                         |
| 4.          | Sarandagarh      | Sarandagarh   2.702 (0.411-10.452)   0.163 (0.001-0     | 0.163 (0.001-0.778)                       | 0.007     | 0.024             | 3.310      | 0.005                                   | 0.004        | 0.013 | 0.0004 | 0.00032  | 0.010                         |
| (b) T       | (b) Tampara Lake |                                                         |                                           |           |                   |            |                                         |              |       |        |          |                               |
| 5.          | Tampara          | 4.379 (0.170-22.546)   0.051 (0.001-0                   | 0.130)                                    | 0.012     | 0.032             | 0.163      | 0.022                                   | 0.008        | 0.042 | 0.0014 | 90000.0  | 900.0                         |
| * Class 'C' | ,S, S;           | 50                                                      | 1                                         | 0.05      | -                 | 20         | -                                       | 1.5          | 15.0  | 0.01   | 1        | 0.10                          |

 $<sup>^{\</sup>ast}$  Class 'C' : Drinking water source with conventional treatment followed by disinfection ## Data for the period April, 2018

Table-5.26 Coastal Water Quality with respect to Criteria parameters during 2018 (January-December)

|                      |                                                                                                          |                                            |               | Ann            | Annual average value (Range of values) | e value<br>lues)  |                          | Freque violation | Frequency of violation (Percent                    |                                       | Downwood                                                    |                     |
|----------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|----------------|----------------------------------------|-------------------|--------------------------|------------------|----------------------------------------------------|---------------------------------------|-------------------------------------------------------------|---------------------|
| SI.<br>No            | Sampling<br>Location                                                                                     | No. of Obs.                                |               |                | Parameters                             | rs                |                          | of vir<br>from d | of violation)<br>from designated<br>criteria value | Existing Class                        | responsible for downgrading                                 | Possible<br>Reason  |
|                      |                                                                                                          |                                            | Hd            | DO<br>(mg/l)   | BOD<br>(mg/l)                          | Turbidity,<br>NTU | FC<br>(MPN/100<br>ml)    | BOD              | FC                                                 |                                       | quality                                                     |                     |
| ].                   | Puri                                                                                                     |                                            |               |                |                                        |                   |                          |                  |                                                    |                                       |                                                             |                     |
| (a)                  | Swargadwara                                                                                              | 12                                         | 8.0 (7.6-8.4) | (5.8-7.9)      | 1.4 (0.5-2.8)                          | 7.1 (1.0-23.0)    | 41 (<1.8-330)            | 0                | 2 (17)                                             | II-MS                                 |                                                             |                     |
| (g)                  | (b) Bankimuhan                                                                                           | 12                                         | 7.9 (7.2-8.2) | 6.5 (5.7-8.2)  | 1.4 (0.3-2.4)                          | 7.1 (1.3-23.0)    | 2273<br>(<1.8-<br>16000) | 0                | (50)                                               | Does not<br>confirm to<br>Class-SW-II | FC                                                          | Human<br>activities |
| (C)                  | Baliapanda                                                                                               | 12                                         | 8.0 (7.5-8.3) | 6.5 (5.2-7.6)  | 1.3 (0.5-2.4)                          | 6.8 (1.6-14.0)    | 233<br>(<1.8-<br>2400)   | 0                | 2 (17)                                             | II-MS                                 |                                                             |                     |
| 2.                   | Gopalpur                                                                                                 | 12                                         | 7.9 (7.5-8.2) | 7.6 (5.8-9.8)  | 1.3 (0.5-2.3)                          | 4.4 (0.5-14.0)    | 34 (<1.8-230)            | 0                | 1 (8)                                              | II-MS                                 |                                                             |                     |
| 3.                   | Paradeep                                                                                                 | 12                                         | 7.9 (7.4-8.1) | 7.0 (6.1-8.6)  | 1.0 (0.2-2.6)                          | 9.9 43 (<1.8-490) | 43 (<1.8-490)            | 0                | (8)                                                | II-MS                                 |                                                             |                     |
| Wat<br>SW-]<br>G.S.] | Water quality criteria for Class<br>SW-II Waters (MOEF Notification<br>G.S.R. No. 742(E) Dt. 25.09.2000) | a for Class<br>Notification<br>25.09.2000) | 6.5-8.5       | 4.0 or<br>more | 3.0 or<br>less                         | 30 or less        | 100 or<br>less*          |                  |                                                    | For Bathing,<br>Con                   | For Bathing, Contact Water Sports and<br>Commercial Fishing | orts and            |

<sup>\*</sup> The average value not exceeding 200/100 ml in 20 percent of samples in the year and in 3 consecutive samples in monsoon months.



Contd..

| violation (Percent of violation) from designated criteria value  OD O&G FC  0 0 0 SW-IV  For Harbour Waters  Frequency of violation (Percent of violation) from designated criteria value  Class  Water quality  Reason  For Harbour Waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Existing Class SW-IV SW-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| On the control of the |
| 26 8 5 8 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| requen (interpretation) |
| A viol of v of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FC (MPN/100 BOD ml)  34 0 (<1.8-230) 43 0 (<1.8-490) 500 or less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| value les)  O&G, mg/1  0.6 (0.4- 0.8) 0.8 (0.6- 1.2) 10 or less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| al average nge of valt (mg/l) (mg/l) (0.5-2.3) (0.2-2.6) (0.2-2.6) or less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Annua (Rau (Ray II) (Ray III) (Ray III |
| 7.9<br>(7.5-8.2)<br>7.9<br>(7.4-8.1)<br><b>6.5-9.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| No. of Obs. 12 12 12 4OEF S.R. No. 9.2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sl. Sampling No. of No Location Obs.  1. Gopalpur 12  2. Paradeep 12  Water quality criteria for Class SW-IV Waters (MOEF Notification G.S.R. No. 742(F) Dt. 25,09,2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SI. No I.  Watt Critic SW-I. Notic Notic SW-I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table-5.27 Coastal Water Quality with respect to other parameters during 2018 (January- December)

|     |                 | Physical<br>parameters | ical<br>eters           | Organ                   | Organic polluti          | ion Indicators             | ators                   | Bacteriolo<br>-gical<br>parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                            | Mir                        | Mineral constituents       | stituents               |                                                                |                         |                         |
|-----|-----------------|------------------------|-------------------------|-------------------------|--------------------------|----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------|----------------------------------------------------------------|-------------------------|-------------------------|
| อ   | Sailmon         |                        |                         |                         |                          |                            | Ann                     | Annual average values (Range of values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alues (Ra                  | nge of va                  | dues)                      |                            |                         |                                                                |                         |                         |
| No. | Location        | TSS                    | Total<br>alkal<br>inity | СОБ                     | COD NH <sub>4</sub> -N   | Free<br>NH <sub>3</sub> -N | TKN                     | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EC                         | SAR                        | В                          | TDS                        | TH                      | CI                                                             | SO <sub>4</sub>         | ĬΉ                      |
|     |                 | (mg/l)                 | (1)                     |                         | /gm)                     | g/J)                       |                         | (MPN/<br>100 ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (µS/<br>cm)                |                            |                            |                            | (mg/l)                  | /I)                                                            |                         |                         |
| 1.  | Puri            |                        |                         |                         |                          |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |                            |                            |                         |                                                                |                         |                         |
| (a) | (a) Swargadwara | 376<br>(162-<br>618)   | 121<br>(80-<br>164)     | 43.4<br>(30.9-<br>59.4) | 0.117<br>(BDL-<br>0.560) | 0.005 (0-0.013)            | 1.84<br>(0.28-<br>4.48) | (<1.8-330) (35620- (48.16- (0.021- (27600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- (3600- ( | 46692<br>(35620-<br>62200) | 72.21<br>(48.16-<br>92.47) | 1.916<br>(0.021-<br>3.492) | 39617<br>(27600-<br>52400) | 5086<br>(3600-<br>6800) | 21559 2792 0.64<br>(14942- (2077- (0.45-<br>28986) 3539) 1.00) | 2792<br>(2077-<br>3539) | 0.64<br>(0.45-<br>1.00) |



|             | F                          |                  | 0.61<br>(0.39-<br>1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.62<br>(0.42-<br>1.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.64<br>(0.41-<br>0.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60<br>(0.24-<br>0.91)                                                                                                                                                                                                                                                                                                                             |
|-------------|----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | $SO_4$                     |                  | 2789<br>(2230-<br>3719)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2806<br>(2031-<br>3719)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2640<br>(1095-<br>3850)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2580<br>(1327-<br>3575)                                                                                                                                                                                                                                                                                                                             |
|             | Cl                         | (L/              | 21602<br>(15424-<br>29985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21360<br>(14460-<br>30985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20499<br>(15857-<br>30485)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19871<br>(12493-<br>27986)                                                                                                                                                                                                                                                                                                                          |
|             | ТН                         | gm)              | 4970<br>(3520-<br>6600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5131<br>(3400-<br>6600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5426<br>(3440-<br>6800)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4871<br>(3680-<br>5920)                                                                                                                                                                                                                                                                                                                             |
|             | TDS                        |                  | 39634<br>(28400-<br>53810)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39254<br>(27200-<br>54500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37593<br>(29710-<br>53100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36470<br>(23360-<br>47100)                                                                                                                                                                                                                                                                                                                          |
| lues)       | В                          |                  | 1.892<br>(0.003-<br>3.126)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.869<br>(0.045-<br>3.215)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.081<br>(0.305-<br>3.903)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.159<br>(0.045-<br>3.896)                                                                                                                                                                                                                                                                                                                          |
| inge of va  | SAR                        |                  | 78.75<br>(57.56-<br>104.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.16<br>(55.11-<br>101.93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.33<br>(50.39-<br>105.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.21<br>(57.96-<br>101.96)                                                                                                                                                                                                                                                                                                                         |
| values (Ra  | EC                         | (µS/cm)          | 45963<br>(34020-<br>59950)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45672<br>(34360-<br>61080)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46646<br>(37820-<br>59970)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44428<br>(30180-<br>56480)                                                                                                                                                                                                                                                                                                                          |
| ual average | TC                         | (MPN/<br>100 ml) | 2718<br>(<1.8-<br>16000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270<br>(<1.8-2400)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114 (<1.8-790)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91<br>(<1.8-940)                                                                                                                                                                                                                                                                                                                                    |
| Ann         | TKN                        |                  | 3.20<br>(0.06-<br>7.56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.66<br>(0.56-<br>10.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.59<br>(0.56-<br>7.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.87<br>(0.56-<br>8.40)                                                                                                                                                                                                                                                                                                                             |
|             | Free<br>NH <sub>3</sub> -N | 3/1)             | 0.006<br>(0-<br>0.018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.012<br>(0-<br>0.045)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.004<br>(0-<br>0.007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008<br>(0-<br>0.036)                                                                                                                                                                                                                                                                                                                              |
|             | NH <sub>4</sub> -N         | îu)              | 0.106<br>(BDL-<br>0.330)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.177<br>(BDL-<br>0.560)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.102<br>(BDL-<br>0.560)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.102<br>(BDL-<br>0.560)                                                                                                                                                                                                                                                                                                                            |
|             | СОБ                        |                  | 45.1<br>(27.2-<br>59.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.2<br>(25.5-<br>59.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.0<br>(32.1<br>(57.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.4<br>(25.5-<br>59.4)                                                                                                                                                                                                                                                                                                                             |
|             | Total<br>alkal<br>inity    | (1/2)            | 136<br>(88-<br>232)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125<br>(92-<br>180)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126<br>(92-<br>154)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125<br>(96-<br>146)                                                                                                                                                                                                                                                                                                                                 |
|             | LSS                        | gm)              | 324<br>(65-<br>548)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350<br>(53-<br>674)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 275<br>(14-<br>508)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 567<br>(136-<br>1400)                                                                                                                                                                                                                                                                                                                               |
| Committee   | Location                   |                  | Bankimuhan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Baliapanda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gopalpur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Paradeep                                                                                                                                                                                                                                                                                                                                            |
| อ           | No.                        |                  | (p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.                                                                                                                                                                                                                                                                                                                                                  |
|             |                            |                  | Sampling Location TSS alkal -inity -i | Sampling Location         TSS alkal inity         COD         NH₄-N         Free (MBN/s) (NH3-N)         TC         EC         B         TDS         TDS         TH         CI         SO₄           Bankimuhan (65- (88- (27.2- (88- (27.2- (88- (27.2- (89- (32.2- (89- (32.2- (33.0) (9.36) (3.20) (9.38)) (9.018) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20) (3. | Sampling Location         Total inity         NH <sub>4</sub> ·N         Free (BDL- (27.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) ( | Sampling Location         TS         Inity         Cond         NH₄-N         Free Riapaanda         TKN         TC         EC         EC         Baliapanda         SSAR         ISS         TDS         TTM         TC         EC         SAR         TDS         TTM         COLUMANIANIAN         COLUMANIANIANIANIANIANIANIANIANIANIANIANIANIA |

| LOCATION         Annual average values (Range of values)         Cr(VI) ##         T. Cr*#         Fe##         Ni##           NO3-         (mg/l)         (mg/l)         Fe##         Ni##           Puri         (mg/l)         (mg/l)         Annual average values (Range of values)         (mg/l)         Fe##         Ni##           Puri         (mg/l)         Annual average values (Range of values)         (mg/l)         Annual average (Range of values)         Annual average of (Range of Values) <th>SI.</th> <th>Sampling</th> <th>Nutrients</th> <th></th> <th>Heavy metals</th> <th>stals</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | SI. | Sampling    | Nutrients             |                                 | Heavy metals | stals   |       |       |       |       |                    |           |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-----------------------|---------------------------------|--------------|---------|-------|-------|-------|-------|--------------------|-----------|-------|
| MO3:         NO3:         PO43-P         Cr(VI) ##         T. Cr##           Puri         (mg/l)         1. Cr##         T. Cr##           Swargadwara         5.359 (0.529-35.490)         0.068 (0.001-0.278)         <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OZ  | LOCAUOII    | Annual average values | ; (Range of values)             |              |         |       |       |       |       |                    |           |       |
| Puri         (mg/l)         (mg/l)           Swargadwara         5.359 (0.529-35.490)         0.068 (0.001-0.278)         <0.002         0.018           Baliapanda         7.153 (0.286-35.491)         0.106 (0.001-0.278)         <0.002         1.193           Gopalpur         1.605 (0.486-5.790)         0.063 (0.001-0.278)         <0.002         0.013           Paradeep         2.044 (0.596-4.809)         0.073 (0.001-0.221)         0.003         0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |             |                       | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI) ##    | T. Cr## | Fe##  | Ni##  | Cu##  | Zn##  | Cd##               | $^{\#\#}$ | Pb##  |
| Puri         Swargadwara       5.359 (0.529-35.490)       0.068 (0.001-0.278)       <0.002       0.018         Bankimuhan       7.153 (0.316-47.213)       0.106 (0.001-0.321)       <0.002       1.193         Baliapanda       5.675 (0.286-35.491)       0.103 (0.001-0.278)       <0.002       0.012         Gopalpur       1.605 (0.486-5.790)       0.063 (0.001-0.331)       <0.003       0.013         Paradeep       2.044 (0.596-4.809)       0.073 (0.001-0.221)       0.003       0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |             | (mg/l)                |                                 | (mg/l)       |         |       |       |       |       |                    |           |       |
| Swargadwara       5.359 (0.529-35.490)       0.068 (0.001-0.278)       <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.  | Puri        |                       |                                 |              |         |       |       |       |       |                    |           |       |
| Bankimuhan         7.153 (0.316-47.213)         0.106 (0.001-0.321)         <0.002         1.193           Baliapanda         5.675 (0.286-35.491)         0.103 (0.001-0.278)         <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Swargadwara | 5.359 (0.529-35.490)  | 0.068 (0.001-0.278)             | <0.002       | 0.018   | 1.142 | 0.007 | 0.020 | 0.041 | 0.0009             | <0.00006  | 0.009 |
| Baliapanda         5.675 (0.286-35.491)         0.103 (0.001-0.278)         <0.002         0.012           Gopalpur         1.605 (0.486-5.790)         0.063 (0.001-0.331)         <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Bankimuhan  | 7.153 (0.316-47.213)  | 0.106 (0.001-0.321)             | <0.002       | 1.193   | 1.193 | 0.007 | 0.018 | 0.024 | 0.018 0.024 0.0008 | <0.00006  | 0.009 |
| 1.605 (0.486-5.790)     0.063 (0.001-0.331)     <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Baliapanda  | 5.675 (0.286-35.491)  | 0.103 (0.001-0.278)             |              | 0.012   | 2.591 | 0.007 | 0.019 | 0.037 | 0.0008             | <0.00006  | 0.009 |
| 2.044 (0.596-4.809)   0.073 (0.001-0.221)   0.003   0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.  | Gopalpur    | 1.605 (0 .486-5.790)  |                                 |              | 0.013   | 0.561 | 0.008 | 0.003 | 0.014 | 0.0011             | 9000000   | 0.008 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.  | Paradeep    | 2.044 (0.596-4.809)   |                                 | 0.003        | 0.018   | 2.096 | 900.0 | 900.0 | 0.019 | 0.0016             | <0.00006  | 0.008 |

## Data for the period April, 2018



## (E) Creek Water Quality Monitoring

Board monitors the water quality of Atharabanki creek on regular basis. The creek flows along the boundary wall of Paradeep Phosphate Ltd. (PPL) and joins river Mahanadi near its confluence with Bay of Bengal. Atharabanki river also act as a receiving water body for treated effluents from M/s Paradeep Phosphates Limited and M/s Indian Farmers Fertilizer Cooperative operating at Paradeep.

Annual average and range values of the water quality parameters of the creek during the year 2018 is given in Table-5.28. Assessment of the creek water quality status have been done based on the best use and type of activities in the water segment.

Comparison of the Atharabanki creek water quality data with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) reveals non-compliance with respect to DO, BOD and FC. This may be attributed to the discharge of domestic wastewater into the creek and other human activities. Fluoride concentration in the creek water varied with the range 0.28-8.00 mg/l with an annual average value of 3.47 mg/l.



Table-5.28 Water Quality of Atharabanki Creek during 2018 (January-December)

|                                                    | ره                        |                                          | ی م                                |                                                                                                                   |
|----------------------------------------------------|---------------------------|------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                    | Possible                  | Keason                                   | Human<br>activities                | orts and                                                                                                          |
| Parameters<br>respon-                              | sible for<br>down-        | grading<br>the water<br>quality          | DO, BOD,<br>FC                     | ıct Water Spc<br>ıg                                                                                               |
|                                                    | Existing Class            | )                                        | Does not confirm<br>to Class-SW-II | For Bathing, Contact Water Sports and<br>Commercial Fishing                                                       |
| ation<br>1) from                                   | value                     | FC                                       | 12 (100)                           |                                                                                                                   |
| of viol<br>iolatio                                 | riteria                   | DO BOD FC                                | 4 (33)                             |                                                                                                                   |
| Frequency of violation (Percent of violation) from | designated criteria value | DO                                       | 3 (25)                             |                                                                                                                   |
| Fre<br>(Perc                                       | desi                      | Hd                                       | 0                                  |                                                                                                                   |
|                                                    |                           | FC<br>(MPN/100<br>ml)                    | 2709 (<1.8-16000)                  | 100 or less                                                                                                       |
| Annual average value (Range of values)             | eters                     | DO BOD Turbidi-<br>(mg/l) (mg/l) ty, NTU | 10.8<br>(4.5-<br>24.0)             | or 30 or<br>less                                                                                                  |
| ual ave                                            | Parameters                | BOD<br>(mg/l)                            | 3.3<br>(0.8-<br>7.9)               | 3.0 or<br>less                                                                                                    |
| Ann<br>(R                                          |                           |                                          | 7.2 5.3 3.3 (6.9- (2.6-8.2) 7.9)   | 4.0 or<br>more                                                                                                    |
|                                                    |                           | Hď                                       | 7.2<br>(6.9-<br>7.7)               | 6.5-<br>8.5                                                                                                       |
|                                                    | No. of Obs.               |                                          | 12                                 | Water quality criteria for Class 6.5-<br>SW-II Waters (MOEF Notification 8.5<br>G.S.R. No. 742(E) Dt. 25.09.2000) |
|                                                    | Sl. Sampling              | госапоп                                  | Athar-<br>abanki<br>Creek          | er quality c<br>I Waters (M<br>R. No. 742(E                                                                       |
|                                                    | SI.                       | O<br>Z                                   | 1.                                 | Wate<br>SW-1<br>G.S.1                                                                                             |

ontd

|                                                  |                                 | F                                            |                  | 3.47<br>(0.28-<br>8.00)                                     |
|--------------------------------------------------|---------------------------------|----------------------------------------------|------------------|-------------------------------------------------------------|
|                                                  |                                 | ${ m SO}_4$                                  |                  | 934.1<br>(84.1-<br>2661.7)                                  |
|                                                  |                                 | CI                                           |                  | 6508.9 934.1 (385.6- (84.1-11994.0) 2661.7)                 |
|                                                  |                                 | нт                                           |                  | 1652<br>(192-<br>3800)                                      |
|                                                  |                                 | тря тн                                       |                  | 12317<br>(952-<br>21290)                                    |
| ıts                                              |                                 | В                                            | (mg/l)           | 35.18 0.857 12317 (0.29- (0.070- (952- 72.07) 2.440) 21290) |
| nstituer                                         |                                 | SAR                                          |                  | 35.18<br>(0.29-<br>72.07)                                   |
| Mineral cc                                       |                                 | EC                                           | (m2/sn)          | 16199<br>(1500-<br>28760)                                   |
| Bacteriolo Mineral constituents -gical parameter |                                 | TC                                           | (MPN/<br>100 ml) | 0.001 4.7 3844<br>(0- (1.1- (20-16000)<br>0.007) 13.4)      |
|                                                  |                                 | TKN                                          |                  | 4.7<br>(1.1-<br>13.4)                                       |
| ion                                              | values)                         | Free TKN TC NH <sub>3</sub> -N               |                  |                                                             |
| Organic pollution<br>Indicators                  | ange of                         | NH <sub>4</sub> -N                           |                  | 29.6 0.300<br>(7.9- (BDL-<br>54.6) 1.120)                   |
| Organi<br>Indicat                                | alues (I                        | COD                                          | (mg/l)           | 29.6<br>(7.9-<br>54.6)                                      |
| ers                                              | Annual average values (Range of | TSS Total COD NH <sub>4</sub> -N alkal inity |                  | 116<br>(64-<br>232)                                         |
| Physical<br>parameters                           | Annual a                        | LSS                                          | (Ing/l)          | 161<br>(17-<br>370)                                         |
| Sampling<br>Location                             |                                 |                                              |                  | Atharabanki<br>Creek                                        |
| SI.<br>No.                                       |                                 |                                              |                  | 1.                                                          |

Contd..

| SI. | Sampling             | Nutrients                    |                                 | Heavy metals | tals    |       |       |       |       |        |                                                       |       |
|-----|----------------------|------------------------------|---------------------------------|--------------|---------|-------|-------|-------|-------|--------|-------------------------------------------------------|-------|
| OZ  | Location             | Annual average values (Range | alues (Range of values)         | lues)        |         |       |       |       |       |        |                                                       |       |
|     |                      | NO <sub>3</sub> .            | PO <sub>4</sub> <sup>3</sup> -P | Cr(VI) ##    | T. Cr## | Fe##  | Ni##  | Cn##  | Zn##  | Cd##   | Cr(VI) *** T. Cr** Fe** Ni** Cu** Zn** Gd** Hg** Pb** | Pb##  |
|     |                      | (mg/l)                       |                                 | (mg/l)       |         |       |       |       |       |        |                                                       |       |
| 1.  | Atharabanki<br>Creek | 8.082<br>(1.120-18.076)      | 1.975 (0.268-<br>8.068)         | 0.005        | 0.013   | 1.244 | 900.0 | 0.004 | 0.015 | 0.0008 | 0.013 1.244 0.006 0.004 0.015 0.0008 0.00006          | 0.009 |

ND + Not Detected ## Data for the period April, 2018



## (F) Biomonitoring of Water Bodies

Biomonitoring of water quality is useful for assessing the over-all biological health of the water bodies. This indicates any disruption in ecological balance of the water bodies caused by the changes in its physical and chemical environment. Thus, measurement of the level of the ecological degradation would indicate the extent of pollution. Benthos are regarded as the best indicator of pollution as they are sedentary, sessile, long-lived and easily collectable.

To assess the actual health of water bodies, Central Pollution Control Board (CPCB) has derived a Biological Water Quality Criteria (BWQC) for water quality evaluation. This system is based on the range of saprobic values and diversity of the benthic macroinvertebrate families with respect to water quality. The entire taxonomic groups, with their range of saprobic score from 1 to 10, in combination with the range of diversity score from 0 to 1 has been classified into five groups as stated in Table-5.29.

Table- 5.29 Biological Water Quality Class

| Sl.<br>No. | Taxonomic Group                                                                                                                                   | Range of<br>Saprobic score | Range of<br>Diversity score | Water Quality<br>Characteristic | Water<br>Quality Class |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|---------------------------------|------------------------|
| 1          | Ephemeroptera, Plecoptera, Trichoptera,<br>Hemiptera, Diptera                                                                                     | 7 and more                 | 0.2-1.0                     | Clean                           | A                      |
| 2          | Ephemeroptera, Plecoptera, Trichoptera,<br>Hemiptera, Odonata, Diptera                                                                            | 6-7                        | 0.5-1.0                     | Slight Pollution                | В                      |
| 3          | Ephemeroptera, Plecoptera, Trichoptera,<br>Hemiptera, Odonata, Diptera, Crustacea,<br>Mollusca, Polychaeta, Coleoptera,<br>Hirudinea, Oligochaeta | 3-6                        | 0.3-0.9                     | Moderate<br>Pollution           | С                      |
| 4          | Mollusca, Hemiptera, Coleoptera,<br>Diptera, Oligochaeta                                                                                          | 2-5                        | 0.4 & less                  | Heavy Pollution                 | D                      |
| 5          | Diptera, Oligochaeta, No animals                                                                                                                  | 0-2                        | 0-0.2                       | Severe Pollution                | Е                      |

Biomonitoring studies were carried out at 28 selected stations during 2018. Biological data generated from these stations were analysed for computing the saprobity indices (SI) and diversity indices (DI), which are presented in Table-5.30. From the Table it is evident that the biological water quality class at nine stations conform to the Class 'B-C' (slight to moderate pollution), at six stations conform to Class B (slight pollution) and at thirteen stations conform to Class C (moderate pollution) water quality.

Table-5.30 Biomonitoring of River Bodies (2018)

|       | Station           | Annual Avera<br>(Range of v |                    | Existing Biological    |
|-------|-------------------|-----------------------------|--------------------|------------------------|
|       |                   | Saprobity<br>Index          | Diversity<br>Index | Water<br>Quality Class |
| (A) N | /ahanadi          |                             |                    |                        |
| 1.    | Brajarajnagar U/s | 5.71                        | 0.592              | С                      |
| 2.    | Brajarajnagar D/s | 6.30 (6.20-6.50)            | 0.57 (0.50-0.60)   | В-С                    |
| 3.    | Sambalpur U/s     | 4.98 (4.70-5.25)            | 0.70 (0.60-0.79)   | С                      |
| 4.    | Sambalpur D/s     | 4.89 (4.20-5.30)            | 0.65 (0.40-0.86)   | С                      |
| 5.    | Cuttack U/s       | 6.16 (5.71-6.60)            | 0.68 (0.58-0.77)   | В-С                    |
| 6.    | Cuttack D/s       | 4.73 (4.20-5.00)            | 0.58 (0.48-0.75)   | С                      |



|         | Station                   | Annual Avera<br>(Range of v |                    | Existing Biological<br>Water |
|---------|---------------------------|-----------------------------|--------------------|------------------------------|
|         |                           | Saprobity<br>Index          | Diversity<br>Index | Quality Class                |
| 7.      | Cuttack U/s (Kathajodi)   | 5.90 (5.60-6.20)            | 0.46 (0.38-0.55)   | В-С                          |
| 8.      | Cuttack D/s (Kathajodi)   | 5.60 (5.20-6.00)            | 0.54 (0.47-0.60)   | С                            |
| 9.      | Bhubaneswar U/s (Kuakhai) | 5.88 (5.16-6.60)            | 0.74 (0.70-0.77)   | В-С                          |
| 10.     | Bhubaneswar D/s (Daya)    | 4.83 (4.20-5.25)            | 0.65 (0.55-0.75)   | С                            |
| 11.     | Choudwar D/s (Birupa)     | 5.60 (5.30-5.80)            | 0.53 (0.37-0.68)   | С                            |
| (B) Br  | ahmani                    |                             |                    |                              |
| 12.     | Panposh U/s               | 5.70 (5.60-5.80)            | 0.69 (0.60-0.78)   | С                            |
| 13.     | Panposh D/s               | 5.57 (5.40-5.70)            | 0.63 (0.54-0.82)   | С                            |
| 14.     | Rourkela D/s              | 5.77 (5.75-5.80)            | 0.64 (0.58-0.70)   | С                            |
| 15.     | Talcher U/s               | 5.83 (5.00-6.50)            | 0.63 (0.49-0.81)   | В-С                          |
| 16.     | Talcher D/s               | 5.57 (5.22-5.80)            | 0.65 (0.52-0.73)   | С                            |
| (C) Rı  | ıshikulya                 |                             |                    |                              |
| 17.     | Potagarh                  | 5.59 (4.68-6.50)            | 0.67 (0.51-0.83)   | В-С                          |
| (D) Na  | agavali                   |                             |                    |                              |
| 18.     | Penta U/s                 | 6.30 (6.20-6.50)            | 0.60 (0.52-0.75)   | В                            |
| 19.     | J. K. Pur D/s             | 5.50 (5.00-6.00)            | 0.60 (0.40-0.80)   | С                            |
| 20.     | Rayagada D/s              | 6.47 (6.40-6.50)            | 0.62 (0.54-0.75)   | В                            |
| (E) Su  | barnarekha                |                             |                    |                              |
| 21.     | Rajghat                   | 6.35 (6.10-6.60)            | 0.63 (0.58-0.68)   | В                            |
| (F) Bu  | dhabalnga                 |                             |                    |                              |
| 22.     | Baripada D/s              | 6.14 (5.57-6.70)            | 0.57 (0.56-0.58)   | В-С                          |
| 23.     | Balasore U/s              | 5.58 (5.40-5.75)            | 0.52 (0.32-0.71)   | С                            |
| 24.     | Balasore D/s              | 6.35 (6.00-6.70)            | 0.62 (0.47-0.77)   | В-С                          |
| (G) K   | erandi                    |                             |                    |                              |
| 25.     | Sunabeda                  | 6.20 (6.20-6.20)            | 0.65 (0.60-0.70)   | В                            |
| (H) Va  | nsadhara                  |                             |                    |                              |
| 26.     | Muniguda                  | 6.18 (6.00-6.33)            | 0.60 (0.48-0.75)   | B-C                          |
| 27.     | Gunupur                   | 6.22 (6.10-6.30)            | 0.53 (0.52-0.54)   | В                            |
| (I) Ind | ravati                    |                             |                    |                              |
| 28.     | Nawarangpur               | 6.6                         | 0.7                | В                            |

118 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_\_\_



## G) Ground water quality status

The Board monitors ground water quality at 48 locations in eleven major towns of the State, such as, Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jajpur (Sukinda), Jhasruguda, Puri, Sambalpur and Talcher. Ground water quality status during the year 2018 at these locations alongwith the acceptable and Permissible limit for drinking water under IS: 10500-2012 are given in Table-5.31.

pH of ground water at Kuanrpur in Balasore, Kalpana-Laxmisagar area of Bhubaneswar during April and in Khandagiri and Capital Hospital area in Bhubaneswar during October is found to be beyond the permissible range of 6.5-8.5. pH at all other places remained well within the permissible range.

Fluoride in Kuanrpur of Balaosre and Kulad in Talcher area during the month of April and October and in MKCG Medical College area in Berhampur during the month of October exceeds the Permissible limit for drinking water i.e. 1.5 mg/l.

Frequent occurrence of total coliform and fecal coliform bacteria above the permissible limit (should be absent in 100 ml sample) are observed in the ground water at some of the monitored locations.

Table-5.31 Ground water Quality Status (Tube well) (2018)

| Monitoring<br>Station | Month of<br>Monitoring | Hd     | Cond., µS/<br>cm | BOD, mg/1 | COD, mg/l | Turbidity,<br>NTU | TDS, mg/l | TFS | Total<br>Alkalinity,<br>mg/l | Total<br>Hardness<br>CaCO <sub>3</sub> , mg/l | Calcium as<br>Ca, mg/l | Magnesium<br>as Mg, mg/l | Chloride,<br>mg/l | Sulphate,<br>mg/l | Nitrate, mg/l | NH <sub>4</sub> -N, mg/l |
|-----------------------|------------------------|--------|------------------|-----------|-----------|-------------------|-----------|-----|------------------------------|-----------------------------------------------|------------------------|--------------------------|-------------------|-------------------|---------------|--------------------------|
| 1. ANGUL              | (2 stati               | ons)   |                  |           |           |                   |           |     |                              |                                               |                        |                          |                   |                   |               |                          |
| 1. Angul              | April                  | 7.3    | 1120             | 0.6       | 4.0       | 15                | 658       | 624 | 316                          | 316                                           | 83.2                   | 26.3                     | 145.9             | 83.58             | 34.697        | ND                       |
| Township              | Oct                    | 7.8    | 1136             | 0.3       | 1.7       | 7.6               | 642       | 618 | 176                          | 320                                           | 75.2                   | 32.2                     | 138.9             | 184.1             | 10.835        | 0.224                    |
| 2. NALCO              | April                  | 8.1    | 519              | 0.5       | 5.9       | 0.3               | 326       | 308 | 240                          | 216                                           | 56                     | 18.5                     | 45.97             | 20.02             | 3.682         | 0.22                     |
| township              | Oct                    | 7.9    | 703              | 0.5       | 3.4       | 9                 | 386       | 362 | 194                          | 246                                           | 52.8                   | 27.8                     | 22.2              | 124.1             | 7.552         | 0.224                    |
| 2. BALASO             | RE (3                  | statio | ns)              |           |           |                   |           |     |                              |                                               |                        |                          |                   |                   |               |                          |
| 3. Naigo-             | April                  | 8.1    | 131              | 0.2       | 2.0       | 6.4               | 84        | 68  | 64                           | 52                                            | 15.2                   | 3.4                      | 7.99              | 4.85              | 7.093         | 0.79                     |
| palpur                | Oct                    | 7.0    | 182              | 0.8       | 3.4       | 2                 | 110       | 92  | 64                           | 44                                            | 12                     | 3.4                      | 7.4               | 17.16             | 0.049         | ND                       |
| 4.                    | April                  | 8.6    | 253              | 0.5       | 4.0       | 3.2               | 145       | 124 | 28                           | 62                                            | 17.6                   | 4.4                      | 46.97             | 10.39             | 2.265         | ND                       |
| Kuanrpur              | Oct                    | 7.6    | 344              | 0.5       | 1.7       | 3.5               | 186       | 174 | 74                           | 68                                            | 19.2                   | 4.9                      | 57.4              | 12.4              | 1.508         | ND                       |
| 5.                    | April                  | 8.1    | 339              | 1.3       | 2.0       | 1.4               | 211       | 188 | 102                          | 112                                           | 31.2                   | 8.3                      | 39.98             | 28.98             | 6.429         | 0.45                     |
| Chakulia              | Oct                    | 6.8    | 459              | 0.3       | 1.7       | 3                 | 268       | 248 | 102                          | 146                                           | 43.2                   | 9.3                      | 59.3              | 47.51             | 6.920         | ND                       |
| 3. BERHAM             | PUR (4                 | stat   | ions)            |           |           |                   |           |     |                              |                                               |                        |                          |                   | •                 |               |                          |
| 6. Near               | April                  | 7.9    | 973              | 0.4       | 7.9       | 2.1               | 542       | 512 | 208                          | 268                                           | 68.8                   | 23.4                     | 126.9             | 88.68             | 1.533         | ND                       |
| Railway<br>station    | Oct                    | 7.4    | 1545             | 0.8       | 9.6       | 2.3               | 1012      | 996 | 332                          | 356                                           | 94.4                   | 29.2                     | 342.6             | 98.9              | 32.117        | ND                       |
| 7. MKCG               | April                  | 8.1    | 736              | 0.3       | 13.9      | 6.2               | 429       | 402 | 180                          | 180                                           | 54.4                   | 10.7                     | 111.9             | 47.14             | 5.834         | ND                       |
| Medical<br>College    | Oct                    | 8.1    | 854              | 0.3       | 11.5      | 6.5               | 468       | 446 | 244                          | 250                                           | 60.8                   | 23.9                     | 101.9             | 54.72             | 0.529         | 0.224                    |
| 8. Bus                | April                  | 7.7    | 1083             | 0.4       | 7.9       | 0.9               | 629       | 588 | 322                          | 296                                           | 75.2                   | 26.3                     | 168.9             | 39.05             | 8.126         | ND                       |
| stand                 | Oct                    | 7.7    | 1232             | 0.6       | 7.8       | 13                | 972       | 926 | 398                          | 292                                           | 65.6                   | 31.2                     | 342.6             | 34.7              | 0.371         | 0.112                    |
| 9.                    | April                  | 7.9    | 904              | 0.5       | 5.9       | 1.6               | 531       | 498 | 86                           | 144                                           | 40                     | 10.7                     | 196.9             | 84.82             | 0.842         | ND                       |
| Badabazar             | Oct                    | 7.4    | 1439             | 0.5       | 11.5      | 2.2               | 902       | 842 | 234                          | 328                                           | 75.2                   | 34.1                     | 342.6             | 76.24             | 91.553        | 0.224                    |



| Monitoring<br>Station                                          | Month of<br>Monitoring | Hd     | Cond., µS/<br>cm | BOD, mg/l | COD, mg/l | Turbidity,<br>NTU | TDS, mg/l | TFS | Total Alkalinity, mg/l | Total<br>Hardness<br>CaCO <sub>3</sub> , mg/l | Calcium as<br>Ca, mg/l | Magnesium<br>as Mg, mg/l | Chloride,<br>mg/l | Sulphate,<br>mg/l | Nitrate, mg/l | NH <sub>4</sub> -N, mg/l |
|----------------------------------------------------------------|------------------------|--------|------------------|-----------|-----------|-------------------|-----------|-----|------------------------|-----------------------------------------------|------------------------|--------------------------|-------------------|-------------------|---------------|--------------------------|
| 4. BHUBAN                                                      | ESWAR                  | (6 st  | ations           | )         |           |                   |           |     | ,                      |                                               |                        |                          | ,                 |                   | ,             |                          |
| 10.                                                            | April                  | 7.4    | 624              | 0.6       | 5.9       | 45                | 406       | 368 | 98                     | 108                                           | 30.4                   | 7.8                      | 129.94            | 53.48             | 7.172         | ND                       |
| Khandagiri<br>Area                                             | Oct                    | 5.4    | 382              | 0.4       | 5.1       | 7.3               | 202       | 178 | 24                     | 98                                            | 26.4                   | 7.8                      | 63                | 47.14             | 21.476        | ND                       |
| 11. Old<br>town-Sa-                                            | April                  | 6.8    | 762              | 0.4       | 7.9       | 0.9               | 442       | 402 | 80                     | 138                                           | 36.8                   | 11.2                     | 135.93            | 94.03             | 20.283        | 0.11                     |
| mantara-<br>pur Area                                           | Oct                    | 7.3    | 658              | 0.5       | 3.4       | 6.6               | 252       | 224 | 206                    | 194                                           | 40.8                   | 22.4                     | 42.6              | 55.1              | 14.484        | 0.056                    |
| 12.                                                            | April                  | 5.8    | 276              | 0.4       | 5.9       | 2.4               | 158       | 132 | 22                     | 44                                            | 14.4                   | 1.9                      | 61.96             | 15.34             | 15.385        | 0.11                     |
| Kalpana-<br>Laxmisagar<br>Area,                                | Oct                    | 6.8    | 624              | 0.5       | 6.8       | 9.3               | 222       | 198 | 104                    | 146                                           | 33.6                   | 15.1                     | 17.8              | 61.69             | 20.397        | ND                       |
| 13.                                                            | April                  | 6.6    | 84               | 0.6       | 5.9       | 2.2               | 48        | 36  | 22                     | 28                                            | 8                      | 1.9                      | 3.99              | 8.83              | 4.561         | ND                       |
| Chandra<br>sekharpur                                           | Oct                    | 6.8    | 197              | 0.3       | 3.4       | 9.5               | 146       | 126 | 56                     | 84                                            | 23.2                   | 6.3                      | 22.2              | 36.81             | 3.971         | 0.336                    |
| 14. Capital<br>Hospital                                        | April                  | 6.7    | 91               | 0.7       | 5.9       | 17                | 58        | 44  | 18                     | 24                                            | 6.4                    | 1.9                      | 15.99             | 4.28              | 2.869         | ND                       |
| Area                                                           | Oct                    | 6.2    | 263              | 0.3       | 5.1       | 8.4               | 198       | 156 | 36                     | 52                                            | 15.2                   | 3.4                      | 52.6              | 41.16             | 9.923         | 0.224                    |
| 15. Sec-                                                       | April                  | 7.2    | 329              | 0.6       | 5.9       | 24                | 203       | 188 | 120                    | 114                                           | 31.2                   | 8.8                      | 37.98             | 16.04             | 8.773         | 0.17                     |
| retari-<br>ate-Gov-<br>ernor<br>House-Old<br>bus stand<br>Area | Oct                    | 6.7    | 302              | 0.6       | 5.1       | 9.5               | 192       | 176 | 100                    | 120                                           | 31.2                   | 10.2                     | 22.2              | 42.78             | 5.160         | ND                       |
| 5. CUTTAC                                                      | CK (5 st               | ations | s)               |           |           |                   |           |     |                        |                                               |                        |                          |                   |                   |               |                          |
| 16.                                                            | April                  | 8.2    | 819              | 0.2       | 4.0       | 3                 | 445       | 402 | 186                    | 232                                           | 65.6                   | 16.6                     | 85.95             | 83.58             | 35.957        | ND                       |
| Jagatpur                                                       | Oct                    | 8.0    | 689              | 0.3       | 3.4       | 8.8               | 388       | 324 | 190                    | 210                                           | 44.8                   | 23.9                     | 76                | 53.48             | 36.578        | ND                       |
| 17. Manga-                                                     | April                  | 8.4    | 217              | 0.3       | 5.9       | 5.9               | 143       | 128 | 112                    | 118                                           | 36.8                   | 6.3                      | 11.99             | 6.46              | 6.953         | 0.11                     |
| labag                                                          | Oct                    | 7.8    | 324              | 0.6       | 3.4       | 11                | 188       | 164 | 106                    | 106                                           | 28.8                   | 8.3                      | 22                | 32.21             | 0.833         | 0.112                    |
| 18. Mad-<br>hupat-                                             | April                  | 8.0    | 382              | 0.3       | 4.0       | 0.5               | 214       | 188 | 102                    | 104                                           | 32.8                   | 5.4                      | 51.97             | 17.53             | 5.729         | ND                       |
| na-Kalyan<br>Nagar Area                                        | Oct                    | 8.2    | 435              | 0.4       | 3.4       | 14                | 242       | 216 | 116                    | 118                                           | 28.8                   | 11.2                     | 50                | 30.97             | 0.827         | ND                       |
| 19.                                                            | April                  | 8.4    | 218              | 0.6       | 9.9       | 1.6               | 136       | 110 | 106                    | 108                                           | 33.6                   | 5.8                      | 11.99             | 5.47              | 5.064         | ND                       |
| Badambadi<br>Area                                              | Oct                    | 7.7    | 403              | 0.7       | 3.4       | 9.7               | 262       | 246 | 128                    | 114                                           | 28.8                   | 10.2                     | 46                | 35.44             | 2.639         | 0.224                    |
| 20.<br>Bidanasi-                                               | April                  | 7.9    | 153              | 0.6       | 4.0       | 7.4               | 95        | 78  | 74                     | 62                                            | 19.2                   | 3.4                      | 7.99              | 5.72              | 6.394         | ND                       |
| Tulsipur<br>Area                                               | Oct                    | 8.0    | 175              | 0.4       | 5.1       | 8.2               | 112       | 96  | 58                     | 66                                            | 17.6                   | 5.4                      | 7.4               | 26.36             | 0.851         | 0.168                    |

120 \_\_\_\_\_ Annual Report 2018-19 \_\_\_\_



| Monitoring<br>Station                            | Month of<br>Monitoring | Hď     | Cond., µS/<br>cm | BOD, mg/l | COD, mg/l | Turbidity,<br>NTU | TDS, mg/l | TFS  | Total Alkalinity, mg/l | Total<br>Hardness<br>CaCO <sub>3</sub> , mg/l | Calcium as<br>Ca, mg/l | Magnesium<br>as Mg, mg/l | Chloride,<br>mg/l | Sulphate,<br>mg/l | Nitrate, mg/l | NH₄-N, mg∕l |
|--------------------------------------------------|------------------------|--------|------------------|-----------|-----------|-------------------|-----------|------|------------------------|-----------------------------------------------|------------------------|--------------------------|-------------------|-------------------|---------------|-------------|
| 6. PARADE                                        | EP (JA                 | GATS   | INGHP            | UR) (     | 2 sta     | tions             | )         |      |                        |                                               |                        |                          |                   |                   |               |             |
| 21.                                              | May                    | 7.9    | 6937             | 1.4       | 3.8       | 0.6               | 5280      | 4980 | 286                    | 56                                            | 0                      | 0.0                      | 2998.5            | 5.34              | 2.694         | 0.608       |
| Musadiha                                         | Oct                    | 7.7    | 1365             | 1.7       | 15.3      | 1.2               | 846       | 816  | 248                    | 140                                           | 33.6                   | 13.6                     | 388.7             | 16.42             | 10.288        | 0.112       |
| 22.                                              | May                    | 7.8    | 2960             | 1.6       | 5.7       | 0.2               | 1880      | 1760 | 276                    | 184                                           | 56                     | 10.7                     | 929.5             | 20.52             | 18.193        | ND          |
| Badapadia                                        | Oct                    | 7.8    | 1939             | 1.3       | 8.5       | 1.1               | 1190      | 1150 | 260                    | 54                                            | 16.8                   | 2.9                      | 629.7             | 12.81             | 9.285         | 0.056       |
| 7. SUKINDA                                       | A (JAJP                | UR) (4 | statio           | ons)      |           |                   |           |      |                        |                                               |                        |                          |                   |                   |               |             |
| 22 TICCO                                         | April                  | 8.3    | 312              | 0.7       | 7.9       | 1.9               | 179       | 162  | 142                    | 132                                           | 40                     | 7.8                      | 17.99             | 2.24              | 16.387        | ND          |
| 23. TISCO                                        | Oct                    | 7.8    | 285              | 0.3       | 6.8       | 8.9               | 176       | 146  | 124                    | 138                                           | 35.2                   | 12.2                     | 9.3               | 30.5              | 15.455        | 0.112       |
| 24.                                              | April                  | 7.0    | 298              | 0.2       | 5.9       | 19                | 168       | 152  | 124                    | 108                                           | 35.2                   | 4.9                      | 23.98             | 4.97              | 9.966         | ND          |
| Saruabil                                         | Oct                    | 7.0    | 257              | 0.8       | 3.4       | 8.5               | 158       | 142  | 76                     | 94                                            | 24.8                   | 7.8                      | 22.2              | 31.96             | 17.816        | ND          |
| 25.                                              | April                  | 7.7    | 234              | 0.4       | 7.9       | 15                | 132       | 118  | 116                    | 88                                            | 28                     | 4.4                      | 9.99              | 4.72              | 1.137         | ND          |
| Kaliapani                                        | Oct                    | 7.5    | 234              | 0.2       | 3.4       | 8.6               | 146       | 128  | 82                     | 94                                            | 25.6                   | 7.3                      | 18.5              | 29.97             | 4.872         | ND          |
| 26.                                              | April                  | 7.5    | 142              | 0.3       | 4.0       | 22                | 88        | 70   | 80                     | 66                                            | 19.2                   | 4.4                      | 5.99              | 0.497             | 1.119         | ND          |
| Kamarda                                          | Oct                    | 8.1    | 491              | 14.6      | 95.3      | 8                 | 274       | 204  | 170                    | 190                                           | 57.6                   | 11.2                     | 18.52             | 58.95             | 6.105         | ND          |
| 8. JHARSU                                        | GUDA                   | (8 sta | tions)           |           |           |                   |           |      |                        |                                               |                        |                          |                   |                   |               |             |
|                                                  | April                  | 7.6    | 145              | 0.3       | 5.9       | 1.9               | 88        | 72   | 58                     | 62                                            | 19.2                   | 3.4                      | 12.99             | 4.47              | 0.000         | ND          |
| 27. Thelkoi                                      | Oct                    | 6.5    | 515              | 0.3       | 5.8       | 12                | 292       | 274  | 40                     | 126                                           | 34.4                   | 9.7                      | 115.7             | 34.7              | 34.478        | 0.224       |
| 28. Bhur-                                        | April                  | 8.1    | 314              | 0.3       | 7.9       | 13                | 176       | 158  | 156                    | 128                                           | 33.6                   | 10.7                     | 13.99             | 6.34              | 2.396         | ND          |
| khamunda                                         | Oct                    | 6.1    | 198              | 0.2       | 7.7       | 7                 | 124       | 106  | 42                     | 46                                            | 13.6                   | 2.9                      | 27.8              | 18.06             | 14.940        | 0.168       |
| 29.<br>Badamal                                   | April                  | 8.0    | 189              | 0.3       | 7.9       | 1.3               | 102       | 88   | 62                     | 52                                            | 16.8                   | 2.4                      | 16.99             | 5.72              | 15.219        | ND          |
| Industrial<br>Estate                             | Oct                    | 6.1    | 119              | 0.5       | 5.8       | 8                 | 72        | 52   | 40                     | 36                                            | 11.2                   | 1.9                      | 11.1              | 4.35              | 17.372        | ND          |
| 30. Budhi-                                       | April                  | 7.8    | 157              | 0.1       | 7.9       | 4.8               | 88        | 78   | 48                     | 44                                            | 13.6                   | 2.4                      | 15.99             | 3.48              | 28.572        | ND          |
| padar                                            | Oct                    | 5.9    | 176              | 0.4       | 5.8       | 7.9               | 106       | 94   | 40                     | 40                                            | 12                     | 2.4                      | 27.8              | 7.33              | 16.125        | ND          |
| 31. Braja-                                       | April                  | 7.9    | 138              | 0.2       | 7.9       | 2.6               | 79        | 66   | 44                     | 40                                            | 12.8                   | 1.9                      | 11.99             | 4.97              | 16.387        | ND          |
| rajnagar<br>Mining Belt                          | Oct                    | 6.5    | 325              | 0.4       | 7.7       | 29                | 196       | 182  | 156                    | 124                                           | 27.2                   | 13.6                     | 24.1              | 5.97              | 2.335         | ND          |
| 32. Ram-                                         | April                  | 8.1    | 187              | 1.8       | 17.8      | 13                | 108       | 88   | 82                     | 64                                            | 19.2                   | 3.9                      | 10.99             | 8.83              | 2.578         | ND          |
| pur (water<br>tank)                              | Oct                    | 6.6    | 329              | 0.5       | 5.8       | 34                | 194       | 180  | 152                    | 122                                           | 26.4                   | 13.6                     | 24.1              | 5.09              | 0.827         | ND          |
| 33. Ib ther-                                     | April                  | 8.2    | 294              | 0.6       | 7.9       | 6.4               | 162       | 132  | 122                    | 96                                            | 27.2                   | 6.8                      | 24.98             | 4.47              | 2.651         | ND          |
| mal power<br>station                             | Oct                    | 6.7    | 333              | 0.4       | 7.7       | 34                | 192       | 168  | 162                    | 126                                           | 29.6                   | 12.7                     | 22.2              | 4.85              | 0.675         | ND          |
| 34. Belpa-                                       | April                  | 7.9    | 177              | 0.6       | 13.9      | 1.7               | 101       | 78   | 44                     | 60                                            | 18.4                   | 3.4                      | 13.99             | 20.55             | 2.621         | ND          |
| har Area                                         | Oct                    | 6.9    | 705              | 0.4       | 5.8       | 14                | 382       | 352  | 154                    | 150                                           | 39.2                   | 12.7                     | 120.4             | 24                | 1.788         | ND          |
| 9. PURI (4                                       | station                | s)     |                  |           | 1         |                   |           |      | r                      |                                               |                        |                          |                   |                   |               |             |
| 35. Hos-                                         | April                  | 8.5    | 398              | 0.2       | 4.0       | 3.2               | 254       | 222  | 186                    | 182                                           | 53.6                   | 11.7                     | 34.98             | 7.21              | 2.370         | ND          |
| pital-Bus<br>stand-Mau-<br>sima tem-<br>ple area | Oct                    | 7.6    | 1122             | 0.8       | 10.2      | 7.4               | 632       | 598  | 300                    | 310                                           | 75.2                   | 29.7                     | 148.2             | 75.99             | 14.012        | 0.336       |



| Monitoring<br>Station              | Month of<br>Monitoring | Hd          | Cond., µS/<br>cm | BOD, mg/l | COD, mg/l | Turbidity,<br>NTU | TDS, mg/l     | TFS           | Total Alkalinity, mg/l | HE          | Calcium as<br>Ca, mg/l | Magnesium<br>as Mg, mg/l | Chloride, mg/l  | Sulphate,<br>mg/l | Nitrate, mg/l    | NH <sub>4</sub> -N, mg/l |
|------------------------------------|------------------------|-------------|------------------|-----------|-----------|-------------------|---------------|---------------|------------------------|-------------|------------------------|--------------------------|-----------------|-------------------|------------------|--------------------------|
| 36. Near<br>Jagannath              | April<br>Oct           | 8.3         | 1013<br>1051     | 0.4       | 7.9       | 5.5<br>8.6        | 561<br>640    | 512<br>610    | 260<br>144             | 264<br>80   | 65.6<br>20.8           | 6.8                      | 139.9<br>224.5  | 48.38<br>76.99    | 49.391<br>2.904  | ND<br>0.224              |
| Temple                             |                        |             |                  |           |           |                   |               |               |                        |             |                        |                          |                 |                   |                  |                          |
| 37. Near<br>Sea Beach,             | April<br>Oct           | 8.2         | 18510<br>2480    | 0.5       | 3.4       | 3.4<br>5.6        | 12850<br>1570 | 12460<br>1520 | 218<br>148             | 2000<br>344 | 320<br>38.4            | 292.4                    | 6996.5<br>611.2 | 631.34<br>258     | 14.406<br>23.677 | ND<br>0.224              |
| 38.                                | April                  | 8.4         | 335              | 0.6       | 5.9       | 1.9               | 186           | 168           | 46                     | 44          | 13.6                   | 2.4                      | 69.9            | 9.65              | 6.446            | ND                       |
| Baliapanda                         | Oct                    | 7.0         | 594              | 0.7       | 5.1       | 30                | 346           | 304           | 144                    | 156         | 39.2                   | 14.1                     | 61.1            | 73.26             | 1.548            | 0.336                    |
| 10. SAMBAI                         | PUR (3                 | stati       | ons)             |           |           |                   |               |               |                        |             |                        |                          | l               | l                 | l                |                          |
| 39. Near                           | April                  | 8.0         | 466              | 0.6       | 7.9       | 9.8               | 252           | 232           | 110                    | 120         | 38.4                   | 5.8                      | 54.97           | 31.34             | 21.057           | ND                       |
| Panthani-<br>vas                   | Oct                    | 6.8         | 375              | 0.4       | 7.7       | 11                | 212           | 184           | 64                     | 122         | 32.8                   | 9.7                      | 48.1            | 40.4              | 31.505           | ND                       |
| 40. Near                           | April                  | 8.1         | 1268             | 0.4       | 9.9       | 1.2               | 758           | 702           | 228                    | 320         | 99.2                   | 17.5                     | 214.89          | 131.2             | 25.507           | ND                       |
| Railway<br>station                 | Oct                    | 7.5         | 1164             | 0.2       | 11.5      | 2.5               | 762           | 724           | 160                    | 420         | 128                    | 24.4                     | 260.2           | 136.2             | 31.548           | ND                       |
| 41. Near                           | April                  | 8.3         | 688              | 1.3       | 7.9       | 32                | 395           | 376           | 260                    | 244         | 68.8                   | 17.5                     | 68.96           | 21.02             | 2.359            | ND                       |
| VSS Medi-<br>cal College,<br>Burla | Oct                    | 7.8         | 724              | 0.4       | 13.4      | 60                | 402           | 376           | 200                    | 228         | 51.2                   | 24.4                     | 61.1            | 81.84             | 17.029           | ND                       |
| 11. TALCH                          | ER (7 s                | station     | ıs)              |           |           |                   |               |               |                        |             |                        |                          |                 |                   |                  |                          |
| 42. Maha-                          | April                  | 7.3         | 395              | 0.4       | 4.0       | 8.4               | 236           | 206           | 98                     | 140         | 36.8                   | 11.7                     | 27.98           | 68.4              | 6.647            | ND                       |
| nadi Coal<br>Field Area            | Oct                    | 8.0         | 571              | 0.2       | 3.4       | 150               | 312           | 268           | 80                     | 140         | 28.8                   | 16.6                     | 24.1            | 137.6             | 4.429            | 0.112                    |
| 43. Kaniha                         | April                  | 7.6         | 515              | 0.4       | 2.0       | 0.6               | 284           | 240           | 272                    | 232         | 51.2                   | 25.3                     | 13.99           | 7.83              | 3.595            | ND                       |
| 45. Kaiiiia                        | Oct                    | 8.5         | 538              | 0.2       | 1.7       | 8.6               | 358           | 346           | 120                    | 192         | 51.2                   | 15.6                     | 57.4            | 106.6             | 4.793            | 0.448                    |
| 44. Talcher                        | April                  | 7.0         | 927              | 0.2       | 5.9       | 9.2               | 558           | 502           | 200                    | 228         | 54.4                   | 22.4                     | 165.92          | 66.91             | 42.884           | ND                       |
| town                               | Oct                    | 8.4         | 989              | 0.5       | 6.8       | 14                | 642           | 588           | 232                    | 348         | 89.6                   | 30.2                     | 92.6            | 193.9             | 19.804           | 0.336                    |
| 45. Mera-<br>mundali               | April                  | 7.8         | 1037             | 0.3       | 2.0       | 0.3               | 619           | 588           | 436                    | 432         | 108.8                  | 39.0                     | 69.96           | 74.74             | 19.898           | 0.33                     |
| Area                               | Oct                    | 8.1         | 920              | 0.7       | 3.4       | 7.9               | 502           | 418           | 236                    | 256         | 59.2                   | 26.3                     | 83.3            | 106.6             | 8.646            | 0.056                    |
| 46. Talcher<br>Thermal             | April                  | 7.3         | 1646             | 0.4       | 9.9       | 52                | 921           | 846           | 280                    | 356         | 81.6                   | 37.0                     | 273.86          | 153.85            | 5.335            | 0.11                     |
| Area                               | Oct                    | 7.9         | 1383             | 0.2       | 3.4       | 130               | 758           | 724           | 216                    | 326         | 74.4                   | 34.1                     | 222.2           | 142.22            | 2.469            | 0.224                    |
| 47. Banar-                         | April                  | 7.4         | 901              | 0.2       | 2.0       | 0.6               | 532           | 486           | 268                    | 284         | 76.8                   | 22.4                     | 96.95           | 85.2              | 22.732           | 0.67                     |
| pal                                | Oct                    | 7.9         | 993              | 0.4       | 3.4       | 12                | 552           | 502           | 142                    | 292         | 67.2                   | 30.2                     | 106.5           | 180.6             |                  | 0.448                    |
| 48. Kulad                          | April                  | 7.9         | 736              | 0.3       | 4.0       | 4.3               | 418           | 388           | 142                    | 224         | 56                     | 20.5                     | 72.96           |                   | 41.834           |                          |
|                                    | Oct                    | 8.5         | 611              | 0.3       | 1.7       | 14                | 402           | 346           | 88                     | 176         | 48                     | 13.6                     | 69.4            | 137.6             | 2.055            | 0.224                    |
| Drinking wa                        | ater sp                |             | tion (I          | 5:10      | 500 (2    | 012)              |               |               |                        |             |                        |                          |                 | 1                 |                  |                          |
| Acceptable<br>Limit                |                        | 6.5-<br>8.5 | -                | -         | -         | 1                 | 500           | -             | 200                    | 200         | 75                     | 30                       | 250             | 200               | 45               | 0.5                      |
| Permissible<br>limit               |                        | No<br>relax | -                | -         | -         | 5                 | 2000          | -             | 600                    | 600         | 200                    | 100                      | 1000            | 400               | No<br>relax      | No<br>relax              |

122 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_\_\_



| 100 ml                       |             | 4.5      | 3 <1.8   | 3 <1.8   | 4.5      |             | 8 <1.8  | <1.8        | 2       | <1.8       | 8 <1.8      | <1.8        |                 | 3 <1.8             | 3 <1.8                  | 8 <1.8  | 8 <1.8             | 3 <1.8   | 3 <1.8       | 3 <1.8  | 3 <1.8       |                | 8 <1.8  | -          |
|------------------------------|-------------|----------|----------|----------|----------|-------------|---------|-------------|---------|------------|-------------|-------------|-----------------|--------------------|-------------------------|---------|--------------------|----------|--------------|---------|--------------|----------------|---------|------------|
| TC, MPN/                     |             | 23       | <1.8     | <1.8     | 4.5      |             | <1.8    | 33          | 4.5     | 23         | <1.8        | 13          |                 | <1.8               | <1.8                    | <1.8    | <1.8               | <1.8     | <1.8         | <1.8    | <1.8         |                | <1.8    | ,          |
| Iron Total,<br>mg/l          |             | 0.179    | 1        | 0.250    | :        |             | 1.387   | :           | 1.576   | ;          | 0.128       | +           |                 | 0.301              | 1                       | 2.351   | -                  | 0.321    | 1            | 0.541   | 1            |                | 9.476   |            |
| I\gm ,ɔniZ                   |             | 0.064    | 1        | 0.011    | -        |             | 900.0   | :           | 0.033   | 1          | 0.014       | -           |                 | 0.093              | 1                       | 990.0   | 1                  | 0.057    | 1            | 0.081   | :            |                | 980.0   |            |
| Nickel, mg/l                 |             | 0.013    | 1        | 0.002    | -        |             | 0.007   | 1           | 0.007   | 1          | 0.009       | 1           |                 | 0.015              | 1                       | 0.009   | 1                  | 0.015    | 1            | 0.015   | 1            |                | 0.009   |            |
| Г/8т ,bsэ.                   |             | 0.009    | 1        | 0.002    | ;        |             | 0.007   | ;           | 0.007   | 1          | 0.009       | +           |                 | 0.008              | 1                       | 0.007   | 1                  | 0.007    | 1            | 0.007   | 1            |                | 0.009   |            |
| Copper, mg/l                 |             | 0.005    | 1        | 0.003    | :        |             | 0.005   | 1           | 0.004   | :          | 0.002       | 1           |                 | 0.013              | 1                       | 900.0   | -                  | 0.009    | 1            | 0.004   | 1            |                | 0.008   |            |
| .Cadmium,<br>I\gm            |             | 0.0015   |          | 0.0008   | -        |             | 900000  |             | 0.0013  |            | 0.0009      | +           |                 | 0.0008             |                         | 0.0007  | -                  | 0.0008   | 1            | 0.0004  |              |                | 0.0004  |            |
| Mercury<br>,mg/l             |             | 0.00032  | 1        | 0.00019  |          |             | 0.00025 | 1           | 0.00063 | ;          | 0.000070    |             |                 | <0.00006 0.0008    | 1                       | 0.00051 | -                  | <0.00006 | ;            | 9000000 | ;            |                | 9000000 |            |
| Chromium<br>Total, mg/l      |             | 0.008    | :        | 0.015    | -        |             | 0.005   | :           | 0.009   | 1          | 0.011       | -           |                 | 0.018              | 1                       | 0.011   | -                  | 0.038    | 1            | 0.0021  | 1            |                | 0.023   |            |
| Cr (VI), mg/l                |             | <0.002   | 1        | <0.002   | -        |             | <0.002  | 1           | <0.002  | :          | <0.002      | -           |                 | 0.007              | 1                       | 0.002   | :                  | 0.007    | :            | 0.005   | :            |                | 0.008   |            |
| Boron, mg/l                  |             | 0.105    | 0.24     | 0.035    | 0.21     |             | 0.021   | 0.58        | 0.446   | 0.55       | 0.014       | 0.61        |                 | 0.039              | 0.08                    | 0.011   | 0.12               | 0.046    | 0.16         | 0.109   | 0.04         |                | 0.046   | 100        |
| Potassium,<br>Mg/l           |             | 13.54    | 3.72     | 5.86     | 3.19     |             | 1.93    | 1.65        | 6.83    | 1.65       |             | 1.32        |                 | 17.9               | 1.2                     | 11.25   | 3.85               | 12.01    | 1.7          | 13.34   | 2.99         |                | 20.3    | 000        |
| I\gm ,muibo2                 |             | 6.66     | 91.55    | 29.46    | 32.25    |             | 5.43    | 19.87       | 29.95   | 42         | 24.98       | 36.5        |                 | 82.95              | 231                     | 78.25   | 8.59               | 107.6    | 253.5        | 123.8   | 204.5        |                | 9.88    | T - 0 C    |
| I\gm ,¶-⁵ <sub></sub> ,O¶    |             | 0.169    | 0.001    | 2.078    | 0.019    |             | 0.166   | 0.074       | 0.167   | 0.062      | 0.007       | 0.047       |                 | 0.051              | 0.031                   | 0.039   | 0.132              | 0.081    | 0.023        | 0.044   | 0.001        |                | 0.015   | 7000       |
| Fluoride,<br>mg/l            |             | 0.430    | 0.325    | 0.520    | 0.496    |             | 0.330   | 0.264       | 5.100   | 4.370      | 0.320       | 0.077       |                 | 0.330              | 0.841                   | 1.500   | 2.370              | 0.400    | 0.743        | 0.280   | 0.289        | (S)            | 0.130   | 70.10      |
| Total<br>Kjeldahl V,<br>mg/l | (S          | 1.12     | 12.32    | 1.68     | 5.04     | stations)   | 2.6     | 1.68        | 0.56    | 1.68       | 2.8         | 1.68        | stations)       | 0.56               | 3.92                    | 1.68    | 0.28               | 0.28     | 3.36         | 0.28    | 3.36         | (6 stations)   | 0.56    | 1 10       |
| Month of<br>Monitoring       | stations)   | April    | Oct      | April    | Oct      | (3          | April   | Oct         | April   | Oct        | April       | Oct         | UR (4 S         |                    | Oct                     | April   | Oct                | April    | Oct          | April   | Oct          | l              | April   |            |
| Stn Name                     | 1. ANGUL (2 | 1. Angul | Township | 2. NALCO | township | 2. BALASORE |         | Naigopalpur |         | 4. Nuampur | c Chalanlia | J. Cilanula | 3. BERHAMPUR (4 | 6. Berhampur April | near Railway<br>station | 7. MKCG | medical<br>College |          | o. bus stand | l       | 9. badabazar | 4. BHUBANESWAR |         | Khandagiri |



| Stn Name                                            | To ndom<br>BaritotiaoM | Total<br>Kjeldahl V,<br>mg/l | Fluoride,<br>mg/l | I\8m ,¶₽,0¶ | I\gm ,muibol | ,muissato¶<br>[\gm | Boron, mg/l | Cr (VI), mg/l | Chromium<br>Total, mg/l | Mercury<br>,mg/l | Cadmium,<br>I\gm | Copper, mg/l | Lead, mg/l | Nickel, mg/l | I\gm ,2niS | lron Total,<br>I\gm | TC, MPN/<br>TC, MPN/<br>TC, MPN/ | Im 001     |
|-----------------------------------------------------|------------------------|------------------------------|-------------------|-------------|--------------|--------------------|-------------|---------------|-------------------------|------------------|------------------|--------------|------------|--------------|------------|---------------------|----------------------------------|------------|
|                                                     | April                  | 1.68                         | 0.100             | 0.014       | 91.85        |                    | 0.042       | 0.017         | 0.037                   | >0.00006         | 0.0007           | 0.011        | 0.005      | 0.008        | 0.078      | 0.332               | <1.8 <1.8                        | ∞.         |
| town-Saman-<br>tarapur Area                         | Oct                    | 2.24                         | 0.579             | 0.244       | 37.00        | 11.52              | 0.05        | 1             |                         |                  |                  |              |            |              |            |                     | <1.8 <1.8                        | ∞.         |
|                                                     | April                  | 2.24                         | 0.160             | 0.015       | 36.02        | 5.34               | 0.014       | 0.027         | 0.041                   | 0.00013          | 0.0006           | 0.007        | 600.0      | 0.009        | 690.0      | 1.061               | <1.8 <1.8                        | ∞.         |
| na-Laxmis-<br>agar Area                             | Oct                    | 2.24                         | 0.109             | 0.001       | 13.62        | 7.4                | 0.05        | 1             | ;                       | ;                | 1                |              |            |              |            | ;                   | <1.8 <1.8                        | ∞.         |
| 13. Chan-                                           | April                  | 1.12                         | 0.180             | 0.013       | 2.91         | 1.11               | 0.014       | 0.017         | 0.027                   | <0.00006 0.0004  |                  | 0.005        | 0.007      | 0.008        | 0.054      | 0.597               | <1.8 <1.8                        | ∞.         |
| drasekharpur Oct                                    | Oct                    | 1.12                         | 0.166             | 0.007       | 10.01        | 1.38               | 0.09        | 1             |                         | -                |                  |              |            |              | -          |                     | <1.8 <1.8                        | ∞.         |
| 14. Capital                                         | April                  | 1.68                         | 0.100             | 0.013       | 10.43        | 2.6                | 0.025       | 0.023         | 0.033                   | 0.00006          | 0.0007           | 0.007        | 0.005      | 0.003        | 0.065      | 2.489               | <1.8 <1.8                        | ∞.         |
| Hospital Area                                       | Oct                    | 2.24                         | 0.143             | 0.003       | 44.6         | 90.9               | 0.04        | -             |                         |                  |                  | -            | -          | -            | -          |                     | 350   130                        | 0          |
|                                                     | April                  | 3.92                         | 091.0             | 0.017       | 24.25        | 2.9                | 0.039       | 0.017         | 0.037                   | 0.00000          | 0.0004           | 0.005        | 0.004      | 0.002        | 220.0      | 7.120               | 920   540                        | 0          |
| Secretariate-<br>Governor<br>House-Old<br>bus stand | 0ct                    | 3.36                         | 0.158             | 0.008       | 11.09        | 80.7               | 0.07        | 1             | ı                       | 1                |                  | 1            |            |              | 1          | 1                   | <1.8 <1.8                        | ∞.         |
| CUTTACK                                             | (5 stations)           | ons)                         |                   |             |              |                    |             |               |                         |                  |                  |              |            |              |            |                     |                                  |            |
|                                                     | April                  | 1.12                         | 0.370             | 0.148       | 58.6         | 9.71               | 0.053       | 0.003         | 0.023                   | 9000000          | 0.0004           | 0.006        | 0.010      | 0.009        | 0.022      | 0.663               | <1.8 <1.                         | ∞.         |
| 10. Jagatpur                                        | Oct                    | 2.24                         | 0.229             | 0.014       | 54.4         | 2.63               | 0.13        | -             | -                       | -                |                  | -            | -          |              | -          |                     | <1.8 <1.                         | 8.         |
|                                                     | April                  | 1.68                         | 088.0             | 990.0       | 7.4          | 3.61               | 0.005       | 0.003         | 0.028                   | 0.00006          | 0.0004           | 0.007        | 200'0      | 0.007        | 290.0      | 0.959               | 4.5 <1.8                         | ∞.         |
| Mangalabag                                          | Oct                    | 6.72                         | 0.296             | 0.001       | 18.36        | 94                 | 0.14        | 1             |                         | -                |                  | -            |            |              |            | -                   | 33 6.8                           | ~          |
| 18. Madh-                                           | April                  | 0.56                         | 0.240             | 0.1         | 32.72        | 5.13               | 0.039       | <0.002        | 0.008                   | 0.00036          | 0.0003           | 0.006        | 0.010      | 0.006        | 0.037      | 0.887               | <1.8 <1.                         | %.         |
|                                                     | Oct                    | 3.92                         | 0.188             | 0.028       | 38.55        | 5.11               | 0.14        |               |                         | -                |                  | -            | -          | -            | -          |                     | <1.8 <1.8                        | 8.         |
|                                                     | April                  | 0.56                         | 0.300             | 0.072       | 8.1          | 3.99               | 0.004       | 0.028         | 0.016                   | 0.00013          | 0.0005           | 0.004        | 0.008      | 0.010        | 0.062      | 0.362               | <1.8 <1.                         | ∞.         |
| Badambadi<br>Area                                   | Oct                    | 4.76                         | 0.202             | 0.007       | 33.6         | 16.17              | 0.12        | 1             | -                       | -                | -                | !            |            |              |            | -                   | <1.8 <1.8                        | ∞.         |
| 20. Bidanasi-                                       | April                  | 1.68                         | 0.330             | 0.056       | 5.22         | 1.85               | 0.011       | <0.002        | 0.011                   | 0.00006          | 0.0005           | 0.007        | 0.007      | 0.007        | 0.054      | 1.107               | <1.8 <1.8                        | <u></u> 8. |
| Tulsipur Area                                       | Oct                    | 4.76                         | 0.155             | 0.022       | 11.37        | 2.01               | 0.09        | 1             | -                       | 1                | -                | ·            |            |              |            | -                   | <1.8 <1.                         | ∞.         |
| 6. Paradeep (JAGATSINGHPUR) (2                      | AGATS                  | INGHPU                       |                   | stations)   |              |                    |             |               |                         |                  |                  |              |            |              | ·          | •                   |                                  |            |
| 21 Musadiba                                         | May                    | 2.24                         | 1.3               | 0.007       | 2010         | 56.5               | 0.133       | 0.002         | 0.008                   | <0.00006         | 0.0012           | 0.004        | 0.004      | 0.008        | 0.018      | 0.500               | <1.8 <1.8                        | ∞.         |
| reachia                                             | Oct                    | 12.32                        | 0.504             | 0.047       | 280          | 16.8               | 1.00        | 1             | 1                       | ;                | _                | _            | 1          | 1            | 1          | 1                   | 7                                |            |
| 22.                                                 | May                    | 0.056                        | 0.69              | 0.019       | 625          | 43.2               | 0.081       | <0.002        | 0.008                   | <0.00006         | 0.0016           | 0.004        | 0.004      | 0.007        | 0.021      | 0.400               | 8                                | ωi         |
| adia                                                | Oct                    | 4.48                         | 1.250             | 0.087       | 474.3        | 19.2               | 1.45        | -             | :                       | :                | :                | :            | :          | ;            | :          | :                   | 13 <1.                           | ∞.         |
|                                                     |                        |                              |                   |             |              |                    |             |               |                         |                  |                  |              |            |              |            |                     |                                  |            |



| Stn Name                             | Nonth of grirotinoM | Total<br>Kjeldahl V,<br>mg/l | Fluoride,<br>I\gm | I\gm ,¶- <sup>2</sup> ,0¶ | I\gm ,muibo2 | ,muissato¶<br>I\gm | Boron, mg/l | Cr (VI), mg/l | Chromium<br>Total, mg/l | Mercury<br>,mg/l | Cadmium,<br>I\gm | Copper, mg/l | Lead, mg/l | Nickel, mg/l | I\gm ,2niS | Iron Total,<br>mg/l | TC, MPN/<br>100 ml |
|--------------------------------------|---------------------|------------------------------|-------------------|---------------------------|--------------|--------------------|-------------|---------------|-------------------------|------------------|------------------|--------------|------------|--------------|------------|---------------------|--------------------|
| 7. Sukinda (JA                       | AJPUR)              | (JAJPUR) (4 stations)        | (su               |                           |              |                    |             |               |                         |                  |                  |              |            |              |            |                     |                    |
| 23 TISCO                             | April               | 1.12                         | 0.200             | 0.498                     | 12.09        | 4.63               | 0.007       | <0.002        | 0.017                   | 0.00006          | 900000           | 0.005        | 0.002      | 0.013        | 0.017      | 0.724               | 1600 540           |
|                                      | Oct                 | 0.56                         | 0.136             | 0.009                     | 92.9         | 0.26               | 0.03        | -             | -                       | -                |                  | -            | -          |              |            | -                   | 4.5 <1.8           |
| 74 Comiobil                          | April               | 0.56                         | 0.170             | 0.031                     | 14.8         | 3.76               | 0.011       | <0.002        | 0.021                   | 0.00025          | 0.0007           | 900.0        | 0.007      | 0.009        | 0.048      | 2.621               | <1.8 <1.8          |
| 24. Saruadii                         | Oct                 | 2.8                          | 0.186             | 0.022                     | 16.71        | 3.34               | 0.01        | -             | -                       | -                | -                | -            | -          | -            | -          | -                   | <1.8 <1.8          |
| 25 Valianani                         | April               | 0.56                         | 0.190             | 0.221                     | 6.4          | 2.66               | 0.007       | 0.003         | 0.019                   | 0.00025          | 0.0007           | 0.004        | 900.0      | 0.011        | 0.024      | 0.862               | 7.8 <1.8           |
|                                      | Oct                 | 0.56                         | 0.206             | 0.031                     | 10.85        | 0.26               | 0.01        | 1             | :                       | :                | 1                | 1            | :          | -            | 1          | 1                   | <1.8 <1.8          |
| 26 Vamarda                           | April               | 0.56                         | 0.150             | 0.129                     | 3.86         | 1.29               | 0.007       | <0.002        | 0.017                   | 0.00013          | 0.0009           | 900.0        | 0.005      | 0.009        | 0.051      | 5.324               | <1.8 <1.8          |
|                                      | Oct                 | 0.56                         | 0.166             | 0.038                     | 14.48        | 2.8                | 0           | 1             | :                       | :                | :                | 1            | :          | -            | 1          | :                   | 79 4.5             |
| 8. JHARSUGUDA (8                     |                     | stations)                    |                   |                           |              |                    |             |               |                         |                  |                  |              |            |              |            |                     |                    |
| 27. Thelkoi                          | April               | 0.56                         | 0.390             | 0.014                     | 7.16         | 1.89               | 0.011       | <0.002        | 0.012                   | 0.00019          | 0.0006           | 0.005        | 0.007      | 0.006        | 0.042      | 1.295               | <1.8 <1.8          |
|                                      | Oct                 | 0.28                         | 0.220             | 0.137                     | 54           | 4.55               | 0           | -             | :                       | :                | :                | 1            | :          | -            | :          | 1                   | <1.8 <1.8          |
| 28. Bhurkha-                         | April               | 0.56                         | 0.440             | 0.002                     | 8.86         | 2.77               | 0.018       | <0.002        | 0.007                   | 0.00006          | 0.0007           | 0.004        | 0.009      | 900.0        | 0.124      | 1.046               | <1.8 <1.8          |
| munda                                | Oct                 | 6.72                         | 0.157             | 0.092                     | 23.62        | 4.21               | <0.003      | 1             | :                       | 1                | :                | 1            | 1          | :            | :          | 1                   | <1.8 <1.8          |
| 29. Badamal                          | April               | 0.56                         | 0.420             | 0.007                     | 10.68        | 4.11               | 0.004       | 0.003         | 0.011                   | 0.00019          | 900000           | 0.011        | 0.009      | 0.008        | 0.105      | 0.739               | <1.8 <1.8          |
| Industrial<br>Estate                 | Oct                 | 2.24                         | 0.159             | 0.019                     | 10.02        | 2.76               | <0.003      | :             | 1                       | 1                | :                | 1            | 1          | 1            | 1          | 1                   | <1.8 <1.8          |
| 30.                                  | April               | 1.12                         | 0.430             | 0.005                     | 10.9         | 3.65               | 0.021       | 0.003         | 0.011                   | 0.00013          | 0.0004           | 0.016        | 0.009      | 900.0        | 0.050      | 0.163               | <1.8 <1.8          |
| Budhipadar                           | Oct                 | 4.48                         | 0.168             | 0.058                     | 20.8         | 4.16               | <0.003      | :             | :                       | 1                | :                | :            | :          | :            | :          | 1                   | <1.8 <1.8          |
| 31. Brajara-                         | April               | 0.56                         | 0.440             | 0.004                     | 7.4          | 2.66               | ND          | <0.002        | 0.005                   | 0.00051          | 0.0003           | 0.006        | 0.002      | 0.011        | 0.020      | 2.723               | <1.8 <1.8          |
| jnagar Mining<br>Belt                | Oct                 | 1.68                         | 0.210             | 860.0                     | 19.11        | 2.98               | <0.003      | 1             | ŀ                       | 1                | :                | 1            | 1          | 1            | 1          | :                   | 79 22              |
| 32. Rampur                           | April               | 2.24                         | 0.420             | 900.0                     | 7.38         | 3.06               | ND          | <0.002        | 0.007                   | <0.00006         | 0.0005           | 0.007        | 0.004      | 0.009        | 0.009      | 0.071               | <1.8 <1.8          |
| (water tank)                         | Oct                 | 6.72                         | 0.208             | 0.015                     | 19.57        | 5.85               | <0.003      | 1             | :                       | :                | :                | 1            | :          | :            | 1          | 1                   | <1.8 <1.8          |
| 33. Ib                               | April               | 1.12                         | 0.510             | 0.001                     | 15.66        | 5.45               | 0.042       | 0.003         | 0.02                    | 0.00076          | 0.0004           | 0.003        | 0.005      | 0.008        | 0.019      | 1.709               | 540 240            |
| thermal<br>power station             | Oct                 | 5.6                          | 0.210             | 0.044                     | 18.07        | 6.48               | <0.003      | 1             | 1                       | 1                | 1                | 1            | :          | 1            | 1          | 1                   | <1.8 <1.8          |
| 34. Belpahar                         | April               | 0.56                         | 0.500             | 0.005                     | 9.51         | 3.11               | ND          | <0.002        | 0.015                   | 0.00032          | 0.0006           | 0.003        | 0.004      | 0.008        | 0.050      | 1.647               | 920 540            |
| Area                                 | Oct                 | 5.6                          | 0.208             | 0.016                     | 78.5         | 8.24               | <0.003      | -             | 1                       | :                | ;                | 1            | :          | -            | 1          | 1                   | <1.8 <1.8          |
| 9. PURI (4 stations)                 | ations)             |                              |                   |                           |              |                    |             |               |                         |                  |                  |              |            |              |            |                     |                    |
| 35. Hospital- April                  | April               | 8.96                         | 0.380             | 0.215                     | 22.42        | 6.34               | 0.154       | <0.002        | 0.011                   | 0.00013          | 900000           | 0.005        | 0.004      | 0.004        | 0.034      | 3.131               | <1.8 <1.8          |
| Bus stand-<br>Mausima<br>temple area | Oct                 | 3.08                         | 0.341             | 90.0                      | 95.5         | 20.8               | 0.13        | -             | 1                       | 1                | -                |              |            | !            | ·          |                     | <1.8 <1.8          |
| 36. Near                             | April               |                              |                   | 3.394                     | 94.5         | 1                  | 6:          | 0.002         | 800.0                   | 0.00013          | 0.0008           | 0.005        | 0.003      | 0.006        | 690.0      | 1.974               | <1.8 <1.8          |
| Jagannath<br>Temple                  | Oct                 | 3.92                         | 0.327             | 0.017                     | 182.5        | 38                 | 0.51        | -             | 1                       | -                |                  | -            | <u> </u>   | <u>'</u>     | <u> </u>   | ·                   | <1.8 <1.8          |
| í                                    |                     |                              |                   |                           |              |                    |             |               |                         |                  |                  |              |            |              |            |                     |                    |



| Stn Name                                       | To dinoM<br>gairotinoM | Total<br>Kjeldahl V,<br>mg/l |          | I\8m ,¶₺,О¶ | I\gm ,muibo2 | .muissatoq<br>I/gm | Boron, mg/l | I\gm ,(IV) 1J | Chromium<br>Total, mg/l | Mercury<br>,mg/l | ,muimbs)<br>I\gm | Copper, mg/l | Lead, mg/l  | Nickel, mg/l | I\gm ,2niZ | lron Total,<br>mg/l | TC, MPN/<br>100 ml<br>FC, MPN/<br>100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------|------------------------|------------------------------|----------|-------------|--------------|--------------------|-------------|---------------|-------------------------|------------------|------------------|--------------|-------------|--------------|------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37. Near Sea                                   | April                  | 2.24                         | 0.210    | 2.216       | 4210         | 260                |             | 0.007         | 0.018                   | <0.00006         | 0.0008           | 0.005        | 0.003       | 0.006        | 0.022      | 1.408               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Beach                                          | Oct                    | 4.48                         | 0.311    | 0.014       | 426.5        |                    | 0.19        | -             | -                       | -                | -                | -            | -           | -            | -          | 1                   | 13 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38.                                            | April                  | 7.84                         |          | 0.366       | 45.6         | 3                  | 0.119       | <0.002        | 0.013                   | <0.00006         | 0.0006           | 0.004        | 0.004       | 0.008        | 0.055      | 0.627               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Baliapanda                                     | Oct                    | 5.6                          | 0.333    | 0.043       | 51.5         | 7.5                | 0.13        | -             | 1                       |                  | 1                | 1            | -           | -            | -          | 1                   | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10. SAMBALPUR                                  | PUR (3                 | stations)                    |          |             |              |                    |             |               |                         |                  |                  |              |             |              |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 39. Near                                       | April                  | 0.56                         | 0.300    | 1.291       | 35.85        | 8.41               | 0.011       | <0.002        | 200.0                   | 0.00038          | 0.0007           | 0.008        | 0.010       | 0.003        | 260.0      | 7.181               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Panthanivas                                    | Oct                    | 5.6                          | 0.360    | 0.068       | 23.45        | 3.79               | 0.05        | -             | -                       | +                | +                | -            | -           | -            | 1          | 1                   | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40. Near                                       | April                  | 0.56                         | 0.290    | 0.007       | 131.8        | 12.61              | 0.014       | <0.002        | 0.008                   | 0.00044          | 0.0006           | 0.005        | 0.028       | 0.003        | 0.008      | 0.092               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Railway<br>station                             | Oct                    | 2.24                         | 0.329    | 0.028       | 100.2        | 4.81               | 0.16        | 1             | :                       | :                | -                | -            | -           | -            | -          | 1                   | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 41. Near                                       | April                  | 0.28                         | 0.290    | 0.113       | 44.49        | 10.74              | 0.007       | <0.002        | 0.012                   | 0.00025          | 900000           | 0.004        | 0.013       | 0.004        | 0.019      | 7.007               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VSS Medical<br>College                         | Oct                    | 2.24                         | 0.172    | 0.097       | 48.8         | 7.63               | <0.003      | -             |                         | -                |                  |              | -           | -            |            | -                   | 23 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11. TALCHER                                    | (7 stations)           | ions)                        |          |             |              |                    |             |               |                         |                  |                  |              |             |              |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ladi                                           | April                  | 0.28                         | 0.440    | 1.623       | 18.8         | 5.49               | 0.025       | <0.002        | 0.005                   | 0.00013          | 0.0006           | 0.010        | 0.003       | 0.002        | 0.048      | 1.153               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Coal Field<br>Area                             | Oct                    | 3.92                         | 0.116    | 0.001       | 42.15        | 9.99               | 0.26        | 1             | 1                       | ł                | ł                | 1            |             | 1            | 1          | 1                   | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 42 Vonibo                                      | April                  | 1.12                         | 0.500    | 0.177       | 9.5          | 3.81               | 90.0        | <0.002        | 0.005                   | 0.00013          | 0.0013           | 0.021        | 0.011       | 0.006        | 0.157      | 0.816               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 43. Nallilla                                   | Oct                    | 2.24                         | 0.237    | 0.005       | 48.3         |                    | 0.07        | -             | -                       |                  | -                | -            | -           | -            | -          | -                   | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44. Talcher                                    | April                  | 0.56                         | 0.540    | 0.084       | 105          |                    | 0.144       | 0.003         | 0.007                   | 0.00006          | 0.0020           | 0.038        | 0.012       | 0.018        | 0.254      | 1.224               | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| town                                           | Oct                    | 5.6                          | 0.169    | 0.003       | 80.25        | 8.21               | 0.25        | 1             | -                       | 1                | +                | 1            | -           | -            | :          | 1                   | <1.8 <1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nun-                                           |                        |                              |          | 0.301       | 45.6         | 7.55               |             | 0.005         | 0.015                   | 9000000          | 0.0013           | 0.004        | 0.012       | 0.005        | 0.026      | 1.352               | 8. <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| dall Area                                      | Oct                    |                              |          | 0.011       | /4./         | 90                 |             |               |                         |                  |                  |              |             |              |            |                     | ∞.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 46. Talcher                                    |                        |                              |          | 1.266       | 183.7        | 1.89               |             | 0.002         | 0.015                   | 0.00032          | 0.0015           | 0.012        | 0.015       | 0.018        | 0.246      | 6.752               | 8. c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| meman Area                                     | OCT                    | 7.84                         | 0.717    | 0.003       | 14/<br>GE 2E | 2.10               | <0.003      |               |                         |                  |                  | -            |             |              |            |                     | <1.8 <1.8<br>\1 0 \2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 47. Banarpal                                   | Aprill<br>Oct          |                              |          | 0000        | 71.4         | 5.43               | 0.040       |               |                         | 20000            |                  |              |             |              |            |                     | 7 \<br>0. \prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\prescript{\pr\ |
| ,                                              | April                  | 8                            |          | 920.0       | 49.25        | 7.28               | 0.098       | <0.002        | 0.007                   | 0.00013          | 0.0015           | 0.140        | 0.014       | 0.009        | 0.161      | 1.556               | . 8.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 48. Kulad                                      | Oct                    |                              | 1.530    | 900.0       | 62.4         | 8.71               | 90.0        |               | 1                       | 1                |                  |              |             |              | 1          | 1                   | $\overline{\ }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drinking water specification (IS: 10500 (2012) | er speci               | fication                     | (IS: 10E | 500 (20]    | (2)          |                    |             |               |                         |                  |                  |              |             |              |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Acceptable<br>Limit                            |                        | 1                            | 1.0      | ı           | ſ            | ı                  | 0.5         | ı             | 0.05                    | 0.001            | 0.003            | 0.05         | 0.01        | 0.02         | 5.0        | 1.0                 | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Permissible<br>limit                           |                        | -                            | 1.5      |             |              | -                  | 1.0         | 1             | No relax No relax       | No relax         | No relax         | 1.5          | No<br>relax | No<br>relax  | 15.0       | No<br>relax         | No relax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                |                        |                              |          |             |              |                    |             |               |                         |                  |                  |              |             |              |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



## 5.7.2 Air Quality Status

## 5.7.2.1 National Ambient Air Quality Monitoring Programme (NAMP) & State Air Quality Monitoring Programme (SAMP)

The Board monitors ambient air quality at 36 stations in sixteen areas of the State under the CPCB assisted National Ambient Air Quality Monitoring Programme (NAMP) and one station under State Ambient Air Quality Monitoring Programme (SAMP) of the Board. Details of air quality monitoring stations, station type and parameters monitored are listed in Table-5.32. Four criteria parameters like Respirable Suspended Particulate Matter (RSPM) or  $\rm PM_{10}$  (Particulate Matter having an aerodynamic diameter less than or equal to 10 µm),  $\rm PM_{2.5}$  (Particulate Matter having an aerodynamic diameter less than or equal to 2.5 µm), Sulphur dioxide (SO<sub>2</sub>) and Oxides of Nitrogen (NO<sub>2</sub>) are being regularly monitored at all stations. Beside these, Ammonia, Ozone & Lead are monitored at nine stations in Bhubaneswar, Puri and Konark. The monitoring is carried out for 24 hours (24-hourly sampling for  $\rm PM_{2.5}$ , 8-hourly sampling for  $\rm PM_{10}$ , Pb & Ni, 4-hourly sampling for gaseous pollutants like SO<sub>2</sub> & NO<sub>2</sub> and one-hour sampling for NH<sub>3</sub> and O<sub>3</sub>) with a frequency of twice in a week not in a conjugative day, to have a minimum of 104 observations in a year.

**Table-5.32** Ambient Air Quality Monitoring Stations

| Sl.<br>No. | Name of the areas | Monitoring stations                           | Parameters monitored                                                                                         |
|------------|-------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1          | Angul             | (i) RO, SPCB office building, Angul           |                                                                                                              |
| 1.         | Angul             | (ii) NALCO Nagar, Angul                       |                                                                                                              |
|            |                   | (iii) RO, SPCB office building, Sahadevkhunta | PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> & NO <sub>2</sub>                                     |
| 2.         | Balasore          | (iv) DIC office, Angaragadia                  | 10 2.3 2 2                                                                                                   |
|            |                   | (v) Rasalpur Industrial Estate                |                                                                                                              |
| 3.         | Berhampur         | (vi) RO, SPCB office building, Brahmanagar    |                                                                                                              |
|            |                   | (vii) SPCB office Building, Unit-VIII         |                                                                                                              |
|            |                   | (viii) I.R.C. Village, Nayapalli              |                                                                                                              |
| 4.         | Bhubaneswar       | (ix) Capital Police Station, Unit-I           | PM <sub>10</sub> , ,PM <sub>2.5</sub> , SO <sub>2</sub> , NO <sub>2</sub> , NH <sub>3</sub> , O <sub>3</sub> |
| 4.         | biiubaiieswai     | (x) Chandrasekharpur                          | QPU                                                                                                          |
|            |                   | (xi) Patrapada                                |                                                                                                              |
|            |                   | (xii) Palasuni water works                    |                                                                                                              |
| 5          | Bonaigarh         | (xiii) Bonai Govt. Hospital                   |                                                                                                              |
|            |                   | (xiv) Traffic Tower, Badambadi                |                                                                                                              |
| 6.         | Cuttack           | (xv) RO, SPCB office building, Surya Vihar    |                                                                                                              |
|            |                   | (xvi) PHED Office, Barabati                   |                                                                                                              |
| 7          | Thomassando       | (xvii)RO, SPCB office building, Babubagicha,  | PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> & NO <sub>2</sub>                                     |
| 7.         | Jharsuguda        | (xviii) Inside TRL Colony Premises            |                                                                                                              |
| 0          | Volingo Nogor     | (xix) TATA Guest House                        |                                                                                                              |
| 8          | Kalinga Nagar     | (xx) RO, SPCB Office building, Kalinganagar   |                                                                                                              |
| 9          | Keonjhar          | (xxi) RO, SPCB Office building, Baniapat      |                                                                                                              |



| Sl.<br>No. | Name of the areas | Monitoring stations                            | Parameters monitored                                                                                         |
|------------|-------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 10         | Konark            | (xxii) Konark Police Station                   | $PM_{10}$ , $PM_{2.5}$ , $NO_{2}$ , $NH_{3}$ , $O_{3}$ &Pb                                                   |
|            |                   | (xxiii) PPL Guest House                        |                                                                                                              |
| 11         | Paradeep          | (xxiv) IFFCO STP                               | PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> & NO <sub>2</sub>                                     |
|            |                   | (xxv) PPT Colony                               |                                                                                                              |
| 12         | Dawi              | (xxvi) Sadar Police Station                    | PM <sub>101</sub> PM <sub>25</sub> SO <sub>2</sub> , NO <sub>2</sub> NH <sub>2</sub> O <sub>2</sub> &        |
| 12         | Puri              | (xxvii) Town Police Station                    | PM <sub>10</sub> ,PM <sub>2.5</sub> SO <sub>2</sub> , NO <sub>2</sub> , NH <sub>3</sub> ,O <sub>3</sub> & Pb |
| 13         | Davagada          | (xxviii) RO, SPCB Office building, Indiranagar |                                                                                                              |
| 13         | Rayagada          | (xxix) Jakaypur                                |                                                                                                              |
| 14         | Rajgangpur        | (xxx) DISR, Rajgangpur                         |                                                                                                              |
|            |                   | (xxxi) RO, SPCB Office building, Sector-5      |                                                                                                              |
| 15         | Rourkela          | (xxxii) IDL Outpost, Sonaparbat                | PM <sub>10</sub> , PM <sub>25</sub> , SO <sub>2</sub> & NO <sub>2</sub>                                      |
| 13         | Rourkeia          | (xxxiii) IDCO Water Tank, IDC Kalunga          | 10. 2.3. 2 2                                                                                                 |
|            |                   | (xxxiv) Kuarmunda Out Post, Kuarmunda          |                                                                                                              |
| 16         | Sambalpur         | (xxxv)PHED Office, Modipara                    |                                                                                                              |
| 17         | Talcher           | (xxxvi) TTPS, Talcher                          |                                                                                                              |
|            |                   | (xxxvii) M.C.L., Talcher                       |                                                                                                              |

Ambient air quality status with respect to the four criteria parameters at these 37 stations in addition to three parameters like ammonia ( $NH_3$ ), Ozone ( $O_3$ ) and lead (Pb) at Bhubaneswar, Puri & Konark during the year 2018 are given in Table-5.33. The air quality of different cities/ towns have been compared with the national ambient air quality standards to assess the existing air quality status.

The annual average concentration of Respirable Suspended Particulate Matter (RSPM or  $PM_{10}$ ) at all monitoring locations remained above the prescribed limit i.e.,  $60 \,\mu\text{g/m}^3$  except at Regional Office building at Rayagada. Whereas, the annual average value of  $PM_{2.5}$  remained within the limit of  $40 \,\mu\text{g/m}^3$  at 12 locations out of 37 monitoring locations. Percentage of violation of data for different parameters were calculated by comparing the 24-hourly average data of the parameters like  $SO_2$ ,  $NO_2$ ,  $NH_3$  & Pb and one-hourly average data for  $O_3$  with their respective 24-hourly average standard.

The range of  $PM_{10}$  violation varied within 0.95% to 98.1%. However, for  $PM_{2.5}$ , no violation occur at 04 places i.e., Capital Police station, Unit-1, Patrapada, Palasuni water works in Bhubaneswar and Regional Office building at Kalinganagar. The range of violation for  $PM_{2.5}$  was from 0.95% to 84% . No violation of data for parameters like  $SO_2$ ,  $NO_2$ ,  $NH_3$ , Pb and  $O_3$  was observed at all the monitored stations.

## Air Quality Index (AQI)

AQI value of 17 areas during the year 2018 with prominent pollutant and categorization are given in Table-5.34. The range of AQI value, categorization and health impact are presented in Table-5.35. From the Table-5.34, it was observed that out of 17 areas, 08 areas are falling under Moderate category & 09 areas are falling under Satisfactory category. The prominent pollutant was  $\rm PM_{10}$  in 15 areas and  $\rm PM_{2.5}$  in 02 area. The highest AQI value i.e., 127 w.r.t  $\rm PM_{10}$  was been observed at Rajgangpur area and lowest in Berhampur i.e., 64.

28 — — — Annual Report 2018-19



Table-5.33 Ambient Air Quality Status of different cities & towns of Odisha during -2018

| Yrogety                                                             | 62<br>              |                                         | Á     | rotosf                           | sits                           |         | erate                            | роМ                  |          |                               | ζίοιλ                            | satista                         |           | Satisfactory                  |             | Satisfactory                          |
|---------------------------------------------------------------------|---------------------|-----------------------------------------|-------|----------------------------------|--------------------------------|---------|----------------------------------|----------------------|----------|-------------------------------|----------------------------------|---------------------------------|-----------|-------------------------------|-------------|---------------------------------------|
| erall AQI<br>the City                                               | evO<br>i ìo         |                                         |       | 100                              | $(PM_{10})$                    |         | 106                              | $(PM_{10})$          |          |                               | 86<br>(PM.)                      | 01>                             |           | 64<br>(PM <sub>10</sub> )     |             | 94<br>(PM <sub>10</sub> )             |
| early<br>of the<br>nitoring<br>ations                               | om<br>S<br>V        |                                         |       | 98<br><b>(PM</b> <sub>10</sub> ) | 101 <b>(PM</b> <sub>10</sub> ) |         | 95<br><b>(PM</b> <sub>10</sub> ) | $^{116}_{(PM_{10})}$ |          | 83<br>(PM <sub>10</sub> )     | 83<br><b>(PM</b> <sub>10</sub> ) | 92<br><b>(PM<sub>2.5</sub>)</b> |           | 64<br>(PM <sub>10</sub> )     |             | 98<br>(PM <sub>10</sub> )             |
| olation<br>I from<br>ourly<br>lard                                  | $PM_{2.5}$          |                                         |       | 33%                              | 16.8%                          |         | 20.9%                            | 36.2%                |          | 2.8%                          | 2.9%                             | 18.4%                           |           | 0.97%                         |             | 7.9%                                  |
| % of violation<br>of data from<br>24 hourly<br>standard             | $PM_{10}$           |                                         |       | 44.3%                            | %2'09                          |         | 37.1%                            | 72.4%                |          | %26.0                         | %26.0                            | 11.6%                           |           | %26.0                         |             | 55.7%                                 |
| pt O <sub>3</sub>                                                   | Pb                  |                                         |       |                                  |                                |         |                                  |                      |          |                               |                                  |                                 |           |                               |             | 0.015<br>(BDL-<br>0.15)               |
| ) ехсе                                                              | 03                  | ter)                                    |       | ı                                | ı                              |         | 1                                | ı                    |          | ı                             | ı                                | ı                               |           | 1                             |             | 23.4<br>(21.3-<br>27.3)               |
| range                                                               | NH <sub>3</sub> C   | ic me                                   |       | 1                                | ı                              |         | 1                                | ı                    |          | ı                             | ı                                | ı                               |           | 1                             |             | 4.0                                   |
| ourly                                                               | Z                   | er cub                                  |       |                                  |                                |         | 1                                | 1                    |          | ı                             | 1                                | ı                               |           | ı                             |             | 48.1<br>(22.9<br>66.2)                |
| verage Value (24h<br>(1-hourly range)                               | NO <sub>2</sub>     | icrogram pe                             |       | 25.2<br>(15.6-34.6)              | 25.2<br>(19.5-30.1)            |         | 28.3<br>(23.2-34.1)              | 28.4<br>(21.7-33.9)  |          | 10.8 (9.9-12.1)               | 10.8<br>(10-13.8)                | 11.8<br>(10.5-13.4)             |           | 19.3<br>(14.8-25.1)           |             | 20.1 (10.1-29.6)                      |
| Annual Average Value (24hourly range) except $O_3$ (1-hourly range) | $SO_2$              | expressed in Microgram per cubic meter) |       | 9.0<br>(BDL-19.9)                | 9.6<br>(BDL-15.3)              |         | 10.2<br>(5.8-15.4)               | 9.7<br>(4.8-11.6)    |          | BDL<br>(BDL-BDL)              | BDL<br>(BDL- BDL)                | 7.7<br>(6.2-9.5)                |           | BDL<br>(BDL- BDL)             |             | BDL<br>(BDL- 4.6)                     |
| Y                                                                   | $\mathbf{PM}_{2.5}$ | (values e                               |       | 52<br>(18-85)                    | 46<br>(28-97)                  |         | 46 (17-97)                       | 53<br>(23-86)        |          | 44 (30-95)                    | 43<br>(30-89)                    | 55<br>(36-78)                   |           | 33<br>(11-65)                 |             | 38<br>(12-100)                        |
|                                                                     | $\mathbf{PM}_{10}$  |                                         |       | 98<br>(45-154)                   | 102<br>(62-163)                |         | 95<br>(41-206)                   | 124<br>(54-182)      |          | 83<br>(65-144)                | 83 (69-<br>141)                  | 91<br>(76-117)                  |           | 64<br>(31-107)                |             | 98<br>(26-258)                        |
| No.<br>of                                                           | (24<br>hrs)         |                                         |       | 106                              | 107                            |         | 105                              | 105                  |          | 103                           | 103                              | 103                             |           | 103                           |             | 88                                    |
| Area / Stations                                                     |                     |                                         | Angul | 1. RO SPCB, Angul (I/E)          | 2. NALCO Nagar,<br>Angul       | Talcher | 3. TTPS , Talcher                | 4.MCL, Talcher       | Balasore | 5. R.O, SPCB<br>Sahadevkhunta | 6. DIC office,<br>Angaragadia    | 7.Rasalpur,Industrial<br>Estate | Berhampur | 8. R.O, SPCB,<br>Brahamanagar | Bhubaneswar | 9. SPCB Office<br>Building, Unit-VIII |
| SI.<br>No.                                                          |                     |                                         |       | ı                                |                                |         | 2                                |                      |          |                               | 3                                |                                 |           | 4                             |             | rv                                    |



| ıtegory                                                                      | 5)                       |                            |                                  |                                       |                           |                                  |                            |           | Satisfactory                        |         |                                 | erate                                 | роМ                        |            | erate                                          | ром                              |
|------------------------------------------------------------------------------|--------------------------|----------------------------|----------------------------------|---------------------------------------|---------------------------|----------------------------------|----------------------------|-----------|-------------------------------------|---------|---------------------------------|---------------------------------------|----------------------------|------------|------------------------------------------------|----------------------------------|
| erall AQI<br>the City                                                        | evO<br>To                |                            | 94<br>(PM10)                     |                                       |                           |                                  |                            |           | 99<br>(PM <sub>10</sub> )           |         | 100                             | $(PM_{10})$                           |                            |            | 104<br>(PM <sub>10</sub> )                     |                                  |
| Zearly<br>Ja of the<br>nitoring<br>ations                                    | om<br>AC                 |                            | 89<br>(PM <sub>10</sub> )        | 103<br>( <b>PM</b> <sub>10</sub> )    | 93<br>(PM <sub>10</sub> ) | 90<br><b>(PM</b> <sub>10</sub> ) | 89<br>(PM <sub>10</sub> )  |           | 99<br>(PM <sub>10</sub> )           |         | 118 (PM <sub>10</sub> )         | 104 (PM <sub>10</sub> )               | 104<br>(PM <sub>10</sub> ) |            | 103<br>(PM <sub>10</sub> )                     | 105<br>(PM <sub>10</sub> )       |
| % of violation<br>of data from<br>24 hourly<br>standard                      | <b>PM</b> <sub>2.5</sub> |                            | 2.4%                             | NIL                                   | 4.3%                      | NIL                              | NIL                        |           | 15.1%                               |         | 34.0%                           | 18.7%                                 | 24.0%                      |            | 28%                                            | 41%                              |
| % of vi<br>of data<br>24 ho<br>stan                                          | $PM_{10}$                |                            | 44.6%                            | 72.1%                                 | 37.6%                     | 29%                              | 26.2%                      |           | 38.7%                               |         | 89.1%                           | 47.1%                                 | 47.1%                      |            | 75%                                            | 76.2%                            |
| pt O <sub>3</sub>                                                            | Pb                       |                            | 0.017<br>(BDL<br>-0.13)          | 0.024<br>(BDL-<br>0.106)              | 0.024<br>(BDL<br>-0.33)   | 0.017<br>(BDL<br>-0.11)          | 0.014<br>(BDL<br>-0.075)   |           | 1                                   |         | 1                               | ı                                     | ı                          |            | ı                                              | ı                                |
| e) exce                                                                      | 03                       | eter)                      | 24.1<br>(21.3-<br>28.6)          | 20.9<br>(BDL-<br>32.7)                | 23.5<br>(21.2-<br>27.3)   | 24.0<br>(20.8-<br>29.0)          | 22.5<br>(BDL-<br>34.0)     |           | ı                                   |         | •                               | ı                                     | ı                          |            | ı                                              | ı                                |
| ırly rang                                                                    | NH <sub>3</sub>          | cubic meter)               | 52.8<br>(32.9-<br>69.3)          | 63.9<br>(30.6-<br>97.9)               | 41.9<br>(25.8-<br>82.6)   | 42.3<br>(BDL-<br>57.1)           | 47.7<br>(30.3-<br>86.7)    |           | ı                                   |         | -                               | ı                                     | 1                          |            | ı                                              | 1                                |
| verage Value (24hou<br>(1-hourly range)                                      | NO <sub>2</sub>          | crogram per                | 19.6<br>(13.9-26.1)              | 17.4<br>(BDL-32.7)                    | 15.4<br>(10.4-25.4)       | 14.4<br>(10.8-22)                | 15.2<br>(BDL-26.0)         |           | 12.0<br>(BDL-22.6)                  |         | 32.9<br>(26.7-38.3)             | 30.6<br>(25.5-42)                     | 29.9<br>(25.2-36.8)        |            | 18.0<br>(9.3-31.2)                             | 13.3<br>(9.8-22.2)               |
| Annual Average Value (24hourly range) except O <sub>3</sub> (1-hourly range) | $\mathbf{SO}_2$          | expressed in Microgram per | BDL<br>(BDL- 7.6)                | BDL<br>(BDL-5.3)                      | BDL<br>(BDL- 8.1)         | BDL<br>(BDL- BDL)                | BDL<br>(BDL- BDL)          |           | 8.4<br>(5.2-18.1)                   |         | 4.9<br>(BDL-5.5)                | BDL<br>(BDL-5.9)                      | BDL (BDL-<br>7.1)          |            | 10.1<br>(5.3-24.0)                             | 6.6<br>(BDL-11.2)                |
| A                                                                            | $PM_{2.5}$               | (values e                  | 34<br>(12-65)                    | 31<br>(16-55)                         | 31<br>(15-84)             | 26<br>(10-42)                    | 27<br>(16-41)              |           | 36<br>(13-110)                      |         | 56<br>(42-73)                   | 45 (28-<br>100)                       | 44<br>(26-108)             |            | 55<br>(32-103)                                 | 57<br>(35-86)                    |
|                                                                              | $PM_{10}$                |                            | 89<br>(37-172)                   | 105<br>(51-163)                       | 93<br>(31-290)            | 90<br>(27-130)                   | 89<br>(57-169)             |           | 99<br>(33-230)                      |         | 127<br>(83-180)                 | 106<br>(67-213)                       | 106<br>(63-246)            |            | 105<br>(70-153)                                | 107 (78-139)                     |
| No.<br>of<br>Obs                                                             | (24<br>hrs)              |                            | 83                               | 92                                    | 93                        | 100                              | 80                         |           | 106                                 |         | 55                              | 104                                   | 104                        |            | 107                                            | 105                              |
| Area / Stations                                                              |                          |                            | 10. I.R.C. Village,<br>Nayapalli | 11. Capital Police<br>Station, Unit-I | 12.Chandrasekharpur       | 13. Patrapada                    | 14.Palasuni water<br>works | Bonaigarh | 15. Roof of Bonai<br>Govt. Hospital | Cuttack | 16. Traffic Tower<br>Badambadi, | 17. R.O.SPCB<br>Building, Surya Vihar | 18.PHD office<br>,Barabati | Jharsuguda | 19. RO Building,Cox<br>Colony,<br>Babubagicha, | 20.Inside TRL Colony<br>Premises |
| SI.<br>No.                                                                   |                          |                            |                                  |                                       |                           |                                  |                            | (         | 0                                   |         | 7                               |                                       |                            |            | 8                                              |                                  |



| tegory                                                                       | 6 <b>.</b>        |                                                 |               | erate                                                                | роМ                             | 9J.      | Modera                     | Á      | Satisfactor                  |          |                            | erate                        | роМ                                       |      | ctory                       | satista                     |
|------------------------------------------------------------------------------|-------------------|-------------------------------------------------|---------------|----------------------------------------------------------------------|---------------------------------|----------|----------------------------|--------|------------------------------|----------|----------------------------|------------------------------|-------------------------------------------|------|-----------------------------|-----------------------------|
| erall AQI                                                                    | evO<br>10         |                                                 |               | 122<br>(PM <sub>10</sub> )                                           |                                 |          | 106 (PM <sub>10</sub> )    |        | 80<br>(PM <sub>10</sub> )    |          | 113                        | $(PM_{10})$                  |                                           |      | 88<br>(PM.)                 | 701                         |
| early<br>of the<br>nitoring<br>ations                                        | ow<br>OV          |                                                 |               | 137<br>(PM <sub>2.5</sub> )                                          | 106<br>(PM <sub>10</sub> )      |          | 106<br>(PM <sub>10</sub> ) |        | 80<br>(PM <sub>10</sub> )    |          | 109<br>(PM <sub>10</sub> ) | 121<br>(PM <sub>10</sub> )   | 109<br>(PM <sub>10</sub> )                |      | 88<br>(PM <sub>10</sub> )   | 87<br>(PM <sub>10</sub> )   |
| lation<br>from<br>urly<br>ard                                                | PM <sub>2.5</sub> |                                                 |               | 84%                                                                  | Nil                             |          | 33.3%                      |        | NM                           |          | 14.8%                      | 43.7%                        | 26.8%                                     |      | NM                          | NM                          |
| % of violation<br>of data from<br>24 howrly<br>standard                      | PM <sub>10</sub>  |                                                 |               | 8 %9.62                                                              | 7 %9.77                         |          | 45.3%                      |        | 20.0%                        |          | 46.9%                      | 70.3%                        | 49.5%                                     |      | 21.2%                       | 17.8%                       |
|                                                                              | Pb                |                                                 |               | -                                                                    | -                               |          | - 4                        |        | 0.013<br>(BDL-<br>0.08)      |          | - 4(                       | - 20                         | - 49                                      |      | 6.012<br>(BDL-<br>0.09)     | 3.5) 0.02<br>(BDL-<br>0.18) |
| e) excel                                                                     | O <sub>3</sub>    | iter)                                           |               | ı                                                                    | 1                               |          | ı                          |        | 22.3<br>(BDL-<br>27.2)       |          | 1                          | 1                            | -                                         |      | 22.6<br>(BDL-35.            | 23.2<br>(BDL-33.5)          |
| ırly rang                                                                    | NH <sub>3</sub>   | cubic me                                        |               | 1                                                                    | ı                               |          | 1                          |        | 46.6<br>(20.2-<br>71)        |          | ı                          | ı                            | -                                         |      | 54.1<br>(40.6-<br>72.5)     | 52.2<br>(38.9-<br>99.8)     |
| verage Value (24hou<br>(1-hourly range)                                      | NO <sub>2</sub>   | crogram per                                     |               | 9.7<br>(BDL-12.7)                                                    | 11.7<br>(BDL-21.4)              |          | 13.8<br>(9.8-20.6)         |        | 11.9<br>(9.5-17.2)           |          | 11.4 (7.7-17.3)            | 11.4 (8.8-19.3)              | 11.5 (9.1-20.6)                           |      | 14.6 (10.9-18.9)            | 14.9<br>(10.9-25.4)         |
| Annual Average Value (24hourly range) except O <sub>3</sub> (1-hourly range) | $SO_2$            | (values expressed in Microgram per cubic meter) |               | BDL<br>(BDL- BDL)                                                    | BDL<br>(BDL- BDL)               |          | BDL<br>(BDL- BDL)          |        | (BDL- BDL)                   |          | 18.7<br>(11.9-32.8)        | 17.5<br>(12.2-26.3)          | 19.2<br>(13.8-37.8)                       |      | BDL (BDL)                   | BDL<br>(BDL- BDL)           |
| A                                                                            | $PM_{2.5}$        | (values e                                       |               | 71 (61-77)                                                           | 47 (36-60)                      |          | 49<br>(13-106)             |        | NM                           |          | 36<br>(16-119)             | 62<br>(33-102)               | 47<br>(16-161)                            |      | NM                          | NM                          |
|                                                                              | $PM_{10}$         |                                                 |               | 124<br>(44-167)                                                      | 109 (39-<br>191)                |          | 109<br>(27-225)            |        | 80<br>(36-197)               |          | 114<br>(38-295)            | 132<br>(43-248)              | 113<br>(36-317)                           |      | 88<br>(52-134)              | 87 (45-<br>167)             |
| No.<br>of                                                                    | (24<br>hrs)       |                                                 |               | 86                                                                   | 94                              |          | 75                         |        | 100                          |          | 86                         | 64                           | 66                                        |      | 99                          | 84                          |
| Area / Stations                                                              |                   |                                                 | Kalinga Nagar | 21.Over the roof<br>of Guest BRPL<br>House(Near TATA<br>Guest House) | 22.Roof of RO SPCB,<br>building | Keonjhar | 23. R.O.SPCB,<br>Baniapat  | Konark | 24. Konark Police<br>station | Paradeep | 25.PPL Guest House         | 26. On the roof of IFFCO STP | 27. On the roof of<br>Paradeep port trust | Puri | 28. Sadar police<br>Station | 29. Town police<br>Station  |
| SI.<br>No.                                                                   |                   |                                                 |               | 6                                                                    |                                 |          | 10                         |        | 11                           |          |                            | 12                           |                                           |      | 13                          |                             |



| tegory                                                              | БЭ                       |                                         |          | actory                                  | lsits2                             | əji        | Modera                |          |                                    |                                                | erate                               | роМ                                  | Ĺλ        | otsatsits                   |                               |                                   |
|---------------------------------------------------------------------|--------------------------|-----------------------------------------|----------|-----------------------------------------|------------------------------------|------------|-----------------------|----------|------------------------------------|------------------------------------------------|-------------------------------------|--------------------------------------|-----------|-----------------------------|-------------------------------|-----------------------------------|
| erall AQI<br>the City                                               |                          |                                         |          | 66<br>(PM <sub>2.2</sub> )              | }                                  | 1          | (PM <sub>10</sub> )   |          |                                    | 106<br>(PM.)                                   | 10,                                 |                                      |           | 87<br>(PM <sub>2.5</sub> )  |                               |                                   |
| early<br>I of the<br>antoring<br>ations                             | om<br>AQ                 |                                         |          | 62<br>(PM <sub>2.5</sub> )              | 70<br>( <b>PM</b> <sub>2.5</sub> ) |            | (PM <sub>10</sub> )   |          | 93<br><b>(PM</b> <sub>10</sub> )   | $\begin{array}{c} 85 \\ (PM_{10}) \end{array}$ | (PM <sub>10</sub> )                 | (PM <sub>10</sub> )                  |           | 87<br>(PM <sub>2.5</sub> )  |                               |                                   |
| rion<br>rom<br>rly<br>rd                                            | <b>PM</b> <sub>2.5</sub> |                                         |          | 0.95%                                   | 4.8%                               |            | 29.2%                 |          | 3.8%                               | 4.8%                                           | 37.1%                               | 0.95%                                |           | 18.1%                       |                               |                                   |
| % of violation<br>of data from<br>24 howrly<br>standard             | $  PM_{10}  $ F          |                                         |          | 0.95%                                   | 0.95%                              |            | 77.3%                 |          | 14.3%                              | %9.2                                           | 98.1%                               | 24.8%                                |           | 2.8%                        |                               |                                   |
| e                                                                   |                          |                                         |          | ı                                       | 1                                  |            | ı                     |          | 1                                  | ı                                              | ı                                   | ı                                    |           | 1                           | 0.5                           | 1.0                               |
| ) except O                                                          | $O_3$ Pb                 | ter)                                    |          | ,                                       | ı                                  |            |                       |          |                                    | 1                                              | -                                   |                                      |           | ı                           | 180<br>(1Hourly)              | 100<br>(8Hourly)                  |
| urly range                                                          | NH <sub>3</sub> C        | cubic met                               |          |                                         |                                    |            |                       |          |                                    |                                                |                                     |                                      |           |                             | 400                           | 100                               |
| verage Value (24ho<br>(1-hourly range)                              | NO <sub>2</sub>          | crogram per                             |          | 17.8<br>(13.8-31.2)                     | 18.5<br>(13.7-26.9)                |            | 19.6<br>(9.7-35.9)    |          | 13.5 (BDL-17.6)                    | 10.8 (8.9-20)                                  | 22.3 (4.5-34.6)                     | 10.9 (BDL-20.8)                      |           | 20.9<br>(15.7-<br>42.8)     | , 08                          | 40                                |
| Annual Average Value (24hourly range) except $O_3$ (1-hourly range) | SO <sub>2</sub>          | expressed in Microgram per cubic meter) |          | BDL<br>(BDL- 18.7)                      | BDL<br>(BDL- 14.3)                 |            | 15.3<br>(5.7-24)      |          | 6.8<br>(BDL- 13.5)                 | 5.9<br>(5.2-14.8)                              | 14.7<br>(BDL-25.5)                  | 6.9<br>(BDL-15.1)                    |           | 4.7<br>(BDL- 39)            | 80                            | 50                                |
| A                                                                   | $PM_{2.5}$               | (values e                               |          | 37 (11-118)                             | 42<br>(11-96)                      |            | 47 (5-132)            |          | 40<br>(14-267)                     | 50 (37-78)                                     | 57<br>(27-93)                       | 37<br>(20-66)                        |           | 52<br>(24-220)              | 09                            | 40                                |
|                                                                     | $\mathbf{PM}_{10}$       |                                         |          | 60<br>(27-161)                          | 66<br>(19-149)                     |            | 140<br>(20-295)       |          | 93 (51-187)                        | 85<br>(63-110)                                 | 186<br>(93-359)                     | 87<br>(30-184)                       |           | 84<br>(53-287)              | 100                           | 09                                |
| No.<br>of<br>Ohs                                                    | (24<br>hrs)              |                                         |          | 105                                     | 105                                |            | 106                   |          | 105                                | 105                                            | 105                                 | 105                                  |           | 105                         | ·ly)                          |                                   |
| Area / Stations                                                     |                          |                                         | Rayagada | 30.R.O.SPCB<br>Building,<br>Indiranagar | 31. LPS High School,<br>Jaykaypur  | Rajgangpur | 32. DISIR, Rajgangpur | Rourkela | 33. R.O.SPCB<br>building, Sector-5 | 34. IDL Outpost                                | 35. IDCO Water Tank,<br>IDC Kalunga | 36. Kuarmunda Out<br>Post, Kuarmunda | Sambalpur | 37. PHD Office,<br>Modipara | Prescribed Standard (24 hrly) | Standard for Annual Avg.<br>Value |
| SI.<br>No.                                                          |                          |                                         |          | 14                                      |                                    |            | 15                    |          |                                    | 16                                             |                                     |                                      |           | 17                          | Pres                          | Standa<br>Value                   |

NH<sub>3</sub> Ammonia, O<sub>3</sub> – Ozone & Pb-Lead, NM-Not Monitored BDL Value for SO<sub>2</sub>  $\leq 4$  µg/m³, NH<sub>2</sub>  $\leq 1$  µg/m³, NH<sub>3</sub>  $\leq 10$  µg/m³, O<sub>3</sub>  $\leq 10$  µg/m³, Pb  $\leq 0.0022$  µg/m³, PM<sub>10</sub>  $\leq 5$  µg/m³, PM<sub>2,5</sub>  $\leq 2$  µg/m³ No percentage of violation of data from 24-hourly average for parameters like SO<sub>2</sub>, NO<sub>2</sub>, NH<sub>3</sub> & Pb and 1-hourly average data for O<sub>3</sub> at all monitored stations BDL- Below Detectable Limit,  $PM_{10}$  - Particulate Matter  $\leq 10~\mu$  size ,  $PM_{25}$  - Particulate Matter  $\leq 2.5~\mu$  size  $SO_2$  - Sulphur Dioxide,  $NO_2$  - Oxides of Nitrogen, N.B: AA



Table-5.34 Annual Air Quality Index of Different monitored Stations in Odisha during the year, 2018

|                                                                   |                  | Sub in            | dex val         | ue w.r.t        | parame          | eter           |     | Overall AQI                    |                           |
|-------------------------------------------------------------------|------------------|-------------------|-----------------|-----------------|-----------------|----------------|-----|--------------------------------|---------------------------|
| Monitoring Locations                                              | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | NO <sub>2</sub> | NH <sub>3</sub> | O <sub>3</sub> | Pb  | of the area w.r.t<br>parameter | Overall<br>Categorisation |
| 1.Angul                                                           |                  |                   |                 |                 |                 |                |     |                                |                           |
| 1.Industrial Estate                                               | 100.0            | 00.0              | 10.0            | 22.0            |                 |                |     | 100 (PM)                       | Cathefrance               |
| 2.NALCO Nagar                                                     | 100.0            | 82.0              | 12.0            | 32.0            | -               | -              |     | 100 (PM <sub>10</sub> )        | Satisfactory              |
| 2.Talcher                                                         | ,                | ,                 |                 | '               | '               | •              | ,   |                                |                           |
| 3.TTPS , Talcher                                                  | 1000             | 02.0              | 12.0            | 25.0            |                 |                |     | 10C (DM )                      | Madanata                  |
| 4.MCL, Talcher                                                    | 106.0            | 83.0              | 12.0            | 35.0            | -               | -              | -   | 106 (PM <sub>10</sub> )        | Moderate                  |
| 3.Balasore                                                        |                  |                   |                 |                 | '               | ,              | '   |                                |                           |
| 5.R.O, SPCB Sahadevkhunta                                         |                  |                   |                 |                 |                 |                |     |                                |                           |
| 6.DIC office, Angaragadia                                         | 86.0             | 78.0              | 3.0             | 14.0            | -               | -              |     | 86.0 (PM <sub>10</sub> )       | Satisfactory              |
| 7.Rasalpur,I.E                                                    |                  |                   |                 |                 |                 |                |     |                                |                           |
| 4.Berhampur                                                       |                  |                   |                 |                 | '               | ,              |     |                                |                           |
| 8.R.O, SPCB, Brahamanagar                                         | 64.0             | 55.0              | 3.0             | 24.0            | -               | -              | -   | 64.0 (PM <sub>10</sub> )       | Satisfactory              |
| 5.Bhubaneswar                                                     |                  |                   |                 |                 | '               | ,              |     |                                |                           |
| 9.SPCB Office Building, Unit-<br>VIII                             |                  |                   |                 |                 |                 |                |     |                                |                           |
| 10.I.R.C. Village, Nayapalli                                      |                  |                   |                 |                 |                 |                |     |                                |                           |
| 11.Capital PS Unit-I                                              | 94.0             | 52.0              | 3.0             | 21.0            | 12.0            | 23.0           | 1.8 | 94.0 (PM <sub>10</sub> )       | Satisfactory              |
| 12.Chandrasek-harpur                                              |                  |                   |                 |                 |                 |                |     | 107                            |                           |
| 13.Patrapada                                                      |                  |                   |                 |                 |                 |                |     |                                |                           |
| 14.Palasuni water works                                           |                  |                   |                 |                 |                 |                |     |                                |                           |
| 6.Bonaigarh                                                       |                  |                   | •               |                 | •               | •              | •   |                                |                           |
| 15.Bonai Govt. Hospital                                           | 99.0             | 60.0              | 11.0            | 15.0            | -               | -              | -   | 99.0 (PM <sub>10</sub> )       | Satisfactory              |
| 7.Cuttack                                                         |                  | ·                 | •               |                 | •               | •              |     |                                |                           |
| 16.Traffic Tower<br>Badambadi,                                    |                  |                   |                 |                 |                 |                |     |                                | _                         |
| 17.R.O.Building, Surya Vihar                                      | 109.0            | 80.0              | 3.0             | 39.0            | -               | -              | -   | 109.0 (PM <sub>10</sub> )      | Moderate                  |
| 18.PHD office ,Barabati                                           |                  |                   |                 |                 |                 |                |     |                                |                           |
| 8.Jharsuguda                                                      |                  |                   |                 |                 |                 |                |     |                                |                           |
| 19.RO Building,Cox<br>Colony,Babubagicha,                         | 104.0            | 93.0              | 10.0            | 20.0            | _               | _              | _   | 1040 (PM )                     | Moderate                  |
| 20. Inside TRL Colony<br>Premises                                 | 104.0            | 93.0              | 10.0            | 20.0            |                 |                |     | 104.0 (PM <sub>10</sub> )      | Moderate                  |
| 9.Kalinganagar                                                    |                  |                   |                 |                 |                 |                |     |                                |                           |
| 21.Over the roof of BRPL<br>Guest House(Near TATA<br>Guest House) | 122.0            | 98.0              | 3.0             | 13.0            | -               | -              | -   | 122.0 (PM <sub>10</sub> )      | Moderate                  |
| 22.Roof of Regional Office<br>Building,                           |                  |                   |                 |                 |                 |                |     | 10                             |                           |
| 10.Keonjhar                                                       |                  |                   |                 |                 |                 |                |     |                                |                           |
| 23.R.O, Baniapat                                                  | 106.0            | 82.0              | 3.0             | 17.0            | -               | -              | -   | 106.0 (PM <sub>10</sub> )      | Moderate                  |



|                                          | Sub index value w.r.t parameter |                   |                 |                 |                 |                | Overall AQI |                                |                           |  |
|------------------------------------------|---------------------------------|-------------------|-----------------|-----------------|-----------------|----------------|-------------|--------------------------------|---------------------------|--|
| Monitoring Locations                     | PM <sub>10</sub>                | PM <sub>2.5</sub> | SO <sub>2</sub> | NO <sub>2</sub> | NH <sub>3</sub> | O <sub>3</sub> | Pb          | of the area w.r.t<br>parameter | Overall<br>Categorisation |  |
| 11.Konark                                |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 24.Konark Police Station                 | 80.0                            | NM                | 3.0             | 15.0            | 12.0            | 22.0           | 1.3         | 80.0 (PM <sub>10</sub> )       | Satisfactory              |  |
| 12.Paradeep                              |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 25.PPL Guest House                       |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 26.On the roof of IFFCO STP              | 113.0                           | 80.0              | 23.0            | 14.0            | -               | -              | -           | 113.0 (PM <sub>10</sub> )      | Moderate                  |  |
| 27.On the roof of Paradeep port trust    |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 13.Puri                                  |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 28. Sadar police Station                 | 88.0                            | NM                | 3.0             | 18.0            | 13.0            | 23.0           | 2.0         | 99 O (DM )                     | Satisfactory              |  |
| 29. Town police Station                  | 00.0                            | INIVI             | 3.0             | 18.0            | 15.0            | 23.0           | 2.0         | 88.0 (PM <sub>10</sub> )       | Sucisfactory              |  |
| 14.Rayagada                              |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 30. RO Building, Indiranagar             |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 31. LPS High School,<br>Jaykaypur        | 63.0                            | 66.0              | 3.0             | 23.0            | -               | -              | -           | 66.0(PM <sub>2.5</sub> )       | Satisfactory              |  |
| 15.Rajgangpur                            |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 32. DISR Rajgangpur                      | 127.0                           | 78.0              | 19.0            | 25.0            | -               | -              | -           | 127.0 (PM <sub>10</sub> )      | Moderate                  |  |
| 16.Rourkela                              |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 33.Regional Office Building,<br>Sector-5 |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 34. IDL Outpost                          |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 35. IDCO Water Tank, IDC<br>Kalunga      | 106.0                           | 77.0              | 11.0            | 18.0            | -               | -              | -           | 106.0 (PM <sub>10</sub> )      | Moderate                  |  |
| 36. Kuarmunda Out Post,<br>Kuarmunda     |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 17.Sambalpur                             |                                 |                   |                 |                 |                 |                |             |                                |                           |  |
| 37.PHD Office, Modipara                  | 84.0                            | 87.0              | 6.0             | 26.0            | -               | -              | -           | 87.0 (PM <sub>2.5</sub> )      | Satisfactory              |  |

Table-5.35 AQI range with categorization and Health impact

| AQI VALUE | CATAGORY     | IMPACT ON HUMAN HEALTH                                                           |  |
|-----------|--------------|----------------------------------------------------------------------------------|--|
| 0-50      | GOOD         | Minimal Impact                                                                   |  |
| 51-100    | SATISFACTORY | Minor breathing discomfort to sensitive people                                   |  |
| 101-200   | MODERATE     | Breathing discomfort to the people with lung, heart disease, children and adults |  |
| 201-300   | POOR         | Breathing discomfort to people on prolonged exposure                             |  |
| 301-400   | VERY POOR    | Respiratory illness to the people on prolonged exposure                          |  |
| >401      | SEVERE       | Respiratory effects even on healthy people                                       |  |

34 \_\_\_\_\_\_ Annual Report 2018-19 \_\_



### 5.8 INDUSTRIAL INSPECTIONS, MONITORING OF WATER, AIR AND SOLID WASTE SAMPLES

The Board has analysed following samples. The status of inspection and monitoring during the year 2018-19 is given in Table-5.36.

Table - 5.36 Inspection and Monitoring of Water, Air and Solid Waste

|                         | Samples                          | Nos. of                          | Nos. of                   | Nos. of                               | Ambient A |                     |                |        |                  |
|-------------------------|----------------------------------|----------------------------------|---------------------------|---------------------------------------|-----------|---------------------|----------------|--------|------------------|
| Nos. of<br>Inspec-tions | under<br>NWMP,<br>SWMP &<br>NRCP | Nos. of<br>Industrial<br>samples | other<br>water<br>samples | Soil/solid<br>waste/ Plant<br>samples | Stack     | Industrial premises | SAMP /<br>NAMP | Others | Ambient<br>Noise |
| 5877                    | 4171                             | 2494                             | 1474                      | 48                                    | 1013      | 1652                | 11,325         | 269    | 753              |

#### 5.9 PUBLIC GRIEVANCES

The status of various public complaints received and redressed on following matters during 2018-19 is given in Table 5.37.

- 17 categories of highly polluting industries
- Disposal of hazardous chemicals and hazardous wastes
- Stone crusher
- Brick Kiln
- Other industries
- Mines
- Iron Crushers
- Public nuisance
- Other miscellaneous issues

**Table - 5.37 Status of Public Complaints** 

| No. of complaint received | Disposal | Under investigation |
|---------------------------|----------|---------------------|
| 576                       | 351      | 225                 |

### 5.10 IMPLEMENTATION OF RIGHT TO INFORMATION ACT, 2005

The Right to Information Act, 2005 provides for setting out the practical regime of right to information for citizens to secure access to information under the control of Public Authorities (P.A), in order to promote transparency and accountability in the working of every public authority.

According to Section 6 of this Act, any person who desires to obtain any information under this Act can apply in Form A specifying the particulars of the information sought by him or her in writing or electronically in English or in local official language. The application should be accompanied with the requisite fee, prescribed under the Act.

As per the Act, the State Pollution Control Board, Odisha is providing available information as and when sought through proper application. Mrs. Kainta Tudu, Env. Scientist of the Board has been declared as the Public Information Officer under the provisions of the Act. 603 no. of requests were received under RTI during 2018-19 (Table-5.38). The total amount collected for RTI requests during 2018-19 is ₹11,739/-.

Table - 5.38 Status of Applications under RTI Act

| SL. No. | Details of the Application                              |     |  |  |
|---------|---------------------------------------------------------|-----|--|--|
| 01.     | Total no. of applications received                      | 603 |  |  |
| 02.     | No. of applications on which Information provided       | 531 |  |  |
| 03      | No. of applications on which request rejected           | 34  |  |  |
| 04.     | No. of requests transferred to other public Authorities | 30  |  |  |
| 05.     | No. of applications under evaluation                    | 08  |  |  |



# **CHAPTER - VI**

# **LEGAL MATTERS**

### 6.1 STATUS OF LEGAL CASES

The Board initiates legal action against those units which fail to adopt adequate pollution control measures entailing violation of norms and directives, in spite of repeated persuasion and after having received adequate opportunity.

The Board has filed/counter filed 331 cases and 247 cases have been disposed off by the respective Courts during 2018-2019. The details of cases filed by the Board alongwith the status of public interest litigations and writ petitions filed in different Courts are presented in Table-6.1.

Table - 6.1 Details of Cases Filed by the Board

| Sl.<br>No | Name of the Court                          | No. of Cases             |                          |  |  |  |  |
|-----------|--------------------------------------------|--------------------------|--------------------------|--|--|--|--|
|           |                                            | Filed/Counter filed      | Disposal*                |  |  |  |  |
| A         | A Lower Court (SDJM)                       |                          |                          |  |  |  |  |
| 1.        | The Water (PCP) Act                        | Nil                      | Nil                      |  |  |  |  |
| 2.        | The Air (PCP) Act                          | Nil                      | Nil                      |  |  |  |  |
| 3.        | The Environment (Protection) Act           | Nil                      | Nil                      |  |  |  |  |
| В         | High Court                                 |                          |                          |  |  |  |  |
| 1.        | PIL                                        | 07                       | 14                       |  |  |  |  |
| 2.        | Writ                                       | 226                      | 165                      |  |  |  |  |
| C         | Supreme Court                              |                          |                          |  |  |  |  |
| 1.        | PIL                                        | 02                       | Nil                      |  |  |  |  |
| 2.        | Writ                                       | 04                       | 01                       |  |  |  |  |
| D         | Other Court                                |                          |                          |  |  |  |  |
| 1.        | Civil Suit                                 | Nil                      | Nil                      |  |  |  |  |
| 2.        | Consumer Dispute Cases                     | Nil                      | Nil                      |  |  |  |  |
| 3.        | Lokpal Cases                               | Nil                      | Nil                      |  |  |  |  |
| 4.        | N.H.R.C. / O.H.R.C.                        | 33<br>(NHRC-23+ OHRC-10) | 30<br>(NHRC-17+ OHRC-13) |  |  |  |  |
| 5.        | Cases U/S-133 of CrPC                      | Nil                      | Nil                      |  |  |  |  |
| 6.        | Cases before the State Appellate Authority | 05                       | 04                       |  |  |  |  |
| 7.        | Cases before the National Green Tribunal   | 52                       | 33                       |  |  |  |  |
| 8.        | Misc. Cases                                | 02                       | Nil                      |  |  |  |  |
|           | Total                                      | 331                      | 247                      |  |  |  |  |

N.B: \*Include cases carried over from the previous years

136 — — — Annual Report 2018-19 —



# **CHAPTER - VII**

# FINANCE AND ACCOUNTS

The estimated and the actual receipts during 2018-19 are given in Table-7.1.

Table-7.2 reflects the details of budget provision and actual expenditure incurred during the year 2018-19.

Table - 7.1 Receipt of the Financial Year 2018-19 (Rupees in lakhs)

| Sl<br>No. | Head of Receipt                                 | Estimated Receipt | Revised Receipt | Actual Receipt |
|-----------|-------------------------------------------------|-------------------|-----------------|----------------|
| (A)       | Boards Own Receipt                              |                   |                 |                |
| 1         | Consent to operate fees                         |                   |                 |                |
|           | a) CTO current year                             |                   |                 | 292.42         |
|           | b) CTO in Advance                               |                   |                 | 4686.21        |
|           | Total CTO fees                                  | 2260.00           | 2768.13         | 4978.63        |
| 2         | Consent to Establish                            | 510.00            | 835.00          | 1092.50        |
| 3         | Misc.Receipt                                    | 6.00              | 4.55            | 6.67           |
| 4         | Analysis Charges                                | 1.00              | 1.00            | 1.11           |
| 6         | Recovery of Loan & Others                       | 50.00             | 40.00           | 31.08          |
| 7         | Public Hearing fees                             | 17.00             | 26.75           | 26.50          |
| 8         | Hazardous Waste Auth                            | 15.00             | 15.70           | 31.24          |
| 9         | Aut.Bio.Med.Fees, E-waste                       | 15.00             | 17.00           | 24.83          |
| 10        | Interest on Savings/Advances                    | 2000.00           | 2000.00         | 1278.52        |
|           | Sub-Total                                       | 4874.00           | 5708.13         | 7471.08        |
| 11        | Pollution Charges                               | 2.00              | 9.00            | 8.60           |
| 12        | Forfeiture of Bank Guarentee                    | 5.00              | 7.00            | 5.70           |
| 13        | Penalty/Env.Compensation/Hotels and Brick Klins |                   |                 | 30.95          |
|           | Sub-Total                                       | 7.00              | 16.00           | 45.25          |
| (B)       | Water Cess(Reimbursement)                       | 800.00            | 800.00          | 21.49          |
| (C)       | Receipt of Scheme                               | 310.23            | 456.08          | 479.68         |
|           | Sub-Total                                       | 1110.23           | 1256.08         | 501.17         |
|           | Grand Total                                     | 5991.23           | 6980.21         | 8017.50        |



Table - 7.2 Expenditure during the Financial Year 2018-19 (Rupees in lakhs)

| Sl<br>No. | Source of<br>Funding | Head of Account                                    | Budget for 2018-19 | Revised Budget for 2018-19 | Actual Expenditure |
|-----------|----------------------|----------------------------------------------------|--------------------|----------------------------|--------------------|
| 1         | Boards<br>Own Fund   | i)Salary                                           | 3817.00            | 3894.50                    | 3325.36            |
|           |                      | ii)Recurring Exp.                                  | 518.00             | 615.67                     | 427.19             |
|           |                      | iii)Non Recurring                                  | 286.00             | 421.30                     | 122.01             |
|           |                      | iv)Loan & Advances                                 | 42.00              | 43.80                      | 32.13              |
|           |                      | Transfer of fund to OEMFT                          | 7.00               | 16.00                      | 65.60              |
|           |                      | Total                                              | 4670.00            | 4991.27                    | 3972.29            |
|           |                      | i)Salary of Scientific<br>& Technical<br>Personnel | 150.00             | 150.00                     | 150.00             |
|           | Water Cess<br>Fund   | ii)Establishment<br>Cost & Office<br>Operation     | 137.50             | 139.00                     | 70.25              |
| 2         |                      | iii)E-governance &<br>IT Operations                | 61.00              | 61.00                      | 4.20               |
|           |                      | iv)Monitoring of<br>Air,Water,Noise<br>Quality etc | 143.00             | 146.00                     | 49.74              |
|           |                      | v) Other project<br>activities                     | 482.00             | 210.00                     | 84.62              |
|           |                      | Total                                              | 973.50             | 706.00                     | 358.81             |
| 3         | Sponsored<br>Scheme  |                                                    | 319.43             | 578.20                     | 468.43             |
|           |                      | Grand Total                                        | 5962.93            | 6275.47                    | 4799.53            |
| 4         | Others               | Deposit of Income<br>Tax                           |                    |                            | 1000.00            |
|           |                      | SPCB Pension Fund<br>Trust                         |                    |                            | 795.00             |

38 — — — Annual Report 2018-19 —



# **CHAPTER - VIII**

## OTHER IMPORTANT ACTIVITIES

### 8.1 INTEGRATED COASTAL ZONE MANAGEMENT PROJECT (ICZMP)

Coastal Water Monitoring and Analysis has been made regularly since April 2014 on quarterly/ seasonal basis by the PEA from the assigned monitoring area i.e. from Paradeep (20°10'02.67″N; 86°31'22.63″E) to Dhamra coast (20°5'58.96N; 86°58'12.27E), covering nearly 80 KM in the sea. All samplings have been made from on-shore and off-shore sampling points with the help of trawler as well as monitoring vessel (MV Sagar Utkal). As given in the protocol, seventy three (73) sampling locations have been selected for the entire monitoring area (Mahanadi transect-32 points, Dhamra transect-17 points and Gahirmatha-Bhitarkanika transect- 24 points).

The details of monitoring conducted during 2018-19 by the PEA are given in table below.

Table-8.1

| Year/ Monitoring<br>Quarter | Period            | Duration of sampling | No. of Water samples collected | No. of Sediment samples collected |
|-----------------------------|-------------------|----------------------|--------------------------------|-----------------------------------|
| 2018-19/Q3                  | October-November  | November-2018        | 478                            | 27                                |
| 2018-19/Q4                  | December-February | January-2019         | 192                            | 18                                |
| 2018-19/Q4                  | December-February | February-2019        | 120                            | 9                                 |
| 2018-19/Q1                  | March-June        | March-2019           | 321                            | 23                                |
|                             |                   |                      | Total: 1111                    | 77                                |

Parameters analysed for the water samples include pH, Conductivity, Total Suspended Solids, Total Dissolved solids, Turbidity, Fluoride, Dissolved Oxygen, Biochemical Oxygen Demand, Alkalinity, Salinity, Nitrite, Nitrate, Ammonia, Silicate, Ortho-phosphate, TOC, TIC, heavy metals(V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Pb, Cd, Hg), Total Coliform, Fecal Coliform, Chlorophyll-a, Chlorophyll-b, Chlorophyll-c, Total Chlorophyll, Phaeophytin pigment, Carotenoid, Phytoplankton and Zooplankton.

Parameters analysed for the sediment samples include pH, TOC, TIC, heavy metals, Macro Benthos, Meio Benthos and sediment composition i.e, sand, silt and clay.

Some photographs during sampling in vessel are given below:







## Blue Flag Beach Certification of Beach along coastal stretch of Odisha:

As per Blue Flag standards, a beach must be plastic-free and equipped with a waste management system. Clean water shall be available for tourists, apart from international amenities. The beach shall have facilities for studying the environmental impact around the area.

The drive for the Blue Flag certification; which is the tag given to environment-friendly and clean beaches, equipped with amenities of international standards for tourists; has been initiated for a few coastal stretches in the State of Odisha. In this connection, twelve more beaches in the country are being developed by the Society for Integrated Coastal Management (SICOM), which is the Environment Ministry's body working for the management of coastal areas in accordance with the Blue Flag standards. As per the proposal of Govt. of Odisha and MoEF & CC, GoI; the OSPCB has been involved in conducting detail survey of environmental status of the coast as desired.

In addition to Chandrabhaga beach, four new beach i.e., two at Puri and two at Paradeep were identified for Pilot Blue Flag Beach. Monitoring in confirmWation of bathing water quality as per the FEE guidelines was employed during the study of these stretches. 120 water samples from Puri Sea Beach at ten different locations and 60 water samples from Paradeep Sea Beach at ten different locations have been collected, analyzed & reported.

Total 246 water samples were collected, analysed and reported for sampling made in two phases i.e., from April to June and from September to November from six different locations in Chandrabhaga beach. As per FEE Guidelines, parameters those were analyzed for the water samples include *Colour, Odour, pH, Turbidity, Dissolved Oxygen, Biochemical Oxygen Demand, Fecal Coliform, Fecal Streptococci and Oil & grease* for all samples.



**Monitoring at Puri Beach** 



**Monitoring at Paradeep Beach** 



Monitoring at Chandravaga Beach

### Training and Workshop attended (ICZMP, SPCB, Odisha)

- 1. Mrs. Sumitra Nayak, AES attended BRNS-AEACI Thirteenth School on Analytical Chemistry (SAC-13) from  $23^{\rm rd}$  to  $30^{\rm th}$  April, 2018 at Department of Hydro & Electrometallurgy, CSIR-IMMT Bhubaneswar, Odisha.
- 2. Dr. S.S.Pati, AES attended the training on 'Taxonomical Identification of Macro Invertebrate in Biological testing' from 4<sup>th</sup> Oct to 6<sup>th</sup> Oct, 2018 at NEERI, Nagpur.
- 3. Dr.S.Mishra, AES attended training on 'Biological Monitoring analysis and Testing (Microbiology, bioassay and Bio monitoring), SOPs, data Interpretation and Quality Assurance' from 20<sup>th</sup> Nov to 22<sup>nd</sup> Nov, 2018 at Punjab University, Chandigarh, Punjab.
- 4. Mr. Sarat Kumar Mohanty, SSA attended training programme on "Environmental Data Interpretation, Compilation, Analysis, Presentation and Reporting Hands-on-Training and Case Study" from February 4<sup>th</sup> to 6<sup>th</sup>, 2019 at Indian Statistical Institute, SQC & OR Unit, Delhi Centre.



### Other Activities of ICZMP, SPCB, Odisha:

- 1. Vigilance awareness week was observed at Coastal Laboratory on 29<sup>th</sup> October, 2018 with the officials and staffs of Central Laboratory, Bhubaneswar and Regional Office, Bhubaneswar.
- 2. Few students of Banki Autonomous College visited CMCE Office for studying & understanding the detail methodologies for sampling, procedure for preservation and analysis of marine water and sediment samples. Necessary demonstration was imparted on sampling methodologies for physico-chemical, biological parameters for water and sediment by the scientists of ICZMP, SPCB, Odisha in association with Regional Office, Paradeep.





3. M/s AFC India Ltd, New Delhi; the Third party monitoring and evaluation consultant for ICZM project as appointed by SICOM, visited CMCE, Paradeep on dt.31.10.2018.





# 8.2 FLY ASH RESOURCE CENTRE (FARC)

Fly Ash Resource Centre (FARC) is working in the Board since June'2013 as per the decision of High Level Committee, Chaired by the Chief Secretary, Govt. of Odisha. During the financial year 2018-19 about 31.24 Million Tonne of fly ash has been generated, out of which the utilisation of fly ash is about 25.84 Million Tonne i.e 82.71%.

The mandate of the FARC is to facilitate & enhance the utilisation of fly ash in the State by facilitating and exploring various options such as brick manufacturing, cement and asbestos manufacturing, quarry filling, coal mine void filling, dyke raising, land development and road making etc. The Board has also taken up awareness from time to time among the stakeholders. FARC has prepared the following guidelines and uploaded in the Board's website.



- a. Guidelines for Manufacturing of Quality Fly Ash Bricks
- b. Guidelines for Low lying area filling with fly ash
- c. Guidelines for Use of Fly ash Tiles in canal lining
- d. Best Practices in Fly ash utilization
- e. Fly ash in Road construction

### 8.3 UNIDO-GEF-Funded MoEF Project On Biomedical Waste Management

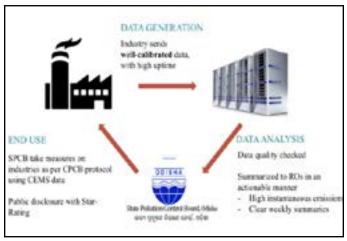
Odisha has been identified, as one of the five States in the Country (Other States are Maharashtra, Gujarat, Punjab, Karnataka) for implementing UNIDO-GEF-Funded MoEF Project on Biomedical Waste Management. SPC Board has been designated by the Govt. as the Nodal Agency and the Board has signed the contract with UNIDO. The project is implemented in 28 Health Care Establishments (HCEs) and one district (Sambalpur) as model project including three Govt. Medical College and Hospitals. Govt. of Odisha is also co-financing the project.

The achievements of the project in implementing best BMW management in the State are as follows:

- Dedicated manpower (Project Officers) in 9 Govt. hospitals and State Biomedical Waste Cell of Health and Family Welfare Dept., Govt. of Odisha has been provided exclusively to deal with Bio-medical Waste Management.
- After deployment of Project Officers, regular training imparted to waste handlers and regular surveillance and the Bio-medical Waste Management practice in the aforesaid 9 HCEs has been improved considerably, particularly the practice of segregation of biomedical wastes.
- Colour-coded bins (3360 nos.) and waste collection trolleys (241 nos) have been provided to the identified 28 HCEs.
- Capacity building of Medical Officers, Nurses, Paramedical Staff, Waste Handlers and related stakeholders.
- Seven workshops have been conducted throughout the State and the participants were Doctors, Nodal Officers, Paramedical Staff, Nurses and Waste Handlers.
- Standard Operating Procedure(SOP) and Training Manuals, prepared by MS Ramaiah Medical College, Bangalore have been distributed to the Board, Health and Family Welfare Department, CBWTF and all identified HCEs.
- Microwaves have been provided to 4 nos. of large medical college and hospitals namely SCB Medical College and Hospital, Cuttack; VIMSAR, Burla; MKCG Medical College and Hospital, Berhampur; and SUM Hospital, Bhubaneswar under the project.

# 8.4 EPIC- OSPCB PARTNERSHIP PROJECT

- Govt. of Odisha had signed a Statement of Intent (SoI) with University of Chicago on 3rd April 2017. As a part of the partnership with Govt. of Odisha, Energy Policy Institute at the University of Chicago (EPIC-India) has set up a knowledge cell w.e.f. 1st May 2017 within the head office of Odisha State Pollution Control Board (OSPCB) and researchers are currently working with OSPCB in improving environmental regulation.
- EPIC-India have developed a Star Rating Portal for information disclosure on data transmitted through CEMS.
- Through Government- Academic partnership cutting edge research and advanced analytics tools are developed for better enforcement and compliance monitoring of industries.




Energy Policy Institute at the University of Chicago (EPIC) India and State Pollution Control Board, (SPCB), Odisha Partnership Project.

# i) Launching of Star Rating Programme:

For the 1<sup>st</sup> phase of Star Rating rollout, 20 industries from different sectors had been chosen and their PM-CEMS were calibrated and validated in presence of Board officials.






(Calibration and Validation of Data from PM-CEMS for 1st Phase 20 Industries)

The Star Rating Programme has been launched by Honorable Chief Minister of Odisha Shri Naveen Patnaik on 17<sup>th</sup> September 2018 at Odisha Secretariat by unveiling a new website (www.ospcb.info) where citizens can access the information. Hon'ble Chief Minister also appreciated the efforts of State Pollution Control Board, Odisha quoting this initiative as an excellent example of **3Ts-Technology, Teamwork and Transparency** 

The Star Rating Launch programme was attended by Hon'ble Minister, Forest and Environment, Shri Bijayshree Routray, Hon'ble Minister for Industries, Shri Anant Das, Chief Secretary, Shri Aditya Prasad Padhi, Development Commissioner cum Chairman, Shri R Balakrishnan, ACS Forest & Environment, Shri Suresh Chandra Mahapatra, Director Environment, Dr. K Murugesan, Member Secretary SPCB Odisha, Shri Debidutta Biswal, Dr. Akhila Kumar Swar, Chief Environmental Engineer cum Nodal Officer of Star Rating Programme, Senior Officials from SPCB Odisha, delegates from University of Chicago (EPIC India) and representatives from 20 industries of Odisha.





(Star Rating Launch by Hon'ble Chief Minister of Odisha on 17th Sept 2018 at Bhubaneswar)



Meanwhile, EPIC-India team have developed a dedicated web portal named as **ospcb.info** that has been linked to main page of Odisha State Pollution Control Board **ospcboard. org** to display the monthly rating of industries. The website has been designed in a user-friendly manner both in English as well as Odia language.

## ii) Workshop on CEMS and Star Rating Program for Industries:

SPCB, Odisha along with Energy Policy Institute at University of Chicago (EPIC-India), conducted a full day workshop for all 17-Categories of highly polluting industries of Odisha on CEMS and Star Rating Program on 13<sup>th</sup> November, 2018 at Hotel Swosti Premium, Bhubaneswar (Odisha). This Workshop was conducted to discuss with all stakeholders on CEMS regulations, calibration and creating awareness on new protocols issued by regulators to improve the data quality and availability. This will lead to greater transparency and larger participation of industries into the Star Rating program. SPCB, Odisha invited some eminent speakers from Centre for Science and Environment, Industry Representative, Scientist and Researchers from other SPCBs (Gujarat) to share their experience and knowledge on CEMS guidelines, protocols, calibration as well as field experience on data validation and monitoring of analysers.

The Workshop was chaired by Shri R Balakrishnan, DC cum Chairman of OSPCB. The Workshop was attended by about 179 participants from 17 Category Industries and 50 officials from SPCB Odisha including representatives from its 12 Regional Offices.





(CEMS and Star Rating Workshop on 13th Nov 2018 at Bhubaneswar, Odisha)

As on March 2019, a total of 90 Industries under 17 category completed calibration and data validation of their PM-CEMS. All these industries have been included in the Odisha Star Rating Programme.

# iii) Strengthening IT Infrastructure of SPCB, Odisha

- SPCB, Odisha have introduced a centralized monitoring and IT-Cell at the Head Office of the Board to strengthen its vigil mechanism and analysis of RT-DAS data.
- Also, monitoring happens at decentralized manner at Regional Office level by creating a pool of dynamic staff through additional capacity building.
- A more robust IT-Infrastructure and Control Centre is in pipeline which will provide advanced real-time monitorinWg through digitization of CEMS data.
- EPIC India has been supporting SPCB, Odisha in strengthening the IT Infrastructure and developing data analytics and monitoring reports for creating a robust regulatory mechanism through command and control.

4 — Annual Report 2018-19 –



### 8.5 OBSERVATIONS DURING DIFFRENT FESTIVALS

# 8.5.1. Impact of Festive Activities during Dashera and Deepawali on Noise level and Ambient Air Quality (AAQ) of selected towns and cities of Odisha.

State Pollution Control Board, Odisha has taken pro-active measures to create public awareness on ill-effect of noise and bursting of fire crackers by publishing public notices in two Odia and two English newspaper on dated 13.10.2018.

The Board has conducted monitoring of Noise Level in pre- and during- Dashera festival in 13 towns/cities and in pre- and during- Deepawali at 14 towns/cities of the State to assess the impact of noise and bursting of fire crackers. The Board also conducted ambient air monitoring with respect to  $PM_{10}$ ,  $PM_{2.5}$ ,  $SO_2$  &  $NO_2$  in 16 towns/cities to assess the impact on ambient air quality during these occasions.

The findings of the monitoring are summarized below and results are presented in Table-8.2 and Table-8.3.

### IMPACT OF DASHERA CELEBRATION ON AMBIENT NOISE LEVEL

The Board has conducted ambient noise monitoring at 49 locations in 13 towns/cities i.e Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Paradeep, Puri, Rayagada, Rourkela and Sambalpur covering Industrial, Commercial, Residential and Silence zone during day and night time in pre & during Dashera to assess the impact of Dashera festival on the ambient noise level. Out of these 49 locations, 10 locations are in Industrial zone, 13 locations are in commercial zone, 13 locations are in residential zone and 13 locations are in silence zone. The findings of the monitoring are summarized below and results are presented in Table-8.2.

### I. Industrial Zone

The noise level at all locations in pre & on the day of Dashera are below the prescribed limit for day time i.e., 75 dB (A) Leq except at two locations during Dashera day at Khapuria Industrial Estate, Cuttack & Kalinga nagar Industrial Estate, Jaipur.

During night time the noise level are below the limit i.e., 70 dB (A) Leq at all locations in pre & on the day of Dashera except at two locations on the day of Dashera i.e., Bombay chowk, Jharsuguda and Khapuria Industrial Estate, Cuttack.

### II. Commercial Zone

The noise level in day time on pre & during Dashera at all locations are above the limit i.e., 65 dB (A) Leq except at one location in pre period at Gole bazar, Sambalpur i.e., 60.3 dB (A) Leq. The maximum noise occurred at Motiganj, Balasore i.e., 83.9 dB (A) Leq on the day of Dashera. The noise level in night time exceed the limit i.e., 55 dB (A) Leq at all locations in pre & on the day of Dashera. The maximum noise level occurred i.e 87.8 dB (A) Leq at Motiganj, Balasore.

### III. Residential Zone

The noise level at the day time exceed the limit i.e. 55 dB (A) Leq in both pre & during Dashera at all locations except at one location in pre i.e., at Sector 19, Rourkela. The maximum noise level occurred at Paradeep Port Trust colony, Pardeep i.e., 78.6 dB (A) Leq in day time on the day of Dashera.

During night time noise level in pre & during Dashera are more than the limit i.e.,45 dB (A) Leq at all locations except at one location in pre period i.e., sector 19,Rourkela.The maximum noise level occurred i.e., 84.4 dB (A) Leq at Cox colony, Jharsuguda during Dashera at night time .



# IV. Silence Zone

The noise level in day time & night time at all locations are above their respective limit i.e., 50 dB (A) Leq for day time & 40 dB (A) Leq for night time except at one location i.e., IGH Steel Township, Rourkela both in pre & on the day of Dashera. Maximum noise level i.e., 84.9 dB (A) Leq in day time & 86.3 dB (A) Leq in night time at District Head Quarter Hospital, Jharsuguda are observed on the day of Dashera.

Table-8.2 Noise level in dB(A) Leq at different locations on pre and on Dashera day during the year 2018

| Sl. | Towns /Cities | Monitoring Locations                 | Pre- Da | shera | During-Dashera |      |
|-----|---------------|--------------------------------------|---------|-------|----------------|------|
| No  | Towns/Cities  |                                      | D       | N     | D              | N    |
|     |               | 1.Amalapada(R)                       | 62.7    | 55.1  | 68.0           | 54.1 |
| ,   | A1            | 2.Bazar chhak(C)                     | 65.6    | 58.2  | 82.8           | 59.9 |
| 1.  | Angul         | 3.District Head Quarter Hospital(S)  | 60.5    | 53.1  | 62.9           | 51.6 |
|     |               | 4.Hakimpada(I)                       | 61.3    | 55.5  | 64.2           | 55.8 |
|     |               | 5.Sahadevkhunta(R)                   | 55.0    | 46.6  | 64.5           | 68.8 |
| 2.  | Balasore      | 6.Motiganj Bazar(C)                  | 73.7    | 59.8  | 83.9           | 87.8 |
| ۷.  | Dalasore      | 7.District Head Quarter Hospital(S)  | 54.8    | 40.8  | 52.9           | 57.4 |
|     |               | 8.Balasore Industrial Estate(I)      | 52.1    | 44.9  | 61.0           | 50.0 |
|     |               | 9.Brahmanagar(R)                     | 58.0    | 50.7  | 65.3           | 53.2 |
| 2   | D l           | 10.Girija market square(C)           | 76.3    | 66.6  | 76.3           | 78.9 |
| 3.  | Berhampur     | 11.MKCG Medical & Hospital(S)        | 52.3    | 50.4  | 54.6           | 49.8 |
|     |               | 12.Ankuli(I)                         | 65.2    | 58.4  | 65.5           | 61.7 |
|     | Bhubaneswar   | 13.Nayapalli(R)                      | 68.8    | 69.0  | 77.2           | 73.0 |
| 4   |               | 14.Sahidnagar(C)                     | 72.0    | 58.4  | 61.8           | 69.0 |
| 4.  |               | 15.Capital Hospital(S)               | 53.9    | 59.6  | 60.6           | 56.3 |
|     |               | 16.Rasulgarh(I)                      | 67.4    | 62.9  | 71.4           | 61.5 |
|     |               | 17.Suryavihar(R)                     | 72.3    | 64.4  | 77.7           | 72.2 |
| _   | Cuttoal       | 18.Badambadi(C)                      | 73.6    | 73.7  | 81.8           | 77.7 |
| 5.  | Cuttack       | 19.SCB Medical College & Hospital(S) | 67.9    | 60.6  | 77.4           | 71.1 |
|     |               | 20.Khapuria(I)                       | 71.9    | 72.8  | 76.2           | 73.4 |
|     |               | 21.Cox Colony(R)                     | 68.0    | 63.8  | 76.5           | 84.4 |
| 6.  | Ibarauguda    | 22.Jhanda Chowk(C)                   | 69.3    | 64.0  | 77.2           | 80.2 |
| 0.  | Jharsuguda    | 23.District Head Quarter Hospital(S) | 73.5    | 62.5  | 84.9           | 86.3 |
|     |               | 24.Bombay Chowk(I)                   | 72.3    | 61.6  | 74.0           | 87.7 |
|     |               | 25.Sapagadia(R)                      | 67.7    | 59.1  | 65.7           | NM   |
| _   | Valinganaga   | 26.Gopabandhu Chowk(C)               | 78.2    | 67.2  | 76.8           | NM   |
| 7.  | Kalinganagar  | 27.CHC Hospital, Jajpur Road(S)      | 59.5    | 60.8  | 61.8           | 66.5 |
|     |               | 28.Kalinganagar Industrial Estate(I) | 62.9    | 67.9  | 77.1           | NM   |



| Sl. | T /C!+!      | Monitoring Locations                 | Pre- Da | shera | During-                                                                                                                                                         | Dashera |
|-----|--------------|--------------------------------------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| No  | Towns/Cities |                                      | D       | N     | D                                                                                                                                                               | N       |
|     |              | 29.Baniapat Chowk(R)                 | 66.7    | 56.7  | 70.9                                                                                                                                                            | 58.0    |
| 8.  | Keonjhar     | 30.Punjabi Chowk(C)                  | 76.0    | 69.6  | 74.9                                                                                                                                                            | 81.7    |
|     |              | 31.Govt.Hospital(S)                  | 63.6    | 62.6  | 68.1                                                                                                                                                            | 57.2    |
|     |              | 32.PPT Colony(R)                     | 66.7    | 66.1  | 78.6                                                                                                                                                            | 77.6    |
| 9.  | Paradeep     | 33.LIC Building Jagatsinghpur(C)     | 75.9    | 58.8  | 82.3                                                                                                                                                            | 77.0    |
|     |              | 34.District Head Quarter Hospital(S) | 58.1    | 66.6  | 68.6                                                                                                                                                            | 66.9    |
|     |              | 35.Kumutisahi, Old Sadar lane(R)     | 68.1    |       | 65.5                                                                                                                                                            |         |
| 10. |              | 36.Sri Mandir(C)                     | 76.1    | 64.4  | 78.6                                                                                                                                                            | 65.1    |
|     |              | 37.District Head Quarter Hospital(S) | 64.8    | 56.2  | 63.9                                                                                                                                                            | 62.2    |
|     | D 1          | 38.Irregation colony jeypore(R)      | 65.3    | 58.6  | 70.8                                                                                                                                                            | 62.9    |
| 11  |              | 39.Near SBI brancj Jeypore(C)        | 78.6    | 73.1  | 81.8                                                                                                                                                            | 75.1    |
| 11. | Rayagada     | 40.HDS Jeypore(S)                    | 68.8    | 71.0  | 75.3                                                                                                                                                            | 67.0    |
|     |              | 41.Bilt Jeypore(I)                   | 66.6    | 67.2  | 68.5                                                                                                                                                            | 73.0    |
|     |              | 42.Sector-19(R)                      | 51.3    | 43.8  | 56.8                                                                                                                                                            | 52.9    |
| 10  | Rourkela     | 43.Bisra Chowk(C)                    | 72.5    | 61.3  | 78.6       65.1         63.9       62.2         70.8       62.9         81.8       75.1         75.3       67.0         68.5       73.0         56.8       52.9 | 65.7    |
| 12. | Rourkeia     | 44.IGH steel Township(S)             | 46.4    | 37.9  | 46.9                                                                                                                                                            | 30.0    |
|     |              | 45.RSPL Sail(I)                      | 68.9    | 67.0  | 71.1                                                                                                                                                            | 68.1    |
|     |              | 46.Ainthapali(R)                     | 56.4    | 47.5  | 64.3                                                                                                                                                            | 63.1    |
| 12  | Combolnum    | 47.Golebazar(C)                      | 60.3    | 58.9  | 72.5                                                                                                                                                            | 67.5    |
| 13. | Sambalpur    | 48.District Head Quarter Hospital(S) | 58.1    | 49.3  | 68.3                                                                                                                                                            | 56.2    |
|     |              | 49.Bareipali(I)                      | 59.7    | 61.4  | 61.6                                                                                                                                                            | 69.4    |

### Ambient Noise Standard (In Leq dB(A))

| Category of area zone | Day<br>Time | Night Time |
|-----------------------|-------------|------------|
| Industrial area(I)    | 75          | 70         |
| Commercial area(C)    | 65          | 55         |
| Residential area(R)   | 55          | 45         |
| Silence area(S)       | 50          | 40         |

N.B:- D-Day Time monitoring period (6PM to 10PM), N-Night Time monitoring period (10PM to 12.00 AM) NM-Not Monitored

### IMPACT OF DEEPAWALI CELEBRATION ON AMBIENT NOISE LEVEL

The Board has conducted ambient noise monitoring at 53 locations in 14 towns/cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur town/cities covering Industrial, Commercial, Residential and Silence Zone in the day and night time to assess the impact of noise during celebration of Deepawali as well as in the pre-Deepawali period. Out of these



53 locations, 11 locations are in Industrial zone,14 locations are in commercial zone,14 locations are in residential zone & 14 locations are in silence zone. The findings of the monitoring are summarized below and results are presented in Table-8.3.

### I. Industrial Zone

The day time noise levels in the pre- and during Deepawali are found below the prescribed standard of 75 dB(A) Leq at all locations except at Ankuli Industrial Estate, Berhampur, Khapuria Industrial Estate, Cuttack, Bombay chowk, Jharsuguda, Kalinganagar Industrial Estate, Jesco Industrial Estate, Rayagada & Bareipali, Sambalpur during Deepawali.

In night time, the noise level in pre- and during Deepawali are within the prescribed standard of 70 dB(A) Leq at all locations except at Khapuria Industrial Estate Cuttack, Bombay chowk, Jharsuguda, Kalinganagar Industrial Estate, IFFCO STP, Pradeep during Deepawali and Kalinganagar Industrial Estate in pre- & during Deepawali.

### II. Commercial Zone

The day time noise level were above the prescribed standard of 65 dB(A) Leq at all the locations both in pre- & during Deepawali except at Badambadi, Cuttack & Konark in pre-Deepawali.

In night time the noise level in pre and during Deepawali are above the prescribed standard of 55 dB (A) Leq at all locations.

### III. Residential Zone

The day time noise levels in residential zone exceeded the standard of 55 dB (A) Leq at all locations in pre- & during Deepawali except Brahmanagar, Berhampur, Sector-4, Rourkela in pre- Deepawali.

The night time noise level in residential zone exceeded the standard of 45 dB (A) Leq at all locations in pre- & during Deepawali.

### IV. Silence Zone

The day time noise level in pre- & during are found to be exceeded the prescribed standard of 50 dB (A) Leq except at Bhubaneswar & Rourkela in pre- Deepawali.

In night time noise level in pre- & during Deepawali are found to be exceeded the prescribed standard of 40 dB (A) Leg at all locations.

Table-8.3 Noise level in dB(A) Leq at different location in pre Deepawali & Deepawali day during the year 2018

| Sl.No               | Towns/Cities | Monitoring Locations                | Pre- Dee | pawali | Deepaw | ali Day |
|---------------------|--------------|-------------------------------------|----------|--------|--------|---------|
| 31.NO TOWNS/ CITIES |              | -                                   | D        | N      | D      | N       |
|                     |              | 1.Amalapada(R)                      | 66.2     | 64.1   | 72.7   | 69.5    |
| 1                   | Angul        | 2.Bazar chhak(C)                    | 77.1     | 74.4   | 81.1   | 84.3    |
| 1                   | Angul        | 3.District Head Quarter Hospital(S) | 60.5     | 65.8   | 64.7   | 63.5    |
|                     |              | 4.Hakimpada(I)                      | 59.7     | 63.8   | 64.6   | 64.2    |
|                     |              | 5.Sahadevkhunta(R)                  | 58.0     | 45.7   | 73.1   | 61.0    |
| 2                   | Balasore     | 6.Motiganj Bazar(C)                 | 76.9     | 61.6   | 82.4   | 84.2    |
| 2                   |              | 7.District Head Quarter Hospital(S) | 50.7     | 43.1   | 68.9   | 58.0    |
|                     |              | 8.Balasore Industrial Estate(I)     | 56.9     | 52.9   | 74.5   | 56.8    |

8 — Annual Report 2018-19 -



| <i>a</i> 137 | m (61:1      | Monitoring Locations                   | Pre- Dee | pawali | Deepaw | vali Day |
|--------------|--------------|----------------------------------------|----------|--------|--------|----------|
| Sl.No        | Towns/Cities |                                        | D        | N      | D      | N        |
|              |              | 9.Brahmanagar(R)                       |          | 50.6   | 73.1   | 61.0     |
|              | D 1          | 10.Girija market square(C)             | 76.5     | 61.6   | 80.8   | 69.5     |
| 3            | Berhampur    | 11.MKCG Medical & Hospital(S)          | 55.2     | 50.8   | 64.2   | 62.0     |
|              |              | 12.Ankuli(I)                           | 71.8     | 67.6   | 79.3   | 62.6     |
|              |              | 13.Nayapalli(R)                        | 65.8     | 54.6   | 77.8   | 70.3     |
| 4            | 4 Pl. b      | 14.Sahidnagar(C)                       | 68.7     | 60.5   | 75.4   | 64.3     |
| 4            | Bhubaneswar  | 15.Capital Hospital(S)                 | 60.1     | 48.6   | 65.4   | 57.9     |
|              |              | 16.Rasulgarh(I)                        | 70.3     | 65.0   | 70.9   | 65.0     |
|              |              | 17.Suryavihar(R)                       | 65.3     | 72.3   | 69.9   | 73.8     |
| _            |              | 18.Badambadi(C)                        | 64.3     | 71.1   | 75.0   | 73.2     |
| 5            | Cuttack      | 19.SCB Medical College(S)              | 61.7     | 71.8   | 74.7   | 69.0     |
|              |              | 20.Khapuria(I)                         | 61.1     | 69.2   | 77.5   | 70.8     |
|              |              | 21.Cox colony(R)                       | 73.3     | 61.0   | 76.4   | 83.6     |
|              | n            | 22.Jhanda Chowk(C)                     | 75.2     | 68.7   | 76.9   | 87.3     |
| 6            | Jharsuguda   | 23.District Head Quarter Hospital(S)   | 71.1     | 61.4   | 75.6   | 91.9     |
|              |              | 24.Bombay Chowk(I)                     | 73.3     | 70.0   | 75.9   | 84.5     |
|              |              | 25.Sapagadia(R)                        | 66.0     | 63.1   | 82.8   | 79.1     |
| _            | 77.1         | 26.Gopabandhu Chowk(C)                 | 75.7     | 77.7   | 84.9   | 81.1     |
| 7            | Kalinganagar | 27.CHC Hospital(S)                     | 53.9     | 59.7   | 71.1   | 63.0     |
|              |              | 28.Kalinga nagar industrial estate (I) | 74.0     | 75.9   | 81.9   | 83.4     |
|              |              | 29.Baniapat Chowk(R)                   | 76.2     | 72.9   | 67.7   | 75.3     |
| 8            | Keonjhar     | 30.Punjabi Chowk(C)                    | 81.0     | 72.2   | 82.6   | 85.6     |
|              |              | 31.Govt.Hospital(S)                    | 67.7     | 69.9   | 78.9   | 74.5     |
|              |              | 32.Madhipur(R)                         | 59.4     | 55.9   | 70.4   | 60.4     |
| 9            | Konark       | 33.NAC Market(C)                       | 63.3     | 58.1   | 82.9   | 65.7     |
|              | Konark       | 34.Public Health Centre(S)             | 55.0     | 47.2   | 66.2   | 58.9     |
|              |              | 35.PPT Colony(R)                       | 62.6     | 62.6   | 77.5   | 70.0     |
| 10           | Davida       | 36.Badapadia Market(C)                 | 68.9     | 61.6   | 75.8   | 72.6     |
| 10           | Paradeep     | 37.Bijumemorial Hospital(S)            | 60.9     | 60.3   | 76.4   | 69.1     |
|              |              | 38.IFFCO Ltd(I)                        | 68.6     | 60.0   | 74.0   | 70.5     |
|              |              | 39.Kumutisahi, Old Sadar lane(R)       | 67.4     | 57.1   | 80.1   | 67.3     |
| 11           | Puri         | 40.Sri Mandir(C)                       | 78.0     | 71.2   | 87.0   | 67.0     |
|              |              | 41.District Head Quarter Hospital(S)   | 65.3     | 57.2   | 74.2   | 63.5     |
|              |              | 42.Indiranagar(R)                      | 65.5     | 60.2   | 83.7   | 71.5     |
| 10           | Dove go d-   | 43.Main market(C)                      | 77.4     | 58.7   | 79.2   | 62.9     |
| 12           | Rayagada     | 44.District Head Quarter Hospital(S)   | 72.0     | 70.6   | 77.6   | 66.6     |
|              |              | 45.Jesco(I)                            | 67.9     | 60.3   | 75.1   | 69.0     |



| Sl.No              | Towns /Citios    | Monitoring Locations                    |      | Pre- Dee | pawali | Deepaw | vali Day |  |
|--------------------|------------------|-----------------------------------------|------|----------|--------|--------|----------|--|
| 31.NO              | Towns/Cities     |                                         |      | D        | N      | D      | N        |  |
|                    | 10 P. J.L.       | 46.Sector-4(R)                          | 45.3 | 45.4     | 75.9   | 61.5   |          |  |
| 13                 |                  | 47.Bisra Chowk(C)                       |      | 74.6     | 71.2   | 85.3   | 73.3     |  |
| 13                 | Rourkela         | 48.IGH steel Township(S)                |      | 43.8     | 40.8   | 52.2   | 45.1     |  |
|                    |                  | 49.RSPL Sail(I)                         |      | 60.8     | 53.0   | 65.3   | 53.5     |  |
|                    | 50.Ainthapali(R) |                                         | 67.2 | 62.4     | 77.2   | 71.2   |          |  |
| 1.4                | Sambalpur        | 51.Golebazar(C)                         |      | 73.4     | 63.7   | 91.0   | 87.7     |  |
| 14                 |                  | 52.District Head Quarter Hospital(S)    |      | 59.5     | 52.4   | 69.0   | 67.0     |  |
|                    |                  | 53.Bareipali(I)                         |      | 62.3     | 61.2   | 75.9   | 66.6     |  |
|                    |                  | Ambient Noise Standard ( In Leq dB(A) ) |      |          |        |        |          |  |
|                    | Ca               | ategory of area zone                    |      | Day Tin  | ne     | Night  | Time     |  |
| Industrial area(I) |                  |                                         |      | 75       |        | 70     |          |  |
| Commercial area(C) |                  |                                         |      | 65       |        | 55     |          |  |
| Reside             | ential area(R)   |                                         | 55   |          |        | 45     |          |  |
| Silenc             | e area(S)        |                                         |      | 50       |        | 4      | 40       |  |

N.B:- D-Day Time monitoring period (6PM to 10PM), N-Night Time monitoring period (10PM to 12 AM)

### IMPACT OF DEEPAWALI CELEBRATION ON AMBIENT AIR QUALITY

State Pollution Control Board, Odisha has also monitored the Ambient Air Quality on pre & during Deepawali at 36 locations in 16 towns/cities i.e. at Angul, Balasore, Berhampur, Bhubaneswar, Bonaigarh, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Rayagada, Rajgangpur, Rourkela, Sambalpur & Talcher with respect to parameters like  $SO_2$ ,  $NO_2$ ,  $PM_{10}$  (at 36 locations) &  $PM_{2.5}$  (at 25 locations)to assess the impact of brusting of fire crackers on the surrounding ambient air quality.

The  $SO_2$  &  $NO_2$  values on pre- & during Deepawali were below the prescribed limit i.e.  $80 \, \mu g/m^3$  (on 24-hourly average basis) at all 36 locations. The respirable dust particle matter  $(PM_{10})$  values were below prescribed limit i.e.  $100 \, \mu g/m^3$  on 24-hourly average basis at 02 locations on the day of Deepawali and at 32 locations on pre-Deepawali out of 36 locations whereas,  $PM_{2.5}$  values were below prescribed limit of  $60 \, \mu g/m^3$  on 24-hourly average basis at 03 locations on the day of Deepawali and at 22 locations on pre-Deepawali out of 25 monitoring locations (11 locations are not monitored during Deepawali & 12 locations are not monitored on pre-Deepawali). The concentration of gaseous pollutants, respirable particulate matter  $(PM_{10})$  & fine particulate matter  $(PM_{2.5})$  shows higher value on the day of Deepawali than the corresponding pre-Deepawali value at most of the locations.

The monitoring results are given in following Table-8.4.

Table-8.4 Ambient Air Quality status of major cities/towns in the pre & during Deepawali-2018

|          |              |                              | Parameter Monitored                           |                 |                 |        |                  |        |     |                   |  |
|----------|--------------|------------------------------|-----------------------------------------------|-----------------|-----------------|--------|------------------|--------|-----|-------------------|--|
| Sl<br>No | Towns/cities | Monitoring Locations         |                                               | SO <sub>2</sub> | NO <sub>2</sub> |        | PM <sub>10</sub> |        | ]   | PM <sub>2.5</sub> |  |
| 110      |              |                              | Values are expressed in microgram per cubic m |                 |                 |        |                  |        |     | meter             |  |
|          |              |                              | Pre                                           | During          | Pre             | During | Pre              | During | Pre | During            |  |
| 1        | 1            | 1. Industrial Estate         | 8.8                                           | 19.8            | 24.9            | 34.5   | 65               | 123    | 28  | 74                |  |
| 1        | Angul        | 2. Nalco Township            | 9.5                                           | 12.7            | 27.5            | 30.1   | 69               | 105    | 35  | 69                |  |
|          |              | 3.Sahadevkhunta              | BDL                                           | BDL             | 11.1            | 14.3   | 85               | 144    | 30  | 95                |  |
| 2        | 2 Balasore   | 4.DIC Office Angaragadia     | BDL                                           | BDL             | 10.9            | 13.8   | 83               | 141    | 34  | 89                |  |
|          |              | 5.Rasalpur Industrial Estate | 7.8                                           | 8.6             | 12.3            | 12.5   | 94               | 117    | 55  | 78                |  |

0 — Annual Report 2018-19 -



|          |              |                                                |                                               |                 | Pa              | rameter M | lonito           | red    |     |                   |
|----------|--------------|------------------------------------------------|-----------------------------------------------|-----------------|-----------------|-----------|------------------|--------|-----|-------------------|
| Sl<br>No | Towns/cities | Monitoring Locations                           |                                               | SO <sub>2</sub> | NO <sub>2</sub> |           | PM <sub>10</sub> |        | ]   | PM <sub>2.5</sub> |
| 140      |              |                                                | Values are expressed in microgram per cubic m |                 |                 |           |                  |        |     |                   |
|          |              |                                                | Pre                                           | During          | Pre             | During    | Pre              | During | Pre | During            |
|          |              | 6.Brahmanagar                                  | BDL                                           | 15.6            | 14.5            | 32.3      | 57               | 288    | NM  | NM                |
|          |              | 7.Girija market square                         | BDL                                           | 28.2            | 30.5            | 52.2      | 86               | 310    | NM  | NM                |
| 3        | Berhampur    | 8.MKCG Medical College&<br>Hospital            | BDL                                           | 10.2            | 12.3            | 25.6      | 27               | 195    | NM  | NM                |
|          |              | 9.Industrial Estate, Ankuli                    | BDL                                           | 24.3            | 16.3            | 48.6      | 34               | 99     | 24  | 63                |
|          |              | 10.Office Building                             | BDL                                           | 4.6             | 19.5            | 20.0      | 51               | 258    | NM  | NM                |
|          |              | 11.IRC Nayapalli                               | BDL                                           | 7.6             | 23.0            | 44.0      | 98               | 172    | 42  | 102               |
| 4        | Dhuhanaawan  | 12.Capital Police Station                      | NM                                            | 13.6            | NM              | 20.9      | 88               | 159    | NM  | 38                |
| 4        | Bhubaneswar  | 13.Patrapada                                   | BDL                                           | BDL             | 14.4            | 15.8      | 80               | 131    | NM  | NM                |
|          |              | 14.Chandrasekharpur                            | BDL                                           | 14.7            | 24.7            | 38.4      | 96               | 205    | 33  | 84                |
|          |              | 15.Palasuni water works                        | BDL                                           | 5.2             | 22.3            | 25.6      | 92               | 105    | 33  | 41                |
| 5        | Bonaigarh    | 16.Govt. Hospital Bonai                        | 8.9                                           | 12.9            | 12.4            | 17.4      | 82               | 157    | 29  | 72                |
|          | Curd         | 17.Roof of PHD Office near<br>Barabati Stadium | BDL                                           | 6.3             | 30.6            | 34.8      | 82               | 151    | 35  | 95                |
| 6        | Cuttack      | 18.RO Office building<br>Suryanagar            | BDL                                           | 8.8             | 26.9            | 42.0      | 101              | 280    | 35  | 119               |
| 7        | Jharsuguda   | 19. RO Building, Cox<br>Colony, Babubagicha    | 8.9                                           | 28.9            | 19.2            | 39.0      | 94               | 229    | 37  | 152               |
| 8        | Kalinganagar | 20.Roof of BRPL Guest House                    | BDL                                           | BDL             | 10.7            | 12.7      | 91               | 167    | NM  | NM                |
| 8        | Kamiganagai  | 21.Regional Office Building,                   | BDL                                           | BDL             | 14.4            | 24.0      | 39               | 201    | NM  | NM                |
| 9        | Keonjhar     | 22.Regional Office Building                    | BDL                                           | BDL             | 11.0            | 18.1      | 86               | 128    | NM  | NM                |
| 10       | Konark       | 23. Konark Police Station                      | BDL                                           | BDL             | 11.0            | 15.9      | 84               | 86     | NM  | NM                |
|          |              | 24. Paradeep Port Trust<br>Staff Quarter       | 14.2                                          | 24.0            | 10.3            | 20.6      | 43               | 152    | 16  | 97                |
| 11       | Paradeep     | 25. Guest House, Paradeep<br>Phosphate Ltd     | 14.3                                          | 23.1            | 10.0            | 17.2      | 43               | 162    | NM  | NM                |
|          |              | 26. On the Roof of STP<br>Building, IFFFCO     | 12.6                                          | 25.2            | 10.4            | 19.2      | 43               | 130    | NM  | NM                |
| 12       | Rayagada     | 27.On the roof of Regional office Building     | 4.2                                           | 18.7            | 17.9            | 31.2      | 61               | 161    | 41  | 118               |
|          |              | 28.LPS High School                             | 4.2                                           | 14.3            | 20.1            | 26.9      | 65               | 149    | 42  | 96                |
| 13       | Rajgangpur   | 29.DISIR Rajgangpur                            | 15.6                                          | 20.3            | 21.0            | 35.9      | 173              | 183    | 56  | 66                |
|          |              | 30.Roof of Regional office<br>Building         | 9.9                                           | 25.7            | 15.3            | 43.5      | 78               | 188    | 71  | 110               |
| 14       | Rourkela     | 31.IDL Police Outpost                          | 7.0                                           | 14.8            | 10.9            | 20.0      | 79               | 101    | 59  | 101               |
| 1.1      | Rourkeid     | 32.IDC Kalunga                                 | 10.2                                          | 20.2            | 14.3            | 25.7      | 205              | 265    | 74  | 93                |
|          |              | 33. Kuarmunda Hospital,<br>Kuarmunda           | 6.8                                           | 15.1            | 9.8             | 20.8      | 122              | 154    | 50  | 59                |
| 15       | Sambalpur    | 34.Modipara                                    | 5.0                                           | 39.1            | 21.9            | 42.8      | 70               | 287    | 39  | 220               |
| 16       | Talcher      | 35.Talcher Thermal                             | 9.8                                           | 15.3            | 28.0            | 34.0      | 84               | 147    | 36  | 89                |
| 10       | 1 alcilei    | 36. MCL area, Talcher                          | 10.6                                          | 13.4            | 27.9            | 33.9      | 93               | 159    | 41  | 94                |
|          | Standard o   | n 24hrly avg. Basis                            |                                               | 80              |                 | 80        |                  | 100    |     | 60                |

N.B- BDL-Below Detection Limit,BDL value for  $SO_2 \le 4 \mu g/m^3$ , NM-Not Monitored



## 8.5.2 Impact of Immersion of Idols in Water Bodies

Durga Puja is celebrated in massive scale in most of the cities of the State of Odisha. Generally the idols are immersed on a single day at the designated sites of the rivers flowing along the cities. To minimize the impact of idol immersion on the water quality, the State Pollution Control Board, Odisha has taken following steps as recommended in the Guideline for idol immersion.

- Informed all the District Collectors and authorities of urban local bodies of the State prior to Ganesh Puja and Durga Puja to implement the Guidelines of Immersion in their areas of jurisdiction.
- Created public awareness through Public Notice on safe Idol immersion practices in Local Newspapers and in Board's website and through public address system.
- Several meetings with the local bodies/ authorities, Puja Committee Organizers to create awareness on ill impacts of Idol immersion in water bodies.
- Coordinated with the local bodies/ authorities for construction of temporary immersion ponds near rivers as prescribed in the Guideline.
- Generally idols are immersed in flowing waters which makes the rivers as the ideal places for idol immersion. In such cases, as per the recommendation in the Guideline, either temporary ponds having earthen bunds along the river bank for use as idol immersion spots had been constructed or a part of the river bed had been cordoned to demarcate it as idol immersion site. The bottom of the pond in either cases had been lined with removable synthetic liner well in advance of the idol immersion. The said liner along with remains of the idols were removed within 48 hours of idol immersion by the local bodies and disposed in the municipal dumpsites. The water of the temporary ponds was then treated with lime and allowed to settle prior to ultimate discharge into rivers.

Appel to public to observe pollution free Ganesh puja, Durga puja, Laxmi puja and Kali puja through public notice on Local Newspapers.



Samaj Dt. 15.08.2018



Times India Dt. 09.08.2018

152



- In some urban local bodies, though temporary immersion ponds were not constructed specifically for idol immersion purposes, the left-overs of idol immersion were removed by the local peoples within 48 hours of idol immersion and disposed at the municipal dumpsites.
- Conducted water quality assessment of Kuakhai River and Daya river along Bhubanewar city, Kathajodi river along Cuttack city and Musa river along Puri city.
- Water quality status was assessed with respect to the physico-chemical parameters as recommended in the Guideline, such as, pH, Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Conductivity (EC), Turbidity, Total Dissolved Solids (TDS), Total Solids (TS), and metals (cadmium, chromium, iron, lead, zinc and copper).
- Water quality status is evaluated by comparing with the tolerance limits for Class A (Drinking water source without conventional treatment but after disinfection) and Class C (Drinking water source with conventional treatment followed by disinfection) Inland surface water quality. The variation in concentration of different parameters at the immersion sites are compared with the values at the upstream and downstream of immersion sites to assess the impact of idol immersion.

# Obervation from the water quality data.

- Turbidity and Suspended solids in Kathajodi river along Cuttack city and in Daya river along Bhubaneswar during-immersion period was observed to be higher in comparison to the pre- and post-immersion period. This may be attributed to the increase in suspended materials on the water body during immersion of idols. Whereas, no significant change was observed in case of turbidity and Suspended solid values in Kuakhai river along Bhubaneswar and Musa river along Puri city.
- Dumping of puja materials and left-overs into the water body disrupts the oxygen level of water body and therefore increase in BOD and COD values at the immersion site on the day of idol immersion were also observed. By the time of post-immersion monitoring, the river water rejuvenates itself due to continuous flow of water, which is indicated by lowering of BOD values and other parameters in Kuakhai and Daya rivers along Bhubaneswar city. However, BOD values of the river water at all these monitoring locations remained well within the tolerance limit of 3.0 mg/l during all the three phases of monitoring.
- BOD values in Musa river in Pre-immersion period was more than the tolerance limit of 3.0 mg/l. Immersion of idols in the Musa river has increased the BOD level significantly.
- During immersion period increase in the conductivity and total dissolved solid at the immersion site in comparison to the upstream and downstream stations may be ascribed to the leaching of dissolved materials form the puja materials and idols immersed in the water body.
- Variation in concentrations of heavy metals such as cadmium, lead, copper and hexavalent chromium during the period of study was not significant.
- Concentration of heavy metals such as cadmium, chromium, iron, lead, zinc and copper
  in both during-immersion and post-immersion period remain much below the tolerance
  limit for most beneficial uses of water. This may be correlated to the very slow leaching
  process of heavy metals from the synthetic paints and other materials used in the idols
  in natural conditions of water bodies.



• Further, because of the preventive measures taken by the district administration not to allow the water of idol immersion ponds to flow into the river, water quality of downstream stations during-immersion and Post-immersion periods mostly remained well within the tolerance limits of the designated use.

From the study, it may be concluded that all the parameters specified for the study remained within the tolerance limit for designated class of the river i.e. Class-C (Drinking water source with conventional treatment followed by disinfection) even after immersion of idols excepting few cases. Concentration of heavy metals such as cadmium, chromium, iron, lead, zinc and copper remain much below the tolerance limits and no significant impact is exerted on the heavy metal concentration of the water bodies due to immersion of idols. Though some of the physical and chemical parameters like Turbidity, electrical conductivity, TDS and BOD shows higher values during-immersion period in comparison to the pre-and post-immersion period, but still remained much below the tolerance limit. Further, immersion of idols in the temporary immersion ponds has minimized the probability of contamination of the main course of river water.

# 8.5.3 Impact of mass bathing during Kartika Purnima on Water quality of Mahanadi and Kathajodi river (Cuttack Stretch)

To assess the impact of mass bathing during Kartika Purnima on water quality of river Mahanadi and Kathajodi along the Cuttack city, the Board had conducted a water quality monitoring study at the major bathing ghats on Pre- (16.11.2018), During- (23.11.2018) and Post- (30.11.2018) Kartika Purnima. Water quality was assessed with respect to the physico-chemical parameters like pH, Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and bacteriological parameters e.g. Total Coliform (TC) and Fecal Coliform (FC).

Comparison of the water quality data with the bathing water quality standard prescribed under IS: 2296 (1982) and organized bathing water quality standard laid down by MoEF & CC (\* MoEF Notification G.S.R. No. 742(E) Dt. 25<sup>th</sup> September, 2000), it has been revealed that, pH remained within the permissible range 6.5-8.5 at all the monitored locations. Dissolved oxygen remained well above the permissible limit of 5.0 mg/l on all occasions. However, an increase in BOD level at the bathing ghats are observed during the Kartika Purnima period which has been lowered to the prescribed limit of 3.0 mg/l during the post-Kartika Purnima period. Further, significant impact on the bacteriological quality with respect to total coliform and fecal coliform are observed at the bathing ghats of Mahanadi river and Kathajodi rivers on the day of Kartika Purnima due to mass bathing and other human activities. Water quality data with respect to BOD, TC and FC in Pre-, During- and post-Kartika Purnima period is given in Table-8.5.

Table- 8.5 Water quality with respect to BOD , TC and FC at the bathing ghats of Mahanadi river and Kathajodi rivers on Pre-, During- and Post-Kartika Purnima -2018

| Sl.            | Location        | BOD (mg/l)        |                   |                 | TC (MPN/100ML)    |                   |                 | FC (MPN/100ML)    |                   |                 |  |
|----------------|-----------------|-------------------|-------------------|-----------------|-------------------|-------------------|-----------------|-------------------|-------------------|-----------------|--|
| No.            |                 | Pre<br>(16.11.18) | During (23.11.18) | Post (30.11.18) | Pre<br>(16.11.18) | During (23.11.18) | Post (30.11.18) | Pre<br>(16.11.18) | During (23.11.18) | Post (30.11.18) |  |
| Mahanadi River |                 |                   |                   |                 |                   |                   |                 |                   |                   |                 |  |
| 1              | Mundali         | 1.1               | 1.2               | 1.1             | 1100              | 1300              | 1700            | 130               | 130               | 110             |  |
| 2.             | Naraj           | 1.1               | 1.1               | 1.2             | 790               | 1100              | 460             | 220               | 330               | 130             |  |
| 3.             | Chahata<br>Ghat | 0.9               | 1.1               | 0.9             | 5400              | >160000           | 35000           | 2400              | >160000           | 17000           |  |

54 — Annual Report 2018-19 -



| Cl                                                                          |                   |                   | BOD (mg/l)        |                 | тс                | (MPN/1001         | ML)             | FC (MPN/100ML)    |                             |                 |  |
|-----------------------------------------------------------------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-----------------|-------------------|-----------------------------|-----------------|--|
| Sl.<br>No.                                                                  | Location          | Pre<br>(16.11.18) | During (23.11.18) | Post (30.11.18) | Pre<br>(16.11.18) | During (23.11.18) | Post (30.11.18) | Pre<br>(16.11.18) | During (23.11.18)           | Post (30.11.18) |  |
| 4.                                                                          | Gadagadia<br>Ghat | 1.1               | 3.1               | 1.1             | >160000           | >160000           | >160000         | 54000             | >160000                     | 35000           |  |
| 5.                                                                          | Zobra             | 0.9               | 3.9               | 0.9             | >160000           | >160000           | >160000         | 54000             | 160000                      | 35000           |  |
| 6.                                                                          | Kanehipur         | 0.9               | 3.9               | 1.1             | 2400              | 160000            | 7900            | 1300              | 24000                       | 4900            |  |
| Kathajodi River                                                             |                   |                   |                   |                 |                   |                   |                 |                   |                             |                 |  |
| 7.                                                                          | Puri Ghat         | 1.2               | 3.2               | 0.9             | 7000              | 24000             | 9200            | 1700              | 7900                        | 5400            |  |
| 8.                                                                          | Khan<br>Nagar     | 1.1               | 4.2               | 1.2             | 5400              | 24000             | 2100            | 1700              | 2300                        | 700             |  |
| 9                                                                           | Urali             | 1.4               | 3.9               | 1.1             | >160000           | >160000           | 54000           | >160000           | >160000                     | 35000           |  |
| Tolerance limit<br>for Class B<br>(IS-2296-1982)<br>/ E (P) Rule,<br>1986 * |                   | 3.0               |                   |                 |                   | 500               |                 |                   | 00 (Desirabl<br>0 (Permissi |                 |  |

<sup>\*</sup> MoEF Notification G.S.R. No. 742(E) Dt. 25th September, 2000

### 8.6 OTHER ONGOING PROJECTS

# 8.6.1 Survey and Monitoring of Ground and Surface Water Quality with respect to Fluoride Content around Phosphatic Fertilizer Units, Paradeep

The Board has conducted a survey on ground water and surface water quality in and around phosphatic fertilizer plants of Paradeep e.g. M/s Indian Farmers Fertiliser Corporation (IFFCO) and M/s Paradeep Phosphates Ltd. (PPL). During 2018, surface water samples were collected from Atharabanki creek from different locations around these two fertilizer plants. Ground water samples were collected from the test wells of both the plants and from three locations outside the plant. Water quality monitoring was done on quarterly basis during the months of February, May, August and November.

The fluoride concentration in Atharabanki creek at the upstream of the fertilizer plants varies within 0.973 - 3.38 mg/l. As the flow of Atharabanki creek depends upon the tidal condition of the sea, it is not unidirectional, and therefore, wide fluctuation in fluoride content is observed in Atharabanki creek water. The fluoride concentration in Atharabanki creek varies within 0.973-12.7 mg/l. The fluoride concentration in creek water at Bhimbhoi colony varies within 2.59 - 7.12 mg/l, near entrance gate to Paradeep Port Township varies within 2.08 - 10.5 mg/l, near conveyor belt of IFFCO varies within 2.40 - 12.7 mg/l. Whereas, the fluoride concentration in the creek water near fishing jetty varies within 0.677 - 1.67 mg/l. Near fishing jettey the water quality is greatly influenced by sea water.

Fluoride concentration in the surface run-off drain near Gypsum pond of M/s PPL near Shyamakoti bridge varied within 1.78-6.99mg/l, whereas, Fluoride concentration in the surface run-off drain near Loknath colony varied within 0.423-0.838 mg/l.

The test wells around M/s IFFCO exhibit fluoride concentration within 0.124-0.333 mg/l, whereas, those around M/s PPL exhibit fluoride concentration 0.71-6.67 mg/l.

Fluoride content in ground water samples collected from outside of the plant area i.e. at Badapadia, varies within 0.282-1.45 mg/l, whereas in Musadiha, the fluoride concentration varies within 0.266 – 0.435 mg/l and inside the Shiv temple, it varies within 0.485 – 0.981 mg/l. Fluoride content in ground water monitored at public locations remained within the acceptable limit of 1.5 mg/l.



### 8.6.2 Studies related to Pollution Control and Planning

To study the cause of high ambient temperature and design remedial measures the Board has instituted Heat Island study for Angul-Talcher area through IIT, Delhi. Similar study for Ib Valley-Jharsuguda area has been instituted by DFID in association with SPCB. The study is being conducted by TERI, Delhi. Both these studies have been completed.

### 8.7 LIBRARY AND INFORMATION SERVICE

Board's Library acts as a document repository and referral centre for dissemination of information in the field of environmental science and engineering and its associated areas. The Library is used by research scholars of different Universities and technical Colleges, institutions in Odisha, various NGOs and Social activists .The library has a collection of Books, Reports, Audio Visual materials, Maps, Photographs, Topo sheets, River Basin Atlas and soft copies of different aspects of environmental science and engineering. During 2018 –19,the library has received 52 Books on complimentary,45 Reports,19 Journals,11 Newspaper and 02 Magazines. 1634 News clippings on environmental issues from various sources of information have been collected for reference of the users. 03 no of outside scholars have been enrolled as library members on payment basis during the period. Besides News clipping, 865 pages of reprographic service to different outside members have been provided on payment basis. A sum of Rs. 1, 32,368/- (Rupees One Lakh thirty two thousand three hundred sixty eight) only has been spent towards Books & Journal during the year 2018-19.

#### 8.8 TRAINING OF BOARD OFFICIALS

The Board has deputed its officials on various training programmes, seminars and workshops for the up-gradation of their knowledge and exposure to recent technological advancements in the field of pollution control and environment protection issues.

The list of officials of the Board along with name of training programmes / workshops / seminars(national / international) in various institutions attended during 2018-19 is given in Table - 8.6.

Table - 8.6 Training Programme attended by Officials of the Board

### A. Training / Workshop / Seminar attended by Officials of the Board

| Sl.<br>No | Name (Sh/Shri) &<br>Designation                                        | Date                                              | Title of the Training /<br>Workshop / Seminar                                                                         | Conducted by                                                                                                 | Venue                                                                                                           |
|-----------|------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1         | Dr. D. K. Behera<br>Sr. Env. Scientist(L-I)<br>(As Resource<br>Person) | 16 <sup>th</sup> April,<br>2018                   | National Training<br>Programme on Audit<br>of Environmental<br>Issues in Mining and<br>Extractive Industries          | Internactional Centre for<br>Environmental Audit and<br>Sustainable Development<br>(iCED), Jaipur, Rajasthan | Internactional Centre<br>for Environmental<br>Audit and Sustainable<br>Development (iCED),<br>Jaipur, Rajasthan |
| 2         | B. K. Nayak,<br>Sr. Env. Scientist                                     | 21 <sup>st</sup> April,<br>2018                   | State Level Workshop<br>on National Brick<br>Mission: Roadmap for<br>Brick Kiln                                       | Centre for Science<br>and Environment, 41,<br>Tughlakabad Institutional<br>Area, New Delhi-110062            | Bengal National<br>Chamber of Commerce<br>& Industry (BNCCI), 23,<br>R. N. Mukherjee Road,<br>Kolkata           |
| 3         | Er. Maheswar Behera,<br>AEE, Regional Office,<br>Berhampur             | 24 <sup>th</sup> -26 <sup>th</sup><br>April, 2018 | Training Programme<br>on "Industrial<br>Pollution Management<br>- Compliance &<br>Enforcement Practices<br>in Sweden" | West Bengal Pollution<br>Control Board, Kolkata                                                              | West Bengal Pollution<br>Control Board, Kolkata                                                                 |

56 — Annual Report 2018-19 –



| Sl.<br>No | Name (Sh/Shri) &<br>Designation                                        | Date                                                  | Title of the Training /<br>Workshop / Seminar                                                                         | Conducted by                                                                                                                            | Venue                                                                                                           |
|-----------|------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 4         | Er. Madan Mohan<br>Sahoo, AEE, Regional<br>Office, Paradeep            | 24 <sup>th</sup> -26 <sup>th</sup><br>April, 2018     | Training Programme<br>on "Industrial<br>Pollution Management<br>- Compliance &<br>Enforcement Practices<br>in Sweden" | West Bengal Pollution<br>Control Board, Kolkata                                                                                         | West Bengal Pollution<br>Control Board, Kolkata                                                                 |
| 5         | Dr. D. K. Behera<br>Sr. Env. Scientist(L-I)<br>(As Resource<br>Person) | 28 <sup>th</sup> April,<br>2018                       | National Conference<br>on "Importance of EHS<br>(Environment, Health<br>& Safety) in Emerging<br>Economics"           | MDC on SHE, Patia,<br>Bhubaneswar                                                                                                       | MDC on SHE, Patia,<br>Bhubaneswar                                                                               |
| 6         | Dr. D. K. Behera<br>Sr. Env. Scientist(L-I)<br>(As Resource<br>Person) | 2 <sup>nd</sup> May,<br>2018                          | Environmental Laws                                                                                                    | Odisha Judicial Academy,<br>Cuttack                                                                                                     | Odisha Judicial<br>Academy, Cuttack                                                                             |
| 7         | Dr. D. K. Behera<br>Sr. Env. Scientist(L-I)<br>(As Resource<br>Person) | 9 <sup>th</sup> May,<br>2018                          | National Training<br>Programme on Audit<br>of Waste Management                                                        | Internactional Centre for<br>Environmental Audit and<br>Sustainable Development<br>(iCED), Jaipur, Rajasthan                            | Internactional Centre<br>for Environmental<br>Audit and Sustainable<br>Development (iCED),<br>Jaipur, Rajasthan |
| 8         | Dr. A. K. Swar, Sr.<br>Env. Engineer (L-I)                             | 9 <sup>th</sup> - 11 <sup>th</sup><br>May, 2018       | Workshop on<br>"Best Practices<br>in Environment<br>Management in<br>Fertilizer Industry"                             | The Fertilizer Association<br>of India,<br>FAI House, 10, Shaheed<br>Jit Singh Marg, New Delhi                                          | Hotel Fortune Park<br>Sishmo, Bhubaneswar                                                                       |
| 9         | Kainta Tudu, Env.<br>Scientist                                         | 20 <sup>th</sup> May,<br>2018                         | Brain Storming<br>Session on "Surface<br>and Ground Water<br>Resources – Status,<br>Policy and Strategies             | Society of Geoscientists<br>and Allied Technologists<br>(SGAT, D-20, BJB Nagar,<br>Bhubaneswar                                          | SGAT, Bhubaneswar                                                                                               |
| 10        | Er. Rajat Kumar<br>Sethi, AEE, RO,<br>Bhubaneswar                      | 20 <sup>th</sup> May,<br>2018                         | Brain Storming<br>Session on "Surface<br>and Ground Water<br>Resources – Status,<br>Policy and Strategies             | Society of Geoscientists<br>and Allied Technologists<br>(SGAT, D-20, BJB Nagar,<br>Bhubaneswar                                          | SGAT, Bhubaneswar                                                                                               |
| 11        | Dr. N. R. Sahoo,<br>Sr. Env. Engineer (L-I)<br>(As Resource<br>Person) | 31 <sup>st</sup> May,<br>2018                         | Sustainable Mining<br>Summit on "SDF<br>& Outlook for<br>Sustainable Mining<br>and Technological<br>Development"      | Federation of Indian<br>Mineral Industries (FIMI),<br>FIMI House, Okhla<br>Industrial Area, Phase-I,<br>New Delhi-110020                | Hotel Mayfair Lagoon,<br>Bhubaneswar                                                                            |
| 12        | Dr. M. Mahaling<br>Regional Officer, SPC<br>Board, paradeep            | <sup>2nd</sup> August,<br>2018                        | 23 <sup>rd</sup> National Oil Spill<br>Disaster Contingency<br>Plan (NOS-DCP) &<br>Preparedness Meeting               | Indian Coast Guard,<br>New Delhi                                                                                                        | Narayani Heights,<br>Narayani Hotels<br>& Resorts Ltd.,<br>Gandhinagar Gujurat                                  |
| 13        | P. C. Behera, Dy. Env.<br>Scientist, Regional<br>Officer, Keonjhar     | 8 <sup>th</sup> - 10 <sup>th</sup><br>August,<br>2018 | Training Programme<br>on "Noise Monitoring<br>and Control<br>Techniques"                                              | National Institute of<br>Occupational Health,<br>Poojanahalli Road,<br>Kannamangala Post,<br>Devanahalli, Bangalore<br>(CPCB Sponsored) | NIOH, Bangalore                                                                                                 |



| Sl.<br>No | Name (Sh/Shri) &<br>Designation                                                       | Date                                                      | Title of the Training /<br>Workshop / Seminar                                                                                                      | Conducted by                                                                                                                                                            | Venue                                                                                                           |
|-----------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 14        | Murali Gopal Chetty,<br>Section Officer                                               | 10 <sup>th</sup><br>August,<br>2018                       | Workshop on "Implementation of National Pension System (NPS)" for Employees of State Autonomous Bodies (SABs) and State Public Sector Undertakings | Pension Fund Regulatory<br>and Development<br>Authority (PFRDA),<br>B-14/A, Chhatrapati<br>Shivaji Bhawan, Qutab<br>Institutional Area,<br>Katwaria Sarai,<br>New Delhi | Directorate<br>of Treasuries<br>& Inspection,<br>Bhubaneswar                                                    |
| 15        | Dr. S. K. Mohanty,<br>Env. Scientist                                                  | 29 <sup>th</sup><br>August,<br>2018                       | Workshop on "Real-<br>time Nationwide Low-<br>Cost Sensor Network<br>for Air Quality<br>Monitoring"                                                | MoEF&CC, New Delhi                                                                                                                                                      | Ganga Auditorium,<br>Indira Paryavaran<br>Bhawan, Jor Bagh<br>Road, MoEF&CC,<br>New Delhi                       |
| 16        | Bibhuti Bhusan<br>Mohanty, ASO,<br>Regional Office,<br>Kalinganagar                   | 29 <sup>th</sup> - 31 <sup>st</sup><br>August,<br>2018    | Training Programme<br>on "Advance<br>Instrumental Analytical<br>Techniques"                                                                        | CSIR-National<br>Environmental<br>Engineering Research<br>Institute (NEERI), Nagpur<br>& sponsored by CPCB,<br>New Delhi                                                | CSIR-National<br>Environmental<br>Engineering Research<br>Institute (NEERI),<br>Nagpur                          |
| 17        | Dr. N. R. Sahoo<br>Chief Env. Engineer                                                | 4 <sup>th</sup> to 7 <sup>th</sup><br>September,<br>2018  | Training Programme<br>on "Compliance,<br>Monitoring &<br>Enforcement Practices<br>in India and Sweden"                                             | Madhya Pradesh<br>Pollution Control Board,<br>Paryawaran Parisar,<br>E-5, Arera Colony,<br>Bhopal-462016,<br>Madhya Pradesh                                             | Bhopal,<br>Madhya Pradesh                                                                                       |
| 18        | Dr. D. K. Behera<br>Sr. Env. Scientist(L-I)<br>(As Resource<br>Person)                | 19 <sup>th</sup> – 21 <sup>st</sup><br>September,<br>2018 | National Training<br>Programme on "Audit<br>of Implementation of<br>Air and Water Pollution<br>Regulations"                                        | Internactional Centre for<br>Environmental Audit and<br>Sustainable Development<br>(iCED), Jaipur, Rajasthan                                                            | Internactional Centre<br>for Environmental<br>Audit and Sustainable<br>Development (iCED),<br>Jaipur, Rajasthan |
| 19        | Er. Deepesh Biswal,<br>AEE                                                            | 25 <sup>th</sup> -27 <sup>th</sup><br>September,<br>2018  | Training on Accidental<br>Spill-Emergency<br>Response &<br>Environmental Impact<br>Assessment-Future<br>Perspective                                | NEERI, Nagpur &<br>sponsored by CPCB,<br>New Delhi                                                                                                                      | NEERI, Nagpur                                                                                                   |
| 20        | Ms. T Mohanty, AEE,<br>RO, Rourkela                                                   | 25 <sup>th</sup> -27 <sup>th</sup><br>September,<br>2018  | Training on Accidental<br>Spill-Emergency<br>Response &<br>Environmental Impact<br>Assessment-Future<br>Perspective                                | NEERI, Nagpur &<br>sponsored by CPCB,<br>New Delhi                                                                                                                      | NEERI, Nagpur                                                                                                   |
| 21        | Dr. S. S. Pati, Asst.<br>Env. Scientist, Central<br>Laboratory                        | 4 <sup>th</sup> - 6 <sup>th</sup><br>October,<br>2018     | Training Programme<br>on "Taxonomical<br>Identification of Macro<br>Invertible in Biological<br>Testing"                                           | NEERI, Nagpur &<br>sponsored by CPCB,<br>New Delhi                                                                                                                      | NEERI, Nagpur                                                                                                   |
| 22        | Dr. Sohan Giri<br>Env. Scientist<br>Regional Officer,<br>Cuttack                      | 12 <sup>th</sup> - 19 <sup>th</sup><br>October,<br>2018   | Training programme<br>on "Best Practices<br>in Environmental<br>Governance"                                                                        | CSE, New Delhi                                                                                                                                                          | Stockholm, Sweden                                                                                               |
| 23        | Er. R. Priyadarshini,<br>Dy. Env. Engineer,<br>Regional office, SPC<br>Board, Cuttack | 14 <sup>th</sup> - 16 <sup>th</sup><br>October,<br>2018   | Training programme<br>on"Design, Operation,<br>Maintenance and<br>Performance of STP,<br>CETP, CBMWTFs"                                            | ESCI Campus,<br>Hyderabad & sponsored<br>by CPCB, New Delhi                                                                                                             | ESCI Campus,<br>Hyderabad                                                                                       |

58 \_\_\_\_\_ Annual Report 2018-19 \_



| Sl.<br>No | Name (Sh/Shri) &<br>Designation                                          | Date                                                     | Title of the Training /<br>Workshop / Seminar                                                                                                                         | Conducted by                                                                                                 | Venue                                                                      |
|-----------|--------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 24        | Er. Sitikantha Sahu<br>Sr. Env. Engineer (L-II)                          | 13 <sup>th</sup><br>November,<br>2018                    | Swachh Bharat<br>Mission Solid Waste<br>Management Exposure<br>Workshop, 2018                                                                                         | Core CrbonX Solutions<br>Pvt. Ltd., Hyderabad                                                                | Hotel Pride Ananya<br>Resort, Puri                                         |
| 25        | Sangeeta Mishra,<br>Asst. Environmental<br>Scientist                     | 20 <sup>th</sup> - 22 <sup>nd</sup><br>November<br>2018  | Training Programme on "Biological Monitoring, Analysis & testing (Microbiological, Bioassay & Biomonitoring), SOPs, Data interpretation & Quality Assurance"          | Panjab University,<br>Chandigarh & sponsored<br>by CPCB, New Delhi                                           | Panjab University,<br>Chandigarh                                           |
| 26        | Madan Mohan Sahoo,<br>AEE, RO,<br>Kalinganagar                           | 26 <sup>th</sup> - 28 <sup>th</sup><br>November,<br>2018 | Training programme<br>'Global Warming,<br>Climate Change and<br>Disaster Management –<br>Future Perspective'                                                          | EPTRI, Hyderabad &<br>sponsored by CPCB,<br>New Delhi                                                        | EPTRI, Hyderabad                                                           |
| 27        | Dr. D. K. Behera,<br>Sr. Env. Scientist (L-I)                            | 27 <sup>th</sup><br>November,<br>2018                    | Swachh Bharat<br>Mission Solid Waste<br>Management Exposure<br>Workshop, 2018                                                                                         | Core CrbonX Solutions<br>Pvt. Ltd., Hyderabad                                                                | Hotel Pride Ananya<br>Resort, Puri                                         |
| 28        | Pramod Kumar<br>Behera, Env.<br>Engineer, RO,<br>Kalinganagar            | 12 <sup>th</sup> - 14 <sup>th</sup><br>December,<br>2018 | Training Programme<br>on "Planning,<br>Designing, Monitoring<br>and Inspection of<br>Waste Water Treatment<br>Plants and APC<br>Measures"                             | National Productivity<br>Council, Chennai &<br>sponsored by CPCB,<br>New Delhi                               | National Productivity<br>Council, Chennai                                  |
| 29        | Dr. D. K. Behera,<br>Sr. Env. Scientist (L-I)                            | 19 <sup>th</sup> - 20 <sup>th</sup><br>December,<br>2018 | Eastern Region<br>Workshop on Waste<br>Management Rules,<br>2016                                                                                                      | MoEF&CC &<br>Confederation of Indian<br>Industry (CII)                                                       | Ranchi                                                                     |
| 30        | Dr. R. K. Mishra,<br>Env. Scientist,<br>Regional Office,<br>Bhubaneswar  | 23 <sup>rd</sup><br>December,<br>2018                    | National Seminar on<br>Plants for Sustainable<br>Development and<br>Clean Environment                                                                                 | Centurion University<br>of Technology and<br>Management, Jatni,<br>Khordha                                   | Centurion University<br>of Technology and<br>Management, Jatni,<br>Khordha |
| 31        | Dr. D. K. Behera,<br>Sr. Env. Scientist (L-I)<br>(Resource Person)       | 8 <sup>th</sup> January,<br>2019                         | Lecture on<br>"Environmental Laws"<br>to the Probationary<br>Civil Judges                                                                                             | Odisha Judicial Academy,<br>Cuttack                                                                          | Odisha Judicial<br>Academy, Cuttack                                        |
| 32        | Dr. Anup Kumar<br>Mallick, Env.<br>Scientist, Regional<br>Officer, Angul | 21 <sup>st</sup> - 23 <sup>rd</sup><br>January,<br>2019  | Training programme<br>on "Monitoring of<br>Notified Air Pollutants<br>as per Revised NAAQS<br>2009"                                                                   | The Energy & Resources<br>Institute (TERI), Delhi &<br>sponsored by CPCB, New<br>Delhi                       | The Energy &<br>Resources Institute<br>(TERI), Delhi                       |
| 33        | Dr. P. K. Mohapatra,<br>Env. Scientist,<br>Regional Officer,<br>Balasore | 4 <sup>th</sup> - 6 <sup>th</sup><br>February,<br>2019   | Training Programme<br>on "Environmental<br>Data Interpretation,<br>Compilation, Analysis,<br>Presentation and<br>Reporting – Hands-<br>on Training and Case<br>Study" | Indian Statistical<br>Institute, 7, S.J.S.<br>Sansanwal Marg, New<br>Delhi & sponsored by<br>CPCB, New Delhi | Indian Statistical<br>Institute, 7, S.J.S.<br>Sansanwal Marg,<br>New Delhi |



| Sl.<br>No | Name (Sh/Shri) &<br>Designation                                             | Date                                                              | Title of the Training /<br>Workshop / Seminar                                                                                                                         | Conducted by                                                                                                                                                                                           | Venue                                                                                 |
|-----------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 34        | Shri Sarat Kumar<br>Mohanty, Sr.<br>Scientific Asst.,<br>Central Laboratory | 4 <sup>th</sup> - 6 <sup>th</sup><br>February,<br>2019            | Training Programme<br>on "Environmental<br>Data Interpretation,<br>Compilation, Analysis,<br>Presentation and<br>Reporting – Hands-<br>on Training and Case<br>Study" | Indian Statistical<br>Institute, 7, S.J.S.<br>Sansanwal Marg, New<br>Delhi & sponsored by<br>CPCB, New Delhi                                                                                           | Indian Statistical<br>Institute, 7, S.J.S.<br>Sansanwal Marg,<br>New Delhi            |
| 35        | Shyamghan Pradhan,<br>Assistant Env.<br>Scientist, Central<br>Laboratory    | 11 <sup>th</sup> – 13 <sup>th</sup><br>February,<br>2019          | Training Programme<br>on Water Quality<br>Monitoring of Surface,<br>Ground, Waste Water<br>/ Effluent, Data<br>Processing and Quality<br>Assurance                    | National Institute of<br>Hydrology (NIH), Roorkee<br>- 247 667 (Uttarakhand)<br>& sponsored by CPCB,<br>New Delhi                                                                                      | National Institute<br>of Hydrology (NIH),<br>Roorkee - 247 667<br>(Uttarakhand)       |
| 36        | Dr. C. P. Das<br>Env. Scientist                                             | 26 <sup>th</sup><br>February to<br>1 <sup>st</sup> March,<br>2019 | Training programme<br>on "Environmental<br>Norms for Coal<br>Power Plants –<br>Implementation,<br>Monitoring and<br>Compliance"                                       | Centre for Science &<br>Environment (CSE),<br>New Deldi                                                                                                                                                | Anil Agarwal<br>Environment Training<br>Institute (AAETI),<br>Nimli, Alwar, Rajasthan |
| 37        | Dr. A. K. Swar, Chief<br>Environmental<br>Engineer                          | 15 <sup>th</sup><br>February,<br>2019                             | One-day Conference<br>on "Sustainable and<br>Environment-friendly<br>Industrial Production"                                                                           | Sustainable and<br>Environmental-friendly<br>Industrial Production,<br>Auftragsverantwortlicher<br>(In-charge of the<br>Commission),<br>B-5/1, First Floor,<br>Safdarjung Enclave,<br>New Delhi-110029 | New Delhi                                                                             |
| 38        | Dr. N. R. Sahoo, Chief<br>Env. Engineer                                     | 29 <sup>th</sup><br>January,<br>2019                              | Workshop on<br>"Policy Dialouge on<br>Environment and<br>Climate Change"                                                                                              | Integrated Research and<br>Action for Development<br>(IRADe)                                                                                                                                           | Hotel Swosti Grand,<br>Bhubaneswar                                                    |
| 39        | Dr. S. K. Mohanty, ES,<br>Central Laboratory                                | 12 <sup>th</sup> to 15 <sup>th</sup><br>March,<br>2019            | Training programme<br>on "Urban Air<br>Quality Management<br>Strategies"                                                                                              | Centre for Science &<br>Environment (CSE),<br>New Deldi                                                                                                                                                | Anil Agarwal<br>Environment Training<br>Institute (AAETI),<br>Nimli, Alwar, Rajasthan |
| 40        | Er. S. N. Mohanty,<br>AEE, RO, Angul                                        | 12 <sup>th</sup> to 15 <sup>th</sup><br>March,<br>2019            | Training programme<br>on "Urban Air<br>Quality Management<br>Strategies"                                                                                              | Centre for Science &<br>Environment (CSE),<br>New Deldi                                                                                                                                                | Anil Agarwal<br>Environment Training<br>Institute (AAETI),<br>Nimli, Alwar, Rajasthan |

# B. Training / Workshop / Seminar Organised / Sponsored by Board

| Sl.<br>No. | Training Programme                                           | Duration                                        | Venue                                            | Organised / Sponsored by                                                                                                  |
|------------|--------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1          | Conference on "Climate Change<br>Initiatives"                | 31 <sup>st</sup> May,<br>2018                   | Hotel Hindustan<br>International,<br>Bhubaneswar | Indian Chamber of Commerce, ICC<br>Towers, 4, India Exchange Place,<br>Kolkata & State Pollution Control<br>Board, Odisha |
| 2          | Beat Plastic Pollution on the eve of "World Environment Day" | 2 <sup>nd</sup> - 5 <sup>th</sup><br>June, 2018 | Vigyan Bhawan,<br>New Delhi                      | MoEF&CC & SPCB, Odisha                                                                                                    |

60 \_\_\_\_\_\_ Annual Report 2018-19 \_\_



| Sl.<br>No. | Training Programme                                                                               | Duration                                                | Venue                                           | Organised / Sponsored by                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 3          | Observation of "World Environment<br>Day"                                                        | 5 <sup>th</sup> June,<br>2018                           | Unit-II Market Building<br>Complex, Bhubaneswar | Rotary Club of Bhubaneswar, Rotary<br>Bhawan, Plot No.A-5/2 & 5/3, Unit-<br>IX, Bhubaneswar in collaboration<br>with SPCB, Odisha |
| 4          | Workshop on "Interlocking Bricks<br>and its Utilization for housings – A<br>Case Study of Nepal" | 8 <sup>th</sup> August,<br>2018                         | Raptani Bhawan,<br>Nayapalli, Bhubaneswar       | Terrablock Machinery,<br>239, Kharvela Nagar, Bhubaneswar                                                                         |
| 5          | National Conclave on Climate<br>Change and Industry                                              | 27 <sup>th</sup> - 28 <sup>th</sup><br>October,<br>2018 | Hotel The New Marrion,<br>Bhubaneswar           | IMS, OCHC Complex in collaboration with SPCB, Odisha                                                                              |
| 6          | Conference on "Environmental<br>Regulatory Compliance-Industries<br>and Mines Prospective"       | 30 <sup>th</sup><br>November,<br>2018                   | Hotel Swosti Premium,<br>Bhubaneswar            | Indian Chamber of Commerce,<br>Bhubaneswar & State Pollution<br>Control Board, Odisha                                             |
| 7          | One Day Workshop on Continuous<br>Emission Monitoring System (CEMS)<br>and Star Rating Programme | 13 <sup>th</sup><br>November,<br>2018                   | Hotel Swosti Premium,<br>Bhubaneswar            | Energy Policy Institute University of<br>Chicago (EPIC India), Bhubaneswar<br>& State Pollution Control Board,<br>Odisha          |
| 8          | Stakeholders Workshop on Air<br>Quality Action Plan for Non-<br>attainment Cities of Odisha      | 22 <sup>nd</sup><br>December,<br>2018                   | Hotel Crown,<br>Bhubaneswar                     | F & E Dept., Govt. of Odisha, State<br>Pollution Control Board, Odisha,<br>Bhubaneswar & Centre Science &<br>Environment, Delhi   |

### 8.9 OTHER ACTIVITIES

### 8.9.1. Training on Pollution Control and Environmental Protection

- Interaction meets on "Environmental Management in Kalinganagar Industrial area was organized by State Pollution Control Board, Kalinganagar on 08.08.2018 in the office of the Additional District Magistrate, Kalinganagar, Jajpur.
- Workshop on E-Waste Management Rules -2016 organised by Regional Office, Paradeep on 14<sup>th</sup> Dec'2018 at Paradeep Port Trust Officer's Club, Paradeep involving the stake holders & Corporate houses in Paradeep area.
- A meeting has been conducted in the conference hall of Regional Office, SPCB, Paradeep and Officer Club of Paradeep Port Trust Involving the officials and representative from various stake holders i.e. Paradeep Municipality, Paradeep Port Trust, all Banika Sangha of Paradeep and NGOs to aware the people to ban plastic products like plastic tea cups & polythene Carry bag having thickness less than 50 microns.

### 8.9.2. Human Resource Development

- The Board has conducted various programmes by the Centre for Excellence for imparting training to various stakeholders on pollution control and environment protection and also deputed its officials on exposure training and to acquire knowledge in the above field.
- The Board has imparted training on "Monitoring and Analysis of Environmental Parameters from 8th to 30th November, 2018 to 20 numbers of participants under "Green Skill Development Programme (GSDP)" organized by the Centre for Environmental Studies (CES). The participants were given demonstration and hands-on training for sampling and analysis of water and wastewater samples, ambient air monitoring and analysis, source emission monitoring and analysis, noise monitoring, soil and hazardous waste sampling and analysis.
- Imparted training on "Ambient air pollutants effect and its measurement" to 81 MBBS students of All India Institute of Medical Science, Bhubaneswar.



- Four numbers of 1<sup>st</sup> year M.Sc. (Environmental Science) Students of Pondicherry University were guided for conducting their summer-internship work in the Central Laboratory.
- Eight numbers of M.Sc (Environmental Science) Students of Utkal University were guided for conducting their Dissertation work in the Central Laboratory.
- Imparted training on "Prevention & control of Vehicular Pollution" to 541 numbers of Traffic personnel at Traffic Training Institute, Bhubaneswar.

## 8.9.3 Observation of Important Days

## \* Earth Day

The World Earth Day was celebrated on 22<sup>nd</sup> April, 2018 by Regional Offices of State Pollution Control Board, Odisha.

# \* World Environment Day

The State Pollution Control Board, Odisha observed World Environment Day on 5<sup>th</sup> June, 2018 through 12 Regional Offices. For the year 2018, the theme of the World Environment Day was "Beat Plastic Pollution". In this context, several programmes such as plantations, organizing debate / quiz/ rally / painting competitions followed by distribution of prizes, beach clean-up activities involving public /students of schools & colleges were conducted to create awareness for protection of environment.

# Observation of World Environment Day by Regional Offices



**RAYAGADA** 



**BERHAMPUR** 



**ROURKELA** 



**KEONJHAR** 

162





**BHUBANESWAR** 



**KALINGANAGAR** 





**PARADEEP** 

**BALASORE** 





**ANGUL** 

**SAMBALPUR** 





**CUTTACK** 

**JHARSUGUDA** 



# **❖** 35<sup>h</sup> Foundation Day

The 35<sup>th</sup> Foundation Day of the Board was observed on 15<sup>th</sup> September, 2018 at Jayadev Bhawan, Bhubaneswar. The function was presided by Sri R. Balakrishnan, IAS, Addl. Chief Secretary-cum-Development Commissioner, Govt. of Odisha & Chairman, State Pollution Control Board, Odisha and Sri S.C.Mohapatra, IAS, Additional Chief Secretary, F & E Department Govt. of Odisha was the Guest of Honor. Sri D. Biswal, IFS, Member Secretary, State Pollution Control Board, Odisha delivered the key note address on the occasion. Prof. Satyaban Jena, Retd. Prof. of Chemistry, Utkal University, Vanivihar delivered Prof. M. K. Rout Memorial Lecture on "Green Chemistry" on the occasion. Distinguished guests from various sectors like Government, Industries, Officers & Staff from Regional Offices & Head Office of the Board attended the function.



Chairman Delivering his Address During 35<sup>th</sup> Foundation Day



Prof. M.K. Rout Memorial Lecture by Prof. Satyaban Jena, Retd. Prof. of Chemistry Utkal Unversity Vani Vihar

The Newsletter **'Paribesh Samachar'** (April – June 2018), Report on Heat Island study in Angul-Talcher area (Vol-I) prepared by Centre for Atmospheric Science, IIT, Delhi and one Book on "Mangroves Atlas of Bhitarkanika", published by ICZMP, SPCB, Odisha in association with Department of Bio-technology & Bioinformatics, Sambalpur University, Odisha were released on the occasion.



Release of Book on 'Mangroves Atlas of Bhitarkaneka'



Release of Report on Heat Island Study in Angul-Talchea Area(Vol-I) prepared by Centre for Atmospheric Sciences, IIT, Delhi



The Board has instituted pollution control excellence/appreciation awards to encourage the industries/mines / health care units for adoption of adequate pollution control measures. The list of awardees for this year is as follows:

### 1. Industries:

**Pollution Control Excellence Award** - M/s. National Aluminium Company Ltd., (Alumina Refinery), At- Damanjodi, Dist: Korapat .

**Pollution Control Appreciation Award** – M/s. Suraj Products Ltd., At: Barpalli, Dist: Sundargarh.

### 2. Mines:

**Pollution Control Excellence Award** - M/s. Katamati Iron Mines of M/s Tata Steel Limited, Dist: Keonjhar.

**Pollution Control Appreciation** Award - M/s. T.R.B. Iron Ore Mines of M/s. Jindal Steel & Power Ltd., AT: Tensa, Dist: Sundargarh.

### 3. Health Care Units:

**Pollution Control Excellence Award** - Community Health Centre (CHC) Mandasahi, Jagatsinghpur.

**Pollution Control Appreciation Award -** Tata Steel Hospital, Joda, M/s. Tata Steel Limited, Keonjhar.

# Pollution Control Excellence Award & Appreciation Award in Industries Categories



M/s. National Aluminium Company Ltd., (Alumina Refinery), At- Damanjodi,



M/s. Suraj Products Ltd., At: Barpalli, Dist: Sundargarh

# Pollution Control Excellence Award & Appreciation Award In Mines Categories



M/S. Katamati Iron Mines of M/S Tata Steel Limited, Dist: Keonjhar.



M/S. T.R.B. iron ore mines of M/S. Jindal steel & Power Ltd., At: Tensa, Dist: Sundargarh



# Pollution Control Excellence Award & Appreciation Award In Health Care Units



Community Health Centre (CHC), Mandasahi, Jagatsinghpur.

TATA Steel Hospital of M/S. Tata Steel Limited, Joda, Keonjhar

# **❖ INTERNATIONAL COASTAL CLEAN-UP DAY**

The International Coastal Clean-up Day was observed by the Board on the Sea Beach, Puri, Konark, Chandipur, Gopalpur & Paradeep on 15<sup>th</sup> September, 2018 for creation of mass awareness on the protection and management of coastal environment involving District Administration, NGOs and volunteers etc.

# Observation of International Coastal Clean-up Day by SPC Board



Puri Sea Beach



Konark Sea Beach



Gopalpur Sea Beach



Paradeep Sea Beach

166





Chandipur Sea Beach

### **❖** WORLD OZONE DAY

World Ozone day was observed by the Board through Regional Offices conducting meeting & workshop etc.

# **❖** NATIONAL POLLUTION PREVENTION DAY

The National Pollution Prevention Day was observed by the Board through Regional Offices on 2<sup>nd</sup> December 2018 by conducting mass rally, meetings, workshops etc. for creation of mass awareness on pollution prevention and protection of environment, involving different NGOs and volunteers.

### 8.10 AWARENESS ACTIVITES

- For creation of awareness amongst general public, the Board regularly publishes advertisements relating to environmental issues in different periodicals / newspapers / souvenirs.
- The World Earth Day was celebrated on 22<sup>nd</sup> April, 2018 by Regional Offices of State Pollution Control Board, Odisha.
- The Board observed the World Environment Day on 5<sup>th</sup> June' 2018 through 12 Regional Offices to create awareness on environmental protection. Messages on protection of environment were given to the public through meetings, mass campaign, paintings, debates & plantations etc.
- The 35<sup>th</sup> Foundation Day of the Board was observed on 15<sup>th</sup> Sept, 2018 at Jaydev Bhawan, Bhubaneswar followed by release by newsletters and books. Prof. Satyaban Jena, Retd. Professor of Chemistry, Utkal University, Vanivihar delivered Prof. M.K. Rout Memorial Lecture on **Green Chemistry**.
- The International Coastal Clean-up Day was observed by the Board on the Sea Beaches of Puri, Konark, Chandipur, Gopalpur & Paradeep on 15<sup>th</sup> Sept, 2018 for creation of mass awareness on protection and management of environment involving District Administration, different NGOs & Volunteers.
- During Deepawali festival awareness campaign was organized in & around Bhubaneswar and Cuttack for creating awareness among the public on effect of crackers on air pollution & noise pollution.
- An awareness meeting was conduted by Regional Office, Sambalpur on 05.09.2018 at Bargarh involving the Stone Crusher Association, Bargarh on Pollution Control Measures in Stone Crusher Units.



#### 8.11 PUBLICATIONS

The Board has published the following Book & Reports during April, 2018 to March, 2019.

- Newsletters "Paribesh Samachar" i.e. (Jan-Mar. 2018, April-June, 2018, July December, 2018).
- ➤ "Environmental Status Report- 2015-2017" for the coastal stretches of Paradeep, Gahirmatha-Bhitarkanika and Dhamra in the Bay of Bengal, India by ICZMP, SPCB, Odisha.
- > Report card on Paradeep-Gahirmatha-Dhamra Ecosystem-2017 by ICZMP, SPCB, Odisha.
- > "Mangroves Atlas of Bhitarkanika" was published by ICZMP, SPCB, Odisha in association with Department of Biotechnology & Bioinformatics, Sambalpur University, Odisha.

### 8.12 EMPANELLED ENVIRONMENTAL CONSULTANTS

In the year 2018-19, total 07 nos. of consultants were empanelled as environmental consultant with the Board. Out of these seven consultants, 03 consultants were empanelled under 'A' Category and 04 consultants were empanelled under 'B' category. The name and address of these consultants, category under which they have been empanelled and validity period of their empanelment certificate are given in Table-8.7.

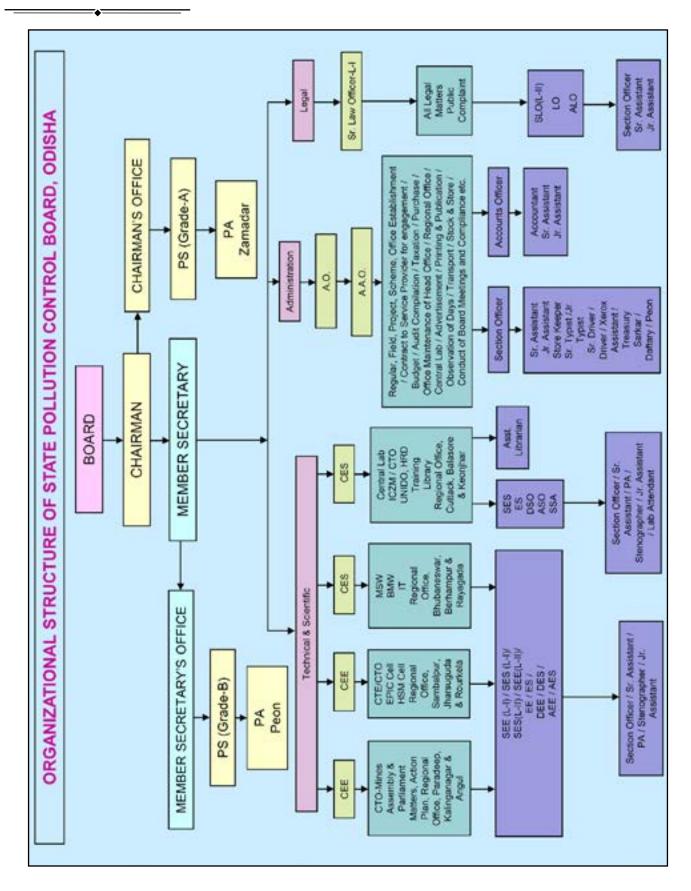
Table-8.7 Status of Environmental Consultants for the Year 2018-19

### Category-A

| Sl.<br>no | Name of the Consultant                                                                                                                                                                                                              | Category | Validity Period                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| 1         | M/s Bhagavathi Ana Labs Pvt. Ltd Plot No.7-2-C 7 & 8/4 & 14,Industrial Estate, Sanathnagar, Hyderabad-500018 Phone No:- 91-40-23803800/23811535 Email Id: - shyam.sundar@in.bureauveritas.com/ bhavna.polimera@in.bureauveritas.com | A        | 27.07.2018<br>to<br>26.07.2021 |
| 2         | M/s B.S.Envi-Tech Pvt. Ltd , 12-13-1270/71/73,4 <sup>th</sup> Floor, Amity Ville, St. Ann's Road, Tarnaka, Secunderabad-500017 Phone - +914049783062/27016806 E-mail - bsenvitech@gmail.com                                         | A        | 23.03.2019<br>to<br>22.03.2022 |
| 3         | M/s Vision labs  H.No 16-11-23/37/A, Flat No.205, 2 <sup>nd</sup> Floor,Opp. R.T.A Office, N-mart Building, Musarambagh, Malakpet, Hyderabad-500036 Phone - 040-24544320 E-mail - info@visonlabs.com                                | A        | 30.03.2019<br>to<br>29.03.2022 |

### Category-B

| Sl.<br>no | Name of the Consultant                                                                                                                                            | Category | Validity Period                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| 1         | M/s Sai BioCare Pvt. Ltd, Plot No-1789/4898, 2 <sup>nd</sup> floor, Nuasahi Nayapalli, Bhubaneswar-751012 Phone No:- 0674-2565195 Email Id: - info@saibiocare.com | В        | 10.08.2018<br>to<br>09.08.2021 |


68 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_



| Sl.<br>no | Name of the Consultant                                                                                                                                                                                              | Category | Validity Period                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| 2         | M/s Enviro Care Technocrats Pvt. Ltd, 201, New Opera House Nr.CNG Pump & Civil Hospital Ring Road, Khatodara, Surat-395002 Phone No:- 0261-2630781/09825125122 Email Id: - info@envirocare.net.in                   | В        | 06.03.2019<br>to<br>05.03.2022 |
| 3         | M/s Ecological Development Consultancy Pvt. Ltd, Plot No-1666, Vibaba Estate Lane Nilakantheswar Marg, Delta Colony, Baramunda Bhubaneswar-751003 Phone No:- 0674-2565226,08763213647 Email Id: - edcbbsr@gmail.com | В        | 11.03.2019<br>to<br>10.03.2022 |
| 4         | M/s. Orbital Infrastructure Consultancy & Research Pvt.Ltd., Plot No. 1134, Mahanadi Vihar, Cuttack - 753004 Phone No:- (0671) 2443588, 2443408 E-mail: orbital6@hotmail.com                                        | В        | 23.03.2019<br>to<br>22.03.2022 |



### **ANNEXURE-I**



Annual Report 2018-19 —



### **ANNEXURE-II**

# RATE CHART FOR SAMPLING AND ANALYSIS OF ENVIRONMENTAL SAMPLES (Office Order No. 24287 dated 07.11.2008)

#### A. SAMPLING CHARGES

### (I) Sampling charges for Ambient Air/ Fugitive emission samples

| Sl.<br>No. | Type of sampling                                                                   | Charges in Rs. |
|------------|------------------------------------------------------------------------------------|----------------|
| 1.         | Sampling (upto each 8 hrs) for suspended particulate matter and gaseous pollutants | 2000.00        |
| 2.         | Sampling (24 hrs) for suspended particulate matter and gaseous pollutants          | 6000.00        |
| 3          | Sampling of volatile organic compounds (VOCs) / Benzene Toluene Xylene (BTX)       | 2000.00        |
| 4          | Sampling of Poly Aromatic Hydrocarbons (PAHs)                                      | 2500.00        |

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

#### (II) Source Emission Monitoring / Sampling Charges

| Sl. No. | Type of Sampling                                                                                                                                                          | Charges in Rs. |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| (a)     | Sampling/ measurement of velocity, flow rate, temperature and molecular weight of Flue Gas (each specific location/ each sample in duplicate for the mentioned parameter) | 5500.00        |
| (b)     | Sampling of SO <sub>2</sub> / NO <sub>2</sub>                                                                                                                             | 2000.00        |
| (c)     | Sampling of PAHs                                                                                                                                                          | 3000.00        |
| (d)     | Sampling of VOCs / BTX                                                                                                                                                    | 3500.00        |

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

#### (III) Noise Monitoring

| Type of Monitoring                                  | Charges in Rs. |
|-----------------------------------------------------|----------------|
| First Monitoring                                    | 4000.00        |
| Each Subsequent Monitoring within same premises     | 2000.00        |
| For 08 hours Continuous Monitoring or more in a day | 10,000.00      |

**Note:** (i) Transportation charges will be separate as per actual basis.

### (IV) SAMPLING CHARGES FOR WATER & WASTEWATER SAMPLES

| Sl. No. | Type of sampling                                                   | Charges in Rs. |
|---------|--------------------------------------------------------------------|----------------|
| 1.      | GRAB SAMPLING:                                                     |                |
|         | 1) Grab sampling/ samples/ place                                   | 550.00         |
|         | 2) For every additional Grab sampling / same place (at same point) | 250.00         |



| Sl. No. | Type of sampling                                                                                           | Charges in Rs.   |
|---------|------------------------------------------------------------------------------------------------------------|------------------|
| 2.      | COMPOSITE SAMPLING:                                                                                        |                  |
|         | 1) Composite sampling/source/place upto 8 hrs.                                                             | 1000.00          |
|         | -do- upto16 hrs.                                                                                           | 2000.00          |
|         | -do- upto 24 hrs.                                                                                          | 3000.00          |
|         | 2) For every additional composite sampling/same place but different source upto 8 hrs.<br>-do- upto 16 hrs | 550.00           |
|         | -do- upto 24 hrs                                                                                           | 1100.00          |
|         |                                                                                                            | 1650.00          |
| 3.      | Flow rate measurement/ source<br>-do Once<br>- Every additional -                                          | 400.00<br>150.00 |

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

### (V) Sampling charges for Soil samples

| Type of Sampling                          | Charges in Rs. |
|-------------------------------------------|----------------|
| Grab sampling/ sample/ place              | 600.00         |
| For additional Grab sampling / same place | 300.00         |

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

### (VI) Hazardous Waste Sample collection charges at the premises of Industry/ Import site/ Disposal site

| Type                                 | Charges in Rs. |
|--------------------------------------|----------------|
| Integrated sample collection charges | 1000.00        |

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

#### **B. ANALYSIS CHARGES**

### 1. Analysis charges of Ambient Air/ Fugitive Emission Samples

| Sl. No | Parameters (Air)                  | Analysis charges per sample in Rs. |
|--------|-----------------------------------|------------------------------------|
| 1      | Ammonia                           | 600.00                             |
| 2      | Analysis using dragger (per tube) | 400.00                             |
| 3      | Benzene, Toluene, Xylene (BTX)    | 1000.00                            |
| 4      | Carbon Monoxide                   | 600.00                             |
| 5      | Chlorine                          | 600.00                             |
| 6      | Fluoride (gaseous)                | 600.00                             |
| 7      | Fluoride (particulate)            | 600.00                             |
| 8      | Hydrogen Chloride                 | 600.00                             |
| 9      | Hydrogen Sulphide                 | 600.00                             |

72 — Annual Report 2018-19 -



| Sl. No | Parameters (Air)                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis charges per sample in Rs.             |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 10     | Lead & Other Metals (per metal)                                                                                                                                                                                                                                                                                                                                                                                                                    | As mentioned in respective group at clause 5.0 |
| 11     | $NO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600.00                                         |
| 12     | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000.00                                        |
| 13     | Poly Aromatic Hydrocarbons (PAHs)                                                                                                                                                                                                                                                                                                                                                                                                                  | As mentioned in respective group at clause 5.0 |
| 14     | Suspended Particulate Matter (SPM)                                                                                                                                                                                                                                                                                                                                                                                                                 | 600.00                                         |
| 15     | Particulate Matter (PM <sub>2.5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                            | 1000.00                                        |
| 16     | Respirable Suspended Particulate Matter (PM <sub>10</sub> )                                                                                                                                                                                                                                                                                                                                                                                        | 600.00                                         |
| 17     | Sulphur Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                    | 600.00                                         |
| 18     | Volatile Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000.00                                        |
| 19     | Trace metals on air, filter paper using ED-XRF Aluminium, Antimony, Arsenic, Barium, Bromine, Cadmium, Calcium, Cesium, Chlorine, Chromium, Cobalt, Copper, Gallium, Germanium, Gold, Iodine, Iron, Lanthanum, Lead, Magnesium, Manganese, Molybdenum, Nickel, Palladium, Phosphorous, Potassium, Rubidium, Rutherfordium, Selenium, Silicon, Silver, Sodium, Strontium, Sulphur, Tellurium, Tin, Titanium, Tungsten, Vanadium, Ytterbium and Zinc | 3000.00<br>Per filter paper                    |
| 20     | Water extractable ions in air particulate matter using Ion Chromatograph (IC)                                                                                                                                                                                                                                                                                                                                                                      |                                                |
|        | <ul> <li>i) Processing / pretreatment charge per sample (filter paper)</li> <li>ii) Cations (Na+, NH<sub>4</sub>+, K+, Ca++, &amp; Mg++) and Anions (F-, Br-, Cl-, NO<sub>3</sub>-, NO<sub>2</sub>-, SO<sub>4</sub>-&amp; PO<sub>4</sub>)</li> </ul>                                                                                                                                                                                               | 300.00<br>1200.00<br>(for 12 ions)             |
| 21     | Organic and Elemental Carbon (OC/EC) on quartz filter paper                                                                                                                                                                                                                                                                                                                                                                                        | 2000.00                                        |

### 2. Analysis charges for Source Emission Parameters

| Sl.No. | Parameters                                     | Analysis charges per test in Rs.               |
|--------|------------------------------------------------|------------------------------------------------|
| 1      | Acid mist                                      | 600.00                                         |
| 2      | Ammonia                                        | 600.00                                         |
| 3      | Carbon Monoxide                                | 600.00                                         |
| 4      | Chlorine                                       | 600.00                                         |
| 5      | Fluoride (Gaseous)                             | 600.00                                         |
| 6      | Fluorides (Particulate)                        | 600.00                                         |
| 7      | Hydrogen Chloride                              | 600.00                                         |
| 8      | Hydrogen Sulphide                              | 600.00                                         |
| 9      | Oxides of Nitrogen                             | 600.00                                         |
| 10     | Oxygen                                         | 500.00                                         |
| 11     | Polycyclic Aromatic Hydrocarbons (Particulate) | As mentioned in respective group at clause 5.0 |
| 12     | Suspended particulate matter                   | 600.00                                         |
| 13     | Sulphur Dioxide                                | 600.00                                         |
| 14     | Benzene Toluene Xylene (BTX)                   | 1500.00                                        |
| 15     | Volatile Organic Compounds (VOC)               | 3000.00                                        |



### 3. Ambient Air Quality Monitoring using on-line monitoring instruments by Mobile Van

| Parameters                                                                                                                                                               | Charges in Rs.                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> , NO <sub>x</sub> , SPM, CO along with Meteorological data viz. temperature, Humidity, wind speed, wind direction | Rs.3,500/hour (minimum charges Rs.15,000/-) + Rs.50.00/km run of the van for 24 hours monitoring. |

### 4. Auto Exhaust Monitoring - One time checking of Vehicular Exhaust

| SL.<br>NO. | TYPE OF VEHICLES                | CHARGES IN RS. (INCLUDING COST OF THE COMPUTERIZED PHOTO) |
|------------|---------------------------------|-----------------------------------------------------------|
| 1          | 2 & 3 WHEELERS                  | 40.00                                                     |
| 2          | LIGHT MOTOR VEHICLES            | 60.00                                                     |
| 3          | MEDIUM AND HEAVY MOTOR VEHICLES | 100.00                                                    |

### 5. ANALYSIS CHARGES OF WATER AND WASTEWATER SAMPLES

| Sl.No | Parameters                       | Analysis charges per test in Rs. |  |
|-------|----------------------------------|----------------------------------|--|
| PHYSI | PHYSICAL PARAMETERS              |                                  |  |
| 1     | Conductivity                     | 60.00                            |  |
| 2     | Odour                            | 60.00                            |  |
| 3     | Sludge Volume index (S.V.I)      | 200.00                           |  |
| 4     | Solids (dissolved)               | 100.00                           |  |
| 5     | Solids (fixed)                   | 150.00                           |  |
| 6     | Solid (Volatile)                 | 150.00                           |  |
| 7     | Suspended Solids                 | 100.00                           |  |
| 8     | Temperature                      | 60.00                            |  |
| 9     | Total Solids                     | 100.00                           |  |
| 10    | Turbidity                        | 60.00                            |  |
| 11    | Velocity of Flow (Current Meter) | 200.00                           |  |
| 12    | Velocity of Flow (other)         | 550.00                           |  |
| CHEM  | CHEMICAL PARAMETERS              |                                  |  |
| 1.    | Acidity                          | 100.00                           |  |
| 2.    | Alkalinity                       | 100.00                           |  |
| 3.    | Ammonical Nitrogen               | 200.00                           |  |
| 4.    | Bicarbonate                      | 100.00                           |  |
| 5.    | Biochemical Oxygen Demand (BOD)  | 600.00                           |  |
| 6.    | Bromide                          | 100.00                           |  |
| 7.    | Calcium (Titrimetric)            | 100.00                           |  |
| 8.    | Carbon dioxide                   | 100.00                           |  |
| 9.    | Carbonate                        | 100.00                           |  |
| 10.   | Chloride                         | 100.00                           |  |
| 11.   | Chlorine Demand                  | 200.00                           |  |
| 12.   | Chlorine Residual                | 100.00                           |  |
| 13.   | Chemical Oxygen Demand (COD)     | 350.00                           |  |

174 \_\_\_\_\_\_ Annual Report 2018-19 \_\_\_\_



| Sl.No  | Parameters                                                                                                                                                                                                                                                                                                                                                                 | Analysis charges per test in Rs. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 14.    | Colour                                                                                                                                                                                                                                                                                                                                                                     | 40.00                            |
| 15.    | Cyanide                                                                                                                                                                                                                                                                                                                                                                    | 350.00                           |
| 16.    | Detergents                                                                                                                                                                                                                                                                                                                                                                 | 200.00                           |
| 17.    | Dissolved Oxygen (DO)                                                                                                                                                                                                                                                                                                                                                      | 100.00                           |
| 18.    | Fluoride                                                                                                                                                                                                                                                                                                                                                                   | 200.00                           |
| 19.    | Free ammonia                                                                                                                                                                                                                                                                                                                                                               | 260.00                           |
| 20.    | H. Acid                                                                                                                                                                                                                                                                                                                                                                    | 350.00                           |
| 21.    | Hardness (Calcium)                                                                                                                                                                                                                                                                                                                                                         | 100.00                           |
| 22.    | Hardness (Total)                                                                                                                                                                                                                                                                                                                                                           | 100.00                           |
| 23.    | Iodide                                                                                                                                                                                                                                                                                                                                                                     | 100.00                           |
| 24.    | Nitrite - Nitrogen                                                                                                                                                                                                                                                                                                                                                         | 200.00                           |
| 25.    | Nitrate - Nitrogen                                                                                                                                                                                                                                                                                                                                                         | 200.00                           |
| 26.    | Percent Sodium                                                                                                                                                                                                                                                                                                                                                             | 600.00                           |
| 27.    | Permanganate Value                                                                                                                                                                                                                                                                                                                                                         | 200.00                           |
| 28.    | pH                                                                                                                                                                                                                                                                                                                                                                         | 60.00                            |
| 29.    | Phosphate (Ortho)                                                                                                                                                                                                                                                                                                                                                          | 200.00                           |
| 30.    | Phosphate (Total)                                                                                                                                                                                                                                                                                                                                                          | 350.00                           |
| 32.    | Salinity                                                                                                                                                                                                                                                                                                                                                                   | 100.00                           |
| 33.    | Sodium Absorption Ratio (SAR)                                                                                                                                                                                                                                                                                                                                              | 600.00                           |
| 35.    | Settleable Solids                                                                                                                                                                                                                                                                                                                                                          | 100.00                           |
| 36.    | Silica                                                                                                                                                                                                                                                                                                                                                                     | 200.00                           |
| 37.    | Sulphate                                                                                                                                                                                                                                                                                                                                                                   | 150.00                           |
| 38.    | Sulphide                                                                                                                                                                                                                                                                                                                                                                   | 200.00                           |
| 39.    | Sulphite                                                                                                                                                                                                                                                                                                                                                                   | 250.00                           |
| 40.    | Total Kjeldahl Nitrogen (TKN)                                                                                                                                                                                                                                                                                                                                              | 350.00                           |
| 41.    | Urea Nitrogen                                                                                                                                                                                                                                                                                                                                                              | 350.00                           |
| 42.    | Cations (Na <sup>+</sup> , NH <sub>4</sub> <sup>+</sup> , K <sup>+</sup> , Ca <sup>++</sup> , & Mg <sup>++</sup> ) and Anions (F <sup>-</sup> , Br <sup>-</sup> , Cl <sup>-</sup> , NO <sub>3</sub> <sup>-</sup> , NO <sub>2</sub> <sup>-</sup> , SO <sub>4</sub> <sup>-</sup> & PO <sub>4</sub> <sup></sup> ) in surface and ground water samples using Ion Chromatograph | 1200.00<br>(for 12 ions)         |
| Metals | 3                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|        | Processing / pre treatment charge per sample                                                                                                                                                                                                                                                                                                                               | 500.00                           |
| 1.     | Aluminium                                                                                                                                                                                                                                                                                                                                                                  | 300.00                           |
| 2.     | Antimony                                                                                                                                                                                                                                                                                                                                                                   | 300.00                           |
| 3.     | Arsenic                                                                                                                                                                                                                                                                                                                                                                    | 300.00                           |
| 4.     | Barium                                                                                                                                                                                                                                                                                                                                                                     | 300.00                           |
| 5.     | Beryllium                                                                                                                                                                                                                                                                                                                                                                  | 300.00                           |
| 6.     | Boron                                                                                                                                                                                                                                                                                                                                                                      | 300.00                           |
| 7.     | Cadmium                                                                                                                                                                                                                                                                                                                                                                    | 300.00                           |
| 8.     | Chromium Hexavalent                                                                                                                                                                                                                                                                                                                                                        | 200.00                           |
| 9.     | Chromium Total                                                                                                                                                                                                                                                                                                                                                             | 300.00                           |
| 10.    | Cobalt                                                                                                                                                                                                                                                                                                                                                                     | 300.00                           |
| 11.    | Copper                                                                                                                                                                                                                                                                                                                                                                     | 300.00                           |



| Sl.No | Parameters                        | Analysis charges per test in Rs. |  |
|-------|-----------------------------------|----------------------------------|--|
| 12.   | Iron                              | 300.00                           |  |
| 13.   | Lead                              | 300.00                           |  |
| 14.   | Magnesium                         | 200.00                           |  |
| 15.   | Manganese                         | 300.00                           |  |
| 16.   | Mercury (Processing and Analysis) | 800.00                           |  |
| 17.   | Molybdenum                        | 300.00                           |  |
| 18.   | Nickel                            | 300.00                           |  |
| 19.   | Potassium                         | 200.00                           |  |
| 20.   | Selenium                          | 300.00                           |  |
| 21.   | Silver                            | 300.00                           |  |
| 22.   | Sodium                            | 200.00                           |  |
| 23.   | Strontium                         | 300.00                           |  |
| 24.   | Tin                               | 300.00                           |  |
| 25.   | Vanadium                          | 300.00                           |  |
| 26.   | Zinc                              | 300.00                           |  |

| Sl.No  | Parameters                                           | Analysis charges per test in Rs. |  |  |
|--------|------------------------------------------------------|----------------------------------|--|--|
| Organo | Organo Chlorine Pesticides (OCPs)                    |                                  |  |  |
|        | Processing / pre treatment charge per sample 1000.00 |                                  |  |  |
| 1.     | Aldrine                                              | 400.00                           |  |  |
| 2.     | Dicofol                                              | 400.00                           |  |  |
| 3      | DIeldrin                                             | 400.00                           |  |  |
| 4      | Endosulfan-1                                         | 400.00                           |  |  |
| 5      | Endosulfan-2                                         | 400.00                           |  |  |
| 6      | Endosulfan-Sulfate                                   | 400.00                           |  |  |
| 7      | Heptachlor                                           | 400.00                           |  |  |
| 8      | Hexachlorobenzene (HCB)                              | 400.00                           |  |  |
| 9      | Methoxychlor                                         | 400.00                           |  |  |
| 10     | o,p DDT                                              | 400.00                           |  |  |
| 11     | p,p'- DDD                                            | 400.00                           |  |  |
| 12     | p,p'- DDT                                            | 400.00                           |  |  |
| 13     | p'p DDE                                              | 400.00                           |  |  |
| 14     | а-НСН                                                | 400.00                           |  |  |
| 15     | ß-НСН                                                | 400.00                           |  |  |
| 16     | γ-НСН                                                | 400.00                           |  |  |
| 17     | δ-HCH 400.00                                         |                                  |  |  |
| Organo | Phosphorous Pesticides (OPPs)                        |                                  |  |  |
|        | Processing / pre treatment charge per sample         | 1000.00                          |  |  |
| 18     | Chlorpyriphos                                        | 400.00                           |  |  |

176 — — Annual Report 2018-19 — —



| 19   Dimethoate   400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sl.No   | Parameters                                   | Analysis charges per test in Rs. |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|----------------------------------|--|
| 21       Malathion       400.00         22       Monocrotophos       400.00         23       Parathion-methyl       400.00         24       Phorate       400.00         25       Phosphamidon       400.00         26       Profenophos       400.00         27       Quinalphos       400.00         Synthetic Pyrethroids (SPs)         Processing / pre treatment charge per sample       1000.00         28       Deltamethrin       400.00         30       Fenvalerate       400.00         31       a-Cypermethrin       400.00         32       β-Cyfluthrin       400.00         Herbicides         Processing / pre treatment charge per sample       1000.00         34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycyclic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbons       750.00         39       Acenaphthene                                     | 19      | Dimethoate                                   | 400.00                           |  |
| 22   Monocrotophos   400.00     23   Parathion-methyl   400.00     24   Phorate   400.00     25   Phosphamidon   400.00     26   Profenophos   400.00     27   Quinalphos   400.00     28   Deltamethrin   400.00     28   Deltamethrin   400.00     29   Fenpropethrin   400.00     30   Fenvalerate   400.00     31   a-Cypermethrin   400.00     32   β-Cyfluthrin   400.00     33   γ-Cyhalothrin   400.00     Herbicites     Processing / pre treatment charge per sample   1000.00     34   Alachlor   400.00     35   Butachlor   400.00     36   Fluchloralin   400.00     37   Pendimethalin   400.00     38   Polycyclic Aromatic Hydrocarbon   750.00     39   Acenaphthene   400.00     30   Forcessing / pre treatment charge per sample   1000.00     31   Acenaphthene   400.00     32   Processing / pre treatment charge per sample   1000.00     34   Alachlor   400.00     35   Butachlor   400.00     36   Fluchloralin   400.00     37   Pendimethalin   400.00     38   Polycyclic Aromatic Hydrocarbon   750.00     39   Acenaphthene   400.00                              | 20      | Ethion                                       | 400.00                           |  |
| 23       Parathion-methyl       400.00         24       Phorate       400.00         25       Phosphamidon       400.00         26       Profenophos       400.00         27       Quinalphos       400.00         Synthetic Pyrethroids (SPs)         Processing / pre treatment charge per sample       1000.00         28       Deltamethrin       400.00         30       Fenpropethrin       400.00         31       a-Cypermethrin       400.00         32       β-Cyfluthrin       400.00         33       γ-Cyhalothrin       400.00         Herbicides         Processing / pre treatment charge per sample       1000.00         34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycyclic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                               | 21      | Malathion                                    | 400.00                           |  |
| 24         Phorate         400.00           25         Phosphamidon         400.00           26         Profenophos         400.00           27         Quinalphos         400.00           Synthetic Pyrethroids (SPs)           Processing / pre treatment charge per sample         1000.00           28         Deltamethrin         400.00           30         Fenyapethrin         400.00           31         a-Cypermethrin         400.00           32         β-Cyfluthrin         400.00           33         γ-Cyhalothrin         400.00           Herbicides           Processing / pre treatment charge per sample         1000.00           34         Alachlor         400.00           35         Butachlor         400.00           36         Fluchloralin         400.00           37         Pendimethalin         400.00           Polycyclic Aromatic Hydrocarbons (PAHs)           Processing / pre treatment charge per sample         1000.00           38         Polycyclic Aromatic Hydrocarbon         750.00           39         Acenaphthene         400.00     | 22      | Monocrotophos                                | 400.00                           |  |
| 25         Phosphamidon         400.00           26         Profenophos         400.00           27         Quinalphos         400.00           Synthetic Pyrethroids (SPs)           Processing / pre treatment charge per sample         1000.00           28         Deltamethrin         400.00           29         Fenpropethrin         400.00           30         Fenvalerate         400.00           31         a-Cypermethrin         400.00           32         β-Cyfluthrin         400.00           33         γ-Cyhalothrin         400.00           Herbicites           Processing / pre treatment charge per sample         1000.00           34         Alachlor         400.00           35         Butachlor         400.00           36         Fluchloralin         400.00           37         Pendimethalin         400.00           Polycytic Aromatic Hydrocarbons (PAHs)           Processing / pre treatment charge per sample         1000.00           38         Polycyclic Aromatic Hydrocarbon         750.00           39         Acenaphthene         400.00 | 23      | Parathion-methyl                             | 400.00                           |  |
| 26       Profenophos       400.00         27       Quinalphos       400.00         Synthetic Pyrethroids (SPs)         Processing / pre treatment charge per sample       1000.00         28       Deltamethrin       400.00         29       Fenpropethrin       400.00         30       Fenvalerate       400.00         31       a-Cypermethrin       400.00         32       β-Cyfluthrin       400.00         33       γ-Cyhalothrin       400.00         Herbicides         Processing / pre treatment charge per sample       1000.00         34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycytic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                                                                                                                      | 24      | Phorate                                      | 400.00                           |  |
| 27       Quinalphos       400.00         Synthetic Pyrethroids (SPs)         Processing / pre treatment charge per sample       1000.00         28       Deltamethrin       400.00         29       Fenpropethrin       400.00         30       Fenvalerate       400.00         31       a-Cypermethrin       400.00         32       β-Cyfluthrin       400.00         33       γ-Cyhalothrin       400.00         Herbictes         Processing / pre treatment charge per sample       1000.00         34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycytic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                                                                                                                                                                 | 25      | Phosphamidon                                 | 400.00                           |  |
| Synthetic Pyrethroids (SPs)           Processing / pre treatment charge per sample         1000.00           28         Deltamethrin         400.00           29         Fenpropethrin         400.00           30         Fenvalerate         400.00           31         a-Cypermethrin         400.00           32         β-Cyfluthrin         400.00           33         γ-Cyhalothrin         400.00           Herbicides           Processing / pre treatment charge per sample         1000.00           34         Alachlor         400.00           35         Butachlor         400.00           36         Fluchloralin         400.00           37         Pendimethalin         400.00           Polycyclic Aromatic Hydrocarbons (PAHs)           Processing / pre treatment charge per sample         1000.00           38         Polycyclic Aromatic Hydrocarbon         750.00           39         Acenaphthene         400.00                                                                                                                                                | 26      | Profenophos                                  | 400.00                           |  |
| Processing / pre treatment charge per sample   1000.00     28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27      | Quinalphos                                   | 400.00                           |  |
| 28       Deltamethrin       400.00         29       Fenpropethrin       400.00         30       Fenvalerate       400.00         31       a-Cypermethrin       400.00         32       β-Cyfluthrin       400.00         33       γ-Cyhalothrin       400.00         Herbicdes         Processing / pre treatment charge per sample       1000.00         34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycyclic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                                                                                                                                                                                                                                                                                                                | Synthe  | tic Pyrethroids (SPs)                        |                                  |  |
| 29       Fenpropethrin       400.00         30       Fenvalerate       400.00         31       a-Cypermethrin       400.00         32       β-Cyfluthrin       400.00         33       γ-Cyhalothrin       400.00         Herbicides         Processing / pre treatment charge per sample       1000.00         34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycyclic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                                                                                                                                                                                                                                                                                                                                                          |         | Processing / pre treatment charge per sample | 1000.00                          |  |
| 30 Fenvalerate 400.00 31 a-Cypermethrin 400.00 32 β-Cyfluthrin 400.00 33 γ-Cyhalothrin 400.00  Herbicides  Processing / pre treatment charge per sample 1000.00  34 Alachlor 400.00 35 Butachlor 400.00 36 Fluchloralin 400.00 37 Pendimethalin 400.00  Polycyclic Aromatic Hydrocarbons (PAHs)  Processing / pre treatment charge per sample 1000.00  Polycyclic Aromatic Hydrocarbon (PAHs)  Processing / pre treatment charge per sample 1000.00  Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28      | Deltamethrin                                 | 400.00                           |  |
| 31 a-Cypermethrin 400.00 32 β-Cyfluthrin 400.00 33 γ-Cyhalothrin 400.00  Herbicides  Processing / pre treatment charge per sample 1000.00  34 Alachlor 400.00 35 Butachlor 400.00 36 Fluchloralin 400.00 37 Pendimethalin 400.00  Polycyclic Aromatic Hydrocarbons (PAHs)  Processing / pre treatment charge per sample 1000.00  8 Polycyclic Aromatic Hydrocarbon (PAHs)  Processing / pre treatment charge per sample 1000.00  38 Polycyclic Aromatic Hydrocarbon 400.00  39 Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29      | Fenpropethrin                                | 400.00                           |  |
| 32 β-Cyfluthrin 400.00  33 γ-Cyhalothrin 400.00  Herbicides  Processing / pre treatment charge per sample 1000.00  34 Alachlor 400.00  35 Butachlor 400.00  36 Fluchloralin 400.00  7 Pendimethalin 400.00  Polycyclic Aromatic Hydrocarbons (PAHs)  Processing / pre treatment charge per sample 1000.00  Polycyclic Aromatic Hydrocarbon (PAHs)  Processing / pre treatment charge per sample 1000.00  Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30      | Fenvalerate                                  | 400.00                           |  |
| 33   γ-Cyhalothrin   400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31      | a-Cypermethrin                               | 400.00                           |  |
| Herbicides           Processing / pre treatment charge per sample         1000.00           34 Alachlor         400.00           35 Butachlor         400.00           36 Fluchloralin         400.00           37 Pendimethalin         400.00           Polycyclic Aromatic Hydrocarbons (PAHs)           Processing / pre treatment charge per sample         1000.00           38 Polycyclic Aromatic Hydrocarbon         750.00           39 Acenaphthene         400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32      | β-Cyfluthrin                                 | 400.00                           |  |
| Processing / pre treatment charge per sample 1000.00  34 Alachlor 400.00  35 Butachlor 400.00  36 Fluchloralin 400.00  37 Pendimethalin 400.00  Polycyclic Aromatic Hydrocarbons (PAHs)  Processing / pre treatment charge per sample 1000.00  38 Polycyclic Aromatic Hydrocarbon 750.00  39 Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33      | γ-Cyhalothrin                                | 400.00                           |  |
| 34       Alachlor       400.00         35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycyclic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Herbici | des                                          |                                  |  |
| 35       Butachlor       400.00         36       Fluchloralin       400.00         37       Pendimethalin       400.00         Polycyclic Aromatic Hydrocarbons (PAHs)         Processing / pre treatment charge per sample       1000.00         38       Polycyclic Aromatic Hydrocarbon       750.00         39       Acenaphthene       400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Processing / pre treatment charge per sample | 1000.00                          |  |
| 36Fluchloralin400.0037Pendimethalin400.00Polycyclic Aromatic Hydrocarbons (PAHs)Processing / pre treatment charge per sample1000.0038Polycyclic Aromatic Hydrocarbon750.0039Acenaphthene400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34      | Alachlor                                     | 400.00                           |  |
| 37Pendimethalin400.00Polycyclic Aromatic Hydrocarbons (PAHs)Processing / pre treatment charge per sample1000.0038Polycyclic Aromatic Hydrocarbon750.0039Acenaphthene400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35      | Butachlor                                    | 400.00                           |  |
| Polycyclic Aromatic Hydrocarbons (PAHs)  Processing / pre treatment charge per sample 1000.00  38 Polycyclic Aromatic Hydrocarbon 750.00  39 Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      | Fluchloralin                                 | 400.00                           |  |
| Processing / pre treatment charge per sample 1000.00  38 Polycyclic Aromatic Hydrocarbon 750.00  39 Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37      | Pendimethalin                                | 400.00                           |  |
| 38 Polycyclic Aromatic Hydrocarbon 750.00 39 Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Polycy  | clic Aromatic Hydrocarbons (PAHs)            | ,                                |  |
| 39 Acenaphthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Processing / pre treatment charge per sample | 1000.00                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38      | Polycyclic Aromatic Hydrocarbon              | 750.00                           |  |
| 40 Acenanhthylene 400 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39      | Acenaphthene                                 | 400.00                           |  |
| To Rechapitaly like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40      | Acenaphthylene                               | 400.00                           |  |
| 41 Anthracene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41      | Anthracene                                   | 400.00                           |  |
| 42 Benzo(a)anthracene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42      | Benzo(a)anthracene                           | 400.00                           |  |
| 43 Benzo(a)Pyrene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43      | Benzo(a)Pyrene                               |                                  |  |
| 44 Benzo(b)fluoranthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44      | Benzo(b)fluoranthene                         | 400.00                           |  |
| 45 Benzo(e)Pyrene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45      | Benzo(e)Pyrene                               | 400.00                           |  |
| 46 Benzo(g,h,i) Perylene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46      | Benzo(g,h,i) Perylene                        | 400.00                           |  |
| 47 Benzo(k)fluoranthene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47      | Benzo(k)fluoranthene                         | 400.00                           |  |
| 48 Chrysene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48      | Chrysene                                     | 400.00                           |  |
| 49 Dibenzo(a,h)anthracene 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49      | Dibenzo(a,h)anthracene                       | 400.00                           |  |



| Sl.No    | Parameters                                              | Analysis charges per test in Rs. |  |  |
|----------|---------------------------------------------------------|----------------------------------|--|--|
| 50       | Fluoranthene                                            | 400.00                           |  |  |
| 51       | Fluorane                                                | 400.00                           |  |  |
| 52       | Indeno (1,2,3-cd)pyrene                                 | 400.00                           |  |  |
| 53       | Naphthalene                                             | 400.00                           |  |  |
| 54       | Perylene                                                | 400.00                           |  |  |
| 55       | Phenanthrene                                            | 400.00                           |  |  |
| 56       | Pyrene                                                  | 400.00                           |  |  |
| Polychlo | orinated Biphenyls (PCBs)                               |                                  |  |  |
|          | Processing / pre treatment charge per sample            | 1000.00                          |  |  |
| 57       | Aroclor 1232                                            | 400.00                           |  |  |
| 58       | Aroclor 1242                                            | 400.00                           |  |  |
| 59       | Aroclor 1248                                            | 400.00                           |  |  |
| 60       | Aroclor 1254                                            | 400.00                           |  |  |
| 61       | Aroclor 1260                                            | 400.00                           |  |  |
| 62       | Aroclor 1262                                            | 400.00                           |  |  |
| Trihalo  | Trihalomethane (THM)                                    |                                  |  |  |
|          | Processing / pre treatment charge per sample            | 800.00                           |  |  |
| 63       | Bromodichloromethane                                    | 400.00                           |  |  |
| 64       | Bromoform                                               | 400.00                           |  |  |
| 65       | Chloroform                                              | 400.00                           |  |  |
| 66       | Dibromochloromethane                                    | 400.00                           |  |  |
| Other C  | Other Organic Parameters                                |                                  |  |  |
| 67       | Adsorbable Organic halogens (AOX)                       | 2000.00                          |  |  |
| 68       | Tanin/ Lignin                                           | 350.00                           |  |  |
| 69       | Oil and Grease                                          | 200.00                           |  |  |
| 70       | Phenol                                                  | 200.00                           |  |  |
| 71       | Total Organic carbon (TOC)                              | 500.00                           |  |  |
| 72       | Volatile organic acids                                  | 350.00                           |  |  |
| BIOLOGI  | CAL TEST                                                |                                  |  |  |
| 1.       | Bacteriological Sample Collection                       | 200.00                           |  |  |
| 2.       | Benthic Organism Identification and Count (each sample) | 600.00                           |  |  |
| 3.       | Benthic Organism Sample collection                      | 1000.00                          |  |  |
| 4.       | Chlorophyll Estimation                                  | 600.00                           |  |  |
| 5.       | E. Coli (MFT technique)                                 | 400.00                           |  |  |
| 6.       | E. Coli (MPN technique)                                 | 350.00                           |  |  |
| 7.       | Fecal Coliform (MFT technique)                          | 400.00                           |  |  |
| 8.       | Fecal Coliform (MPN technique)                          | 350.00                           |  |  |
| 9.       | Fecal Streptococci (MFT technique)                      | 450.00                           |  |  |

78 — — Annual Report 2018-19 —



| Sl.No | Parameters                                  | Analysis charges per test in Rs. |  |
|-------|---------------------------------------------|----------------------------------|--|
| 10.   | Fecal Streptococci (MPN technique)          | 400.00                           |  |
| 11.   | Plankton (sample collection)                | 250.00                           |  |
| 12.   | Plankton (Phytoplankton) count              | 600.00                           |  |
| 13.   | Plankton (Zooplankton) count                | 600.00                           |  |
| 14.   | Standard Plate Count                        | 200.00                           |  |
| 15.   | Total Coliform (MFT technique)              | 400.00                           |  |
| 16.   | Total Coliform (MPN technique)              | 350.00                           |  |
| 17.   | Total Plate Count                           | 350.00                           |  |
| 18.   | Toxicological Bio-assay (LC <sub>50</sub> ) | 2800.00                          |  |
| 19.   | Toxicological -Dimensionless toxicity test  | 1600.00                          |  |

Note: 1. Sampling charges for water and waste water samples are separate as specified in Clause A(IV), but subject to minimum of Rs.700/- irrespective of number of samples.

2. Transportation charges are separate on actual basis.

### 6. Analysis charges of Soil/ Sludge/ Sediment/ Solid waste/ Solid samples

| Sl.No. | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis charges per test in Rs.             |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1      | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300.00                                       |
| 2      | Bicarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200.00                                       |
| 3      | Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400.00                                       |
| 4      | Bulk Density                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.00                                       |
| 5      | Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150.00                                       |
| 6      | Calcium Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350.00                                       |
| 7      | Cation Exchange Capacity (CEC)                                                                                                                                                                                                                                                                                                                                                                                                                             | 400.00                                       |
| 8      | Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150.00                                       |
| 9      | Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.00                                       |
| 10     | Electrical Conductivity (EC)                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.00                                       |
| 11     | Exchangeable Sodium Percentage (ESP)                                                                                                                                                                                                                                                                                                                                                                                                                       | 550.00                                       |
| 12     | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200.00                                       |
| 13     | Gypsum requirement                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350.00                                       |
| 14     | H. Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400.00                                       |
| 15     | Heavy metal                                                                                                                                                                                                                                                                                                                                                                                                                                                | As mention in respective group at clause 5.0 |
| 16     | Trace metals using ED-XRF<br>Aluminium, Antimony, Arsenic, Barium, Bromine, Cadmium, Calcium,<br>Cesium, Chlorine, Chromium, Cobalt, Copper, Gallium, Germanium, Gold,<br>Iodine, Iron, Lanthanum, Lead, Magnesium, Manganese, Molybdenum,<br>Nickel, Palladium, Phosphorous, Potassium, Rubidium, Rutherfordium,<br>Selenium, Silicon, Silver, Sodium, Strontium, Sulphur, Tellurium, Tin,<br>Titanium, Tungsten, Vanadium, Ytterbium and Zinc per sample | 4000.00                                      |
| 17.    | Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300.00                                       |
| 18.    | Mechanical Soil analysis(soil texture)                                                                                                                                                                                                                                                                                                                                                                                                                     | 150.00                                       |
| 19.    | Nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300.00                                       |
| 20.    | Nitrite                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300.00                                       |
| 21.    | Nitrogen available                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350.00                                       |
| 22.    | Organic Carbon/ Matter (chemical method)                                                                                                                                                                                                                                                                                                                                                                                                                   | 350.00                                       |
| 23.    | Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200.00                                       |



| Sl.No. | Parameters                             | Analysis charges per test in Rs.             |
|--------|----------------------------------------|----------------------------------------------|
| 24.    | Polycyclic Aromatic Hydrocarbons (PAH) | As mention in respective group at clause 5.0 |
| 25.    | Polychlorinated Biphenyls (PCBs)       | As mention in respective group at clause 5.0 |
| 26.    | Pesticides                             | As mention in respective group at clause 5.0 |
| 27.    | pH                                     | 100.00                                       |
| 28.    | Phosphorous (available)                | 400.00                                       |
| 29.    | Phosphate(ortho)                       | 300.00                                       |
| 30.    | Phosphate(total)                       | 400.00                                       |
| 31.    | Potash(Available)                      | 200.00                                       |
| 32.    | Potassium                              | 300.00                                       |
| 33.    | SAR in Soil extract                    | 650.00                                       |
| 34.    | Sodium                                 | 300.00                                       |
| 35.    | Soil Moisture                          | 100.00                                       |
| 36.    | Soil Porosity                          | 100.00                                       |
| 37.    | Sulphate                               | 200.00                                       |
| 38.    | Sulphur                                | 350.00                                       |
| 39.    | Total Kjehldhal Nitrogen (TKN)         | 400.00                                       |
| 40.    | TOC                                    | 550.00                                       |
| 41.    | Total Water Soluble Salts              | 200.00                                       |
| 42.    | Water Holding Capacity                 | 100.00                                       |

Note: (i) Sampling charges for soil samples are as specified in Clause A (V). (ii) Transportation charges are separate on actual basis

### 7. Analysis charges for Hazardous Waste samples

| Sl. No. | Parameters                                             | Analysis Charges per test in Rs.             |  |
|---------|--------------------------------------------------------|----------------------------------------------|--|
| 1.      | Preparation of Leachate (TCLP extract / Water Extract) | 1000.00                                      |  |
| 2.      | Determination of various parameters in Leachate        | As mention in respective group at clause 5.0 |  |
| 3.      | Determination of various parameters in Waste (Total)   | Soil Sample Analysis Charges                 |  |
| 3.      | Flash point/ Ignitibility                              | 550.00                                       |  |
| 4.      | Reactivity                                             | 550.00                                       |  |
| 5.      | Corrosivity                                            | 550.00                                       |  |
| 6.      | Measurement of Toxicity                                |                                              |  |
|         | - LC <sub>50</sub>                                     | 2800.00                                      |  |
|         | - Dimensionless Toxicity                               | 1600.00                                      |  |
| 7.      | Total Organic Carbon                                   | 500.00                                       |  |
| 8.      | Adsorbable organic Halogen (AOx)                       | 2000.00                                      |  |

### 8. AQC Participation Fees:

To be charged by the Board from respective recognized laboratories for Analytical Quality Control Exercise (AQC) samples.

| 1 | Laboratories of Govt./Semi-Govt. / Public sector undertak-<br>en/Autonomous bodies | 18000.00 |
|---|------------------------------------------------------------------------------------|----------|
| 2 | Private Sector laboratories                                                        | 18000.00 |

Annual Report 2018-19 -



# ANNEXURE-III

## **Staff Strength**

| Sl. No. | Name of the Post                      | Sanctioned Post | Staff in position |
|---------|---------------------------------------|-----------------|-------------------|
| (A)     | Cadre of Scientist                    |                 |                   |
| 1       | Chief Environmental Scientist         | 2               | 2                 |
| 2       | Senior Enviornmental Scientist (L-I)  | 3               | 2                 |
| 3       | Senior Enviornmental Scientist (L-II) | 3               | 1                 |
| 4       | Environmental Scientist               |                 | 21                |
| 5       | Deputy Environmental Scientist        | 48              | 0                 |
| 6       | Assistant Environmental Scientist     |                 | 12                |
| (B)     | Cadre of Engineer                     | 1               |                   |
| 7       | Chief Environmental Engineer          | 2               | 2                 |
| 8       | Senior Environmental Engineer (L-I)   | 3               | 3                 |
| 9       | Senior Environmental Engineer (L-II)  | 3               | 3                 |
| 10      | Environmental Engineer                |                 | 12                |
| 11      | Deputy Environmental Engineer         | 46              | 0                 |
| 12      | Assistant Environmental Engineer      |                 | 21                |
| (C)     | Cadre of Laboratory Officials         |                 | ,                 |
| 13      | Assistant Scientific Officer          | 7               | 6                 |
| 14      | Senior Scientific Assistant           | 15              | 8                 |
| (D)     | Administrative Cadre                  |                 |                   |
| 15      | Administrative Officer                | 1               | 0                 |
| 16      | Additional Administrative Officer     | 1               | 1                 |
| 17      | Accounts Officer                      | 2               | 2                 |
| 18      | Section Officer                       | 8               | 7                 |
| 19      | Accountant                            | 5               | 0                 |
| 20      | Senior Assistant                      | 13              | 12                |
| 21      | Junior Assistant                      | 18              | 7                 |
| (E)     | Legal Personnel Cadre                 |                 |                   |
| 22      | Senior Law Officer (L-I)              | 1               | 1                 |
| 23      | Senior Law Officer (L-II)             | 1               | 0                 |
| 24      | Law Officer                           | 1               | 1                 |
| 25      | Assistant Law Officer                 | 1               | 0                 |
| (F)     | Stenographer Cadres                   |                 | •                 |
| 26      | Private Secretary (Gr. A)             | 1               | 1                 |
| 27      | Private Secretary (Gr. B)             | 2               | 2                 |



| Sl. No. | Name of the Post     | Sanctioned Post | Staff in position |
|---------|----------------------|-----------------|-------------------|
| 28      | Personal Assistant   | 8               | 7                 |
| 29      | Senior Stenographer  | 9               | 0                 |
| 30      | Junior Stenographer  | 7               | 1                 |
| (G)     | Others               |                 |                   |
| 31      | Head Driver          | 1               | 0                 |
| 32      | Sr. Driver           | 3               | 3                 |
| 33      | Driver               | 9               | 6                 |
| 34      | Sr. Typist           | 2               | 2                 |
| 35      | Jr. Typist           | 8               | 5                 |
| 36      | Diarist              | 1               | 1                 |
| 37      | Peon                 | 21              | 18                |
| 38      | Laboratory Attendant | 10              | 8                 |
| 39      | Watchman-cum-Sweeper | 5               | 4                 |
| 40      | Watchman             | 2               | 2                 |
| 41      | Daftary              | 1               | 1                 |
| 42      | Zamadar              | 1               | 1                 |
| 43      | Treasury Sarkar      | 1               | 1                 |
| 44      | Record Supplier      | 1               | 1                 |
| 45      | Lift Operator        | 1               | 1                 |
| 46      | Xerox Asst.          | 1               | 1                 |
| 47      | Store Keeper         | 1               | 1                 |
| 48      | Asst. Librarian      | 1               | 1                 |
| 49      | Library Attendant    | 1               | 1                 |
| TOTAL   |                      | 282             | 197               |

182 — — Annual Report 2018-19 — —



### STATE POLLUTION CONTROL BOARD, ODISHA

A/118, NILAKANTHA NAGAR, UNIT-VIII BHUBANESWAR