

STATE POLLUTION CONTROL BOARD, ODISHA
A/118, NILAKANTHA NAGAR, UNIT - VIII
BHUBANESWAR

ANNUAL REPORT

2019-2020

STATE POLLUTION CONTROL BOARD, ODISHA

A/118, NILAKANTHA NAGAR, UNIT-VIII BHUBANESWAR-751012 SPCB, Odisha (350 Copies)

Published By: State Pollution Control Board, Odisha Bhubaneswar – 751012

Printed By: Semaphore Technologies Private Limited 3, Gokul Baral Street, 1st Floor Kolkata-700012, Ph. No.- +91 9836873211

S

181

Highlights of Activities

Highlights of Activities		
01	Chapter-I Introduction	
05	Chapter-II Constitution of the State Board	
07	Chapter-III Constitution of Committees	
12	Chapter-IV Board Meeting	
13	Chapter-V Activities	
132	Chapter-VI Legal Matters	
133	Chapter-VII Finance and Accounts	
135	Chapter-VIII Other Important Activities	
170	Annexures - (I) Organisational Chart (II) Pata Chart for Sampling & Analysis of	
171	(II) Rate Chart for Sampling & Analysis of Env. Samples	

(III) Staff Strength

Highlights of Activities of State Pollution Control Board

The State Pollution Control Board (SPCB), Odisha was constituted on July, 1983 and was entrusted with the responsibility of implementing the Environmental Acts, particularly the Water (Prevention and Control of Pollution) Act, 1974, the Water (Prevention and Control of Pollution) Cess Act, 1977, the Air (Prevention and Control of Pollution) Act, 1981 and the Environment (Protection) Act, 1986. Several Rules addressing specific environmental problems like Hazardous Waste Management, Bio-Medical Waste Management, Solid Waste Management, E-Waste Management, Plastic Waste Management, Construction & Demolition Waste Management, Environmental Impact Assessment etc. have been brought out under the Environment (Protection) Act. The SPCB also executes and ensures proper implementation of the Environmental Policies of the Union and the State Government. The activities of the SPCB broadly cover the following:

- » Planning comprehensive programs towards prevention, control or abatement of pollution and enforcing the environmental laws.
- » Advising the State Government on any matter concerning prevention and control of water and air pollution.
- » Environmental Monitoring and Research.
- » Creating public awareness.

The achievements and activities of the Board during period of report are as follows.

1. Industrial Pollution Abatement and Control through Consent Administration

Improvement in compliance to pollution control norms, guidelines and regulations has been witnessed consistently through vigorous surveillance, regular inspections and monitoring, stipulation of a series of guidelines and directives. The Board has also taken the following measures/ activities:

- (i) Implementation of the on-line consent management system (from receipt of application to grant of consent order) for all industries, mines, on-line authorization management for Hazardous Waste, Solid Waste, Bio-Medical Waste, E-waste and on-line registration for plastic products manufacturing units.
- (ii) Implementation of GPRS based real time data transmission system with Y-Cable for online stack, ambient air quality and waste water monitoring network for highly polluting large scale industries and mines in order to keep the regulator and industries alert. So far online monitoring and data transmission system has been installed in 152 industries and 24 mines.
- (iii) The Fly Ash Resource Centre (FARC) has been setup in the State Pollution Control Board for promoting safe management and utilization of fly ash in the State. This center has prepared guidelines on utilization of fly ash in various sectors and it also co-coordinates among the users and generators. In addition, FARC is also organizing Workshops and Interaction meet among the stakeholders for enhancing fly ash utilization. The utilization of fly ash was 89.91%, during the reporting period, as against 82.71% in the preceding year.
- (iv) Initiatives have been made to facilitate bulk utilization of other industrial solid wastes like dolochar, phospho-gypsum, blast furnace slag, anode butt, ferro-manganese sludge in different sectors like brick making, road construction, cement manufacturing and power generation etc.

- (v) The bedded health care establishments have been brought under the Consent administration as per the provisions of Water (Prevention & Control of Pollution) Act, 1974 in order to dispose contaminated waste water in an environmentally sound manner.
- (vi) In order to augment the capacity of the Board in the area of coastal environmental monitoring, the World Bank assisted Integrated Coastal Zone Management Project (ICZMP) has been implemented. Office of the Pilot Executing Agency (PEA) of the Board has been operating in Central Laboratory Building, Patia, Bhubaneswar. The coastal water over a stretch of about 80 km from Paradeep to Dhamra is being monitored with the help of the monitoring vessel MV Sagar Utkal. 73 sampling locations have been selected for the entire monitoring area, out of which 32 are along the Mahanadi transect, 17 in Dhamra transect and 24 in Gahiramatha- Bhitarkanika transect. In total 1733 water samples and 86 sediment samples have been collected and analyzed during the reporting period.

• Blue Flag Beach Certification:

Twelve beaches in the country are being developed by the Society for Integrated Coastal Management (SICOM), an Environment Ministry's body working for the management of coastal areas, in accordance with the Blue Flag standards. As per the Blue Flag standards, a beach needs to comply with at least 33 pre-requisites to achieve the Blue Flag tag. It must be plastic-free and equipped with a waste management system. Clean water should be available for tourists, apart from international amenities. SICOM has monitored five coastal stretches of Odisha i.e. one stretch at Chandrabhaga, two in Paradeep and two at Puri. Out of these stretches, a stretch of 435 meters in Puri beach (from Rajbhawan to Hotel Mayfair) has been certified as Pilot Blue Flag Beach.

• Monitoring, Sampling and Analysis of Sea water towards Blue Flag Beach:

As per the proposal of Govt. of Odisha and MoEF & CC, GoI, the ICZMP Cell of the OSPCB has been involved to conduct monitoring since February, 2019 to assess the environmental qualities of the said stretches. A total of 334 water samples were collected in a regular basis from five different locations of Puri Beach and analyzed for 09 parameters under the guidelines of Foundation for Environmental Education (FEE), required for the Blue Flag Certification.

Monitoring and sampling of sea water at Rajhansa, near Chilika in and around the grounded Malaysian TUG Boat

Inspection has been conducted near the grounded Malaysian tug boat (JIN HWA 32) and towed barge (JINHA 42) landed off near Rajhansa Island close to Chilika lake and necessary sampling was made. Analysis result indicated no sign of pollution due to berthing of this tug boat and barge along the coast.

- (vii) The Board has granted consent stipulating appropriate pollution control measures to 874 Industries, hotels, mineral stack yards, mineral processing units, railway sidings, stone crushers, brick kilns and DG Sets (as stand by) etc. for their Establishment.
- (viii) Consent to operate has been granted to 2452 industries, mines, hotels, hospitals, mineral stack yards, mineral processing units, country liquor manufacturing units, railway sidings, stone crushers, brick kilns, DG Sets (as stand by), housing projects, mineral based industries etc. during the reporting period. Board has issued show cause notices to 418 units and direction /closure direction to 127 units. Consent to operate of 27 units have been refused.
- (ix) All the Urban Local Bodies have been directed to seek consent and submit time bound action plan for construction of sewage treatment plant.
- (x) The Board has conducted 22 public hearings for major industrial / mining / development projects, requiring environmental clearance from MoEF and CC, Govt. of India/ State Environment Impact Assessment Authority (SEIAA), Odisha.

2. Regulation of Hazardous Waste Management

The Board has granted authorization to 111 hazardous waste generating units for collection, storage, treatment and disposal of hazardous wastes. 26 nos. of actual users inside Odisha and 23 nos. of actual users outside Odisha have been authorized by the Board during the reporting period for utilization of hazardous wastes.

As per the provisions of Sec -23 of Hazardous and Other Wastes (Management and Trans-boundary Movement) Rules, 2016 and CPCB guidelines on "Implementing Liabilities for Environmental Damages due to Handling and disposal of Hazardous Wastes and Penalty", the Board has recommended for levying of financial penalty against the industries for violation of different provisions of the Rule.

3. Management of Lead Acid Batteries

The Board has received 215 half yearly returns for smooth management and handling of batteries (Lead-Acid) from battery units under the Provisions of the said Rules.

4. Management of Bio-Medical Waste

The Board has granted authorization to 1735 Health Care Facilities (HCF) under the provisions of the Bio-Medical Waste Management Rules, 2016 with conditions for proper management, segregation, handling, treatment and disposal of biomedical wastes. Show cause notice to 30 units and refusal of authorization to 02 units have been issued due to improper management of biomedical wastes.

5. Management of Plastic Waste

The Board is consistently vigilant on carry bag manufacturing units for their compliance with the statutory provisions of the Plastic Waste Management Rules. So far, 14 plastic product manufacturing units (06 producers, 05 brand owners and 03 re-processors) have been registered with the Board during the reporting period.

- Major ULBs have been instructed to send segregated plastic waste to cement plants namely M/s ACC Ltd., Bargarh, M/s OCL Ltd., Rajgangpur, M/s Shiva Cement, Sundargrh, M/s Toshali Cement, Ampavali, Koraput for co-processing in cement Kiln.
- 4.6 MT of plastic waste has been used for construction of 9.6 km road in Deogarh and Sambalpur Districts.
- Consent to Establish has been granted to M/s. Hindalco Industries to convert 0.5 MT/Day plastic waste to oil.

6. Management of Electronic Waste.

The Board has issued authorization to 04 E-waste dismantling units, 02 collection-cum-dismantling units and 01 captive collection centre during the reporting period.

7. Legal Activities

The Board has filed 152 cases in appropriate legal forum and 122 cases have been disposed during the reporting period.

8. Right to Information

Under the Right to Information Act, 2005, the Board has disposed 601 applications by providing information.

9. Disposal of Public Complaints

The Board has addressed 341 Public Complaints on various environmental issues during the reporting period.

10. Planning and Monitoring

For prevention and control of pollution, the Board has undertaken following activities...

- Board is regularly monitoring the river water quality at 129 stations on 11 major river systems of the State i.e., Mahanadi, Brahmani, Baitarani, Rushikulya, Subarnarekha, Nagavali, Budhabalanga, Kolab, Vansadhara, Indravati and Bahuda. Water quality is assessed in respect of 32 water quality parameters under National Water Quality Monitoring Programme (NWMP). Besides these, water quality of Taladanda Canal at six locations, Puri canal at three locations, religious ponds such as Bindusagar (Bhubaneswar) at its four bathing ghats and five ponds in Puri town such as Narendra, Markanda, Indradyumna, Swetaganga and Parbati Sagar, one pond in Jeypore town, one pond in Angul town, lakes such as Chilika (two locations) & Anshupa (four locations), Tampara (one location) and coastal water quality at Puri, Gopalpur and Paradeep on the Bay of Bengal and creak water at Atharbanki has also been monitored. Monitoring of ground water quality at 48 stations of 11 towns i.e., Cuttack, Bhubaneswar, Puri, Berhampur, Sambalpur, Paradeep, Angul, Talcher, Ib valley-Jharsuguda area, Sukinda and Balasore has also been conducted in respect of 32 water quality parameters.
- Bio-monitoring at 21 stations of 08 major rivers i.e. Mahanadi, Brahmani, Rushikulya, Subernarekha, Budhabalanga, Kolab, Vansadhara and Nagabali has been monitored to assess the biological health of these river systems.
- To assess the impact of mass bathing during Kartika Purnima on the water quality of Mahanadi and Kathajodi rivers, water quality monitoring at eight major bathing ghats of these rivers along Cuttack city were conducted.
- Surface water quality of 5 stations on Atharabanki creek and ground water quality at 3 stations in the peripherals of Phosphatic Fertiliser Units and water samples from 07 test wells as well as samples from 05 wastewater discharging points of the fertilizer producing units at Paradeep have been monitored on quarterly basis to assess fluoride contamination in the area.
- Water quality of Ganda Nallah and Kharasrota river has also been monitored at seven stations
 on regular interval to assess the impacts of waste water discharge from the Industrial Units in
 Kalinganagar area to the Nallah.
- Water quality of Damasala river at nine stations in Sukinda Chromite Mines area has been monitored on regular interval to assess the hexavalent chromium content in river water.
- Surface water quality in and around M/s Vedanta Aluminium Limited, Jharsuguda has been monitored at fourteen stations to assess the fluoride contamination in the area.
- Impacts of idol immersion after Durga puja on water quality of Kuakhai and Daya river (in Bhubaneswar city), Kathajodi river (in Cuttack city) and Mangala river (in Puri town) have been investigated. No significant impact due to immersion activities on the water bodies was observed.
- 3001 nos. of industrial wastewater samples, 6567 water samples under NWMP, National River Conservation Programme (NRCP), SWMP & different projects have been analysed by the Board during this period.
- Ambient air quality at 36 stations of 17 important towns and industrial areas of Angul, Balasore, Berhampur, Bhubaneswar, Bonaigarh, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rajgangpur, Rourkela, Sambalpur & Talcher have been monitored by the Board under National Ambient Air Quality Monitoring Programme (NAMP)/State Ambient Air Quality Monitoring Programme (SAMP). Ambient air quality in 08 towns at 17 stations have been assessed in respect of 04 parameters namely PM₁₀, PM_{2.5}, Sulphur Dioxide (SO₂) and Nitrogen Oxides (NO_X). Additional parameters like NH₃ and O₃ were also monitored in 06 towns/cities i.e. Angul, Balasore, Berhampur, Cuttack, Keonjhar and Sambalpur. At 08 stations in Bhubaneswar, Puri and Konark, ambient air quality has been assessed in respect of 08 parameters like PM₁₀, PM_{2.5},

- SO₂, NO_x, NH₃, O₃, Pb & Ni. In total, 1832 ambient air quality samples, 11,715 samples under NAMP/ SAMP projects, 873 stack emission samples have been collected and analysed by the Board during the reporting period.
- Study on ambient noise levels in pre & during celebrations of Dusshera & Deepavali have been conducted in Industrial, Commercial, Residential and Silence Zones in 14 cities/towns such as Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur.
- Technical assistance to Commissionerate of Police has been provided for performance evaluation of 111 numbers of sound limiters of different band parties in respect of noise [limited to 65 dB(A)].
- To assess the impact of bursting of fire crackers during Deepavali, the ambient air quality with respect to parameters like SO₂, NO_x, PM₁₀ & PM_{2.5} have been monitored in pre- and on the day of Deepavali at 36 locations in 14 towns/ cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur. In addition to this, continuous ambient air quality monitoring was conducted in capital city, Bhubaneswar from 20th October to 3rd November, 2019 in compliance to the orders of Hon'ble Supreme Court.

11. Board's Publications

The Board has published the following Book & Reports during April, 2019 to Mar, 2020.

- » Three volumes of Newsletters "Paribesh Samachar" i.e. April-June, 2019, July-September, 2019 & October- December, 2019).
- » Book on "Status and Trends of coastal parameters 2013-2018" by ICZMP, SPCB, Odisha.

12. Awareness Programmes

- The Board observed the World Environment Day on 5th June' 2019 through 12 Regional Offices to create awareness on environmental protection. Messages on protection of environment were given to the public through meetings, mass campaign, paintings, debates & plantations etc.
- The 36th Foundation Day of the Board was observed on 18th Sept, 2019 at Jaydev Bhawan, Bhubaneswar followed by release of newsletters and books. Prof. Binay Kumar Dutta, Former Chairman of West Bengal Pollution Control Board and Visiting Professor, School of Environmental Science and Engineering, IIT Kharagpur delivered Prof. M.K. Rout Memorial Lecture on "Remediation of Contaminated Soil".
- The International Coastal Clean-up Day was observed by the Board on the Sea Beaches of Puri, Konark, Chandipur, Gopalpur & Paradeep on 21st Sept, 2019 for creation of mass awareness on protection and management of coastal environment involving District Administration, different NGOs & Volunteers.
- The World Ozone Day was observed by the Board through Regional Offices on 16th September, 2019 involving stake holders of different industries, NGOs and students from different Institutes to spread awareness on depletion of Ozone layer.
- During Deepavali festival, awareness campaign was organized in & around Bhubaneswar and Cuttack for creating awareness among the public on effect of crackers on air pollution & noise pollution.
- Out of 7 non-attainment cities (Angul, Balasore, Bhubaneswar, Cuttack, Kalinga Nagar, Rourkela and Talcher) in Odisha, State Pollution Control Board Odisha in association with Energy Policy Institute at the University of Chicago organized 4 citizen engagement workshops at 4 nonattainment cities such as Angul, Balasore, Kalinga Nagar and Rourkela under National Clean Air Program (NCAP).

13. Human Resource Development

- The Board has conducted various programmes through the Centre for Excellence for imparting training to various stakeholders on pollution control and environment protection and also deputed its officials on exposure training to acquire knowledge and exposure in the above field.
- Imparted training on "Ambient air quality monitoring" to 65 B.Sc Nursing (Hons) Students and 33 numbers of MBBS students of All India Institute of Medical Science, Bhubaneswar.
- Imparted training on "Prevention & control of Vehicular Pollution" to 309 numbers of Traffic personnel at Traffic Training Institute, Bhubaneswar.
- The Board in association with Centre for Science and Environment (CSE), Delhi and Forest and Environment Govt. of Odisha had organized a stake holder workshop in Air Quality Action Plan (AQAP) for 6 non attainment cities (Angul, Balasore, Bhubaneswar, Cuttack, Rourkela and Talcher) in Odisha on 4th June, 2019.
- Board officials were deputed as resource persons in three different training programmes such
 as "Environment Impact Assessment", "ETP/STP operation and maintenance" and "Waste
 Management" under "Green Skill Development Programme (GSDP)" of MoEF & CC organized
 by Centre for Environmental Studies (CES). In each training programme 60 participants in three
 different batches were given demonstration and hands-on training for sampling and analysis of
 water, wastewater, ambient air monitoring & analysis, soil and hazardous waste sampling & analysis.
- One day workshop was organized on "Pollution Control in Iron & Steel Industry Digital Transformation with the power of IOT" by Biju Pattnaik National Institute, Puri, in collaboration with SPCB, Odisha held on 8th January, 2020.

• • • • • • •

CHAPTER - I

INTRODUCTION

1.1 CONSTITUTION OF THE BOARD

The Odisha State Prevention and Control of Pollution Board was constituted in pursuance of sub-section (1) of section 4 of the Water (Prevention and Control of Pollution) Act, 1974, vide Notification No. 1481-VII-HI-11/83 (Vol. II)-S.T.E., dt. 15.7.1983 in the erstwhile Department of Science, Technology & Environment, Government of Odisha. The Board was re-designated as State Pollution Control Board, Odisha vide Govt. Notification No.Env.-E (F)/8/89/1882 F&E, dt.16.07.1999.

1.2 FUNCTIONS AND RESPONSIBILITIES OF THE BOARD

The constitution and functions of the Board are clearly spelt out in the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981. The Board is entrusted with the responsibility of implementation of Environmental Laws, particularly the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981 and the Environment (Protection) Act, 1986 and a number of Rules and Notifications issued thereunder as amended from time to time.

Responsibilities of the Board, however, can broadly be classified into the following four main categories:

- 1. To plan a comprehensive programme for prevention, control or abatement of pollution and enforce the environmental laws
- 2. To advise the State Government on any matter concerning prevention and control of water and air pollution
- 3. To conduct Environmental Monitoring and Research
- 4. To create public awareness

In addition, the Board is also expected to execute and ensure proper implementation of the Environmental Policies of the Union and the State Government.

1.3 ENVIRONMENTAL LAWS

The major Acts and Rules / Notifications issued thereunder, with which the Board is entrusted for implementation and execution, are as follows:

- 1. The Water (Prevention and Control of Pollution) Act, 1974
- 2. The Air (Prevention and Control of Pollution) Act, 1981
- 3. The Environment (Protection) Act, 1986
- 4. The Public Liability Insurance Act, 1991
- 5. The Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 amended as the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.
- 6. The Manufacture, Use, Import, Export and Storage of Hazardous Microorganisms, Genetically Engineered Organisms or Cells Rules, 1989
- 7. The Manufacture, Storage and Import of Hazardous Chemical Rules, 1989
- 8. The Chemical Accidents (Emergency Planning, Preparedness and Response) Rules, 1996
- 9. The Biomedical Waste (Management and Handling) Rules, 1998 amended as the Biomedical Waste Management Rules, 2016.

- 10. The Municipal Solid Waste (Management and Handling) Rules, 2000 amended as the Solid Waste Management Rules, 2016.
- 11. The Noise Pollution (Regulation and Control) Rules, 2000
- 12. The Ozone Depleting Substance (Regulation and Control) Rules, 2000
- 13. The Batteries (Management and Handling) Rules, 2001
- 14. The Environment Audit Notification, 1993
- 15. The Fly-ash Utilization Notification, 1999 and amended thereof
- 16. The Environment Impact Assessment Notification, 2006
- 17. The Plastic Waste (Management and Handling) Rules, 2011 amended as the Plastic Waste Management Rules, 2016
- 18. The E-Waste (Management and Handling) Rules, 2011 amended as the E-Waste (Management) Rules, 2016.
- 19. The Construction & Demolition Waste Rules, 2016.

1.4 LOCATIONS AND MAILING ADDRESSES OF BOARD'S OFFICES

Headquarters of the State Pollution Control Board, Odisha is located at Paribesh Bhawan, A/118, Nilakantha Nagar, Bhubaneswar in Khordha District. The Board has established its state-of-art Central Laboratory at B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar.

The jurisdictions, various functions, role, responsibilities and powers of Regional Officers of all the 12 Regional Offices have been defined vide Board's Office Order No. 16908, dtd.19.09.2013. The mailing addresses, Telephone/Fax Nos., E-mail/website and jurisdiction of the Head Office, the Central Laboratory and Regional Offices are given in Table-1. The locations of twelve Regional Offices of State Pollution Control Board are illustrated in Odisha Map in Fig. 1.

Table – 1: Address, Telephone / Fax, e-mail / Website and Jurisdiction of State Pollution Control Board, Odisha

Sl. No.	Address	Telephone / FAX / e-Mail / Website	Jurisdiction (Districts)
		HEAD OFFICE	
1	State Pollution Control Board, Odisha, Paribesh Bhawan, A/118, Nilakantha Nagar, Unit-8, Bhubaneswar-751 012	(0674) 2561909, 2562847 Fax- (0674) 2562827, 2560955 E-Mail:paribesh1@ospcboard.org Website: www.ospcboard.org	Whole of the Odisha State
2	Central Laboratory, State Pollution Control Board, Odisha, B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar	E-Mail : centrallab@ospcboard.org Website : www.ospcboard.org	Whole of the Odisha State
		REGIONAL OFFICES	
1	Regional Office, Angul S-3/3, Industrial Estate, Hakimpada, Angul - 759 143	Tel - (06764) 236389 Fax - (06764) 237189 E-mail:rospcb.angul@ ospcboard.org	1) Angul 2) Dhenkanal
2	Regional Office, Balasore, Plot No – 1602, Ganeswarpur mouza, Januganj, Balasore – 756019	Tel/Fax-(06782) 265110 Email:rospcb.balasore@ osp- cboard.org	Balasore Bhadrak Mayurbhanj
3	Regional Office, Berhampur, New Divisions Office, IDCO, Berhampur Division Industrial Estate – 760008, Ganjam	Tel- (0680) 2281075 Fax- (0680) 2280139 Email:rospcb.berhampur@ ospcboard.org	Ganjam Gajapati Phulbani Nayagarh

Sl. No.	Address	Telephone / FAX / e-Mail / Website	Jurisdiction (Districts)
4	Regional Office, Bhubaneswar, B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar	R.O Tel - (Mob) 9438883892 E-mail : rospcb.bhubaneswar @ospcboard. org Website: www.ospcboard.org	Puri Khordha
5	Regional Office, Cuttack, Plot No. 586, Surya Vihar, Link Road, Cuttack – 753 012	Tel/Fax-(0671) 2335478 E-Mail: rospeb.cuttack@ ospeboard.org	Cuttack
6	Regional Office, Keonjhar At - Baniapat, College Road, Keonjhar- 758 001	Tel / Fax - (06766) 259077 E-Mail: rospcb.keonjhar@ ospcboard.org	Keonjhar
7	Regional Office, Rayagada 287/A, Kasturi Nagar, Rayagada – 765 001	Tel-(06856) 223073 Fax-(06856) 224281 E-Mail: rospcb.rayagada@ ospcboard.org	Rayagada Koraput Nawarangpur Malkangiri Kalahandi
8	Regional Office, Rourkela, Town Engineering Office Premises, Sector – 5, Rourkela – 769 002	Tel - (0661) 2646736 Fax - (0661) 2648999 E-Mail: rospcb.rourkela@ ospcboard.org	Sundergarh except Himgiri block of Sundergarh district (Basundhara mining areas) Deogarh
9	Regional Office, Sambalpur, Plot No.1070 Hospital Road, Modipara, Sambalpur- 768 002	Tel- (0663) 2541910 Fax – (0663) 2541978 E-Mail:rospcb.sambalpur@ ospcboard.org	Sambalpur Bargarh Boudh Bolangir Nuapada Sonepur
10	Regional Office, Jharsuguda, Plot No. 370/5971, At – Babubagicha (Cox Colony) St. Mary's Hospital Road, PO- Industrial Estate, DistJharsuguda-768203	Tel- (06645) 273284 Fax – (06645) 2732294 E-Mail: rospcb.jharsuguda@ ospcboard.org	Jharsuguda Himgiri block of Sunder- garh district
11	Regional Office, Kalinga Nagar, At: Dhabalagiri, Near OMC Office, J.K. Road, PO: Ferro Crome Plant, , Dist – Jajpur – 755 019	Mob-9438883904 E-mail: rospcb.kalinganagar@ ospcboard. org	Jajpur
12	Regional Office, Paradeep, At- Centre for Management of Coastal Eco-system (CMCE), Plot No. 47, Nuasandhakuda, Near Panthaniwas, Marine Road, Paradeep-754142	Mob-9438883905 E-Mail: rospcb.paradeep@ ospcboard.org	Jagatsinghpur Kendrapara

Fig. 1 Odisha Map Showing 12 Regional Offices of State Pollution Control Board

CHAPTER - II

CONSTITUTION OF THE STATE BOARD

- **2.1** As per the provisions of sub-section 2 of section 4 of the Water (Prevention and Control of Pollution) Act, 1974 and under sub-section 2 of section 5 of the Air (Prevention and Control of Pollution) Act, 1981, the State Board shall consist of the following members, namely:
 - i. A Chairman (either whole-time or part-time as the State Government may think fit), being a person having special knowledge or practical experience in respect of matters relating to environment protection or a person having knowledge and experience in administrating institutions dealing with the matters aforesaid, to be nominated by the State Government;
 - ii. Such number of officials, not exceeding five, to be nominated by the State Government to represent that Government;
 - iii. Such number of persons, not exceeding five, to be nominated by the State Government from amongst the members of the local authorities functioning within the State;
 - iv. Such number of officials, not exceeding three, to be nominated by the State Government to represent the interest of agriculture, fishery or industry or trade or any other interest which, in the opinion of the State Government, ought to be represented;
 - v. Two persons to represent the companies or corporations owned, controlled or managed by the State Government, to be nominated by that Government;
 - vi. A full time Member Secretary, possessing qualifications, knowledge and experience of scientific, engineering or management aspects of pollution control, to be appointed by the State Government.
- **2.2** In exercise of the powers conferred under Sub-Section (1) of Section 4 of the Water (Prevention & Control of Pollution) Act, 1974 and Section 5 of the Air (Prevention & Control of Pollution) Act, 1981, Government in the Forest & Environment Department, Odisha constituted the present Board vide Notification No. 25653-Env-II-39/2018-F&E dated 29.11.2018 for a period of three years with the following members.

A. Chairman

Chairman, State Pollution Control Board, Odisha.

Sri A. P.Padhi, IAS (From 01.12.2018 to 19.08.2019)

Sri Asit Tripathy, IAS, Chief Secretary, Odisha (From 19.08.2019 and contd.)

B. Official Members

- 1. Secretary to Government, H & UD Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 2. Secretary to Government, Industries Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 3. Secretary to Government, Steel and Mines Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 4. Director, Environment-cum-Special Secretary, Forest & Environment Department, Government of Odisha or his nominee
- 5. Director, Factories & Boilers, Government of Odisha or his nominee

C. Members Representing Local Authorities

- 1. Commissioner, Bhubaneswar Municipal Corporation, Bhubanewswar
- 2. Chairman / Executive Officer, Paradeep Municipality
- 3. Chairman / Executive Officer, Jharsuguda Municipality
- 4. Chairman / Executive Officer, Talcher Municipality
- 5. Chairman / Executive Officer, Barbil Municipality

D. Non-Official Members

- 1. Prof. Atanu Kumar Pati, Presently Vice Chancellor, G M University, Sambalpur
- 2. Dr. Ajit Kumar Patnaik, IFS (Retd), Former PCCF, Chief Executive, Chilika Development Authority
- 3. Dr. G.K. Roy, Retired Professor of Chemical Engineering & Former Director, NIT, Rourkela.

E. Members Representating Companies & Corporations

- 1. Managing Director, Odisha Mining Corporation Ltd., Bhubaneswar
- 2. Managing Director, Industrial Infrastructure Development Corporation (IDCO), Bhubaneswar

F. Member Secretary

Member Secretary, State Pollution Control Board, Odisha.

Sri Debidutta Biswal, IFS (From 29.07.2016 and contd.)

CHAPTER - III

CONSTITUTION OF COMMITTEES

3.1 CONSENT COMMITTEE

3.1.1 Constitution of Consent Committees

The Board has re-constituted consent committee vide office order No. 355 dt. 08.01.2019 in pursuance to partial modification of order no.12547,dt.20.07.2015 with the members enlisted in Table-3.1 for establishment of various projects mentioned below:

- 17 categories of highly polluting industries having investment of ₹50 crores or more.
- Coal, Bauxite, Iron Ore, Manganese, Limestone, Dolomite & Chromite Mines.
- All Sponge Iron Plants.
- Hazardous Waste recycling and re-processing unit including TSDF irrespective of any investment.
- Reclamation of low lyling area / abandoned quarries with ash outside the plant premises for land measuring more than 10 Acres (Consent to Establish to be granted with the approval of Member Secretary and same to be taken to the Consent Committee for ratification on case to case basis as per Office Order no. 11047 / IND-IV-PCP-FARC-120, dated. 21.08.2017).

Members of the Committee are given in Table 3.1.

Table - 3.1 Members of the Consent Committee

1.	Member Secretary, SPC Board, Odisha, Bhubaneswar	Chairman
2.	One of the sectoral expert each of different Technical Committee constituted by the Board (such as Mining, Iron & Steel, Power, Chemical & Allied Industries, Petroleum refinery, Aluminium Smelter and Port Projects) in case of large industrial projects whose investment is ₹ 1000 crores or more or mining project with lease hold area 1000 ha. or more. (As per Table No.3.2)	Member
3.	External Expert Members to be nominated by the Chairman, SPC Board in specific cases, if required.	Member
4.	Secretary, Industries Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary	Member
5.	Secretary, Steel & Mines Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary	Member
6.	Secretary, Water Resources Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary	Member
7.	Director -cum-Special Secretary to Govt. Forest & Env.Deptt. Govt. of Odisha or his representative	Member
8.	Director, Factories & Boilers, Odisha, Bhubaneswar or his representative not below the rank of Deputy Director	Member
9.	Chief Conservator of Forest (Nodal), Odisha or his nominee not below the rank of D.F.O. in the office of PCCF, Odisha, Bhubaneswar	Member
10.	Concerned District Collectors or their nominees	Member
11.	Branch Head dealing the subject of Hazardous Waste, SPC Board, Odisha, Bhubaneswar.	Member
12.	Branch Head dealing with Consent to Operate, Mines, SPC Board, Bhubaneswar.	Member
13.	Branch Head dealing the subject of environmental monitoring, SPC Board, Odisha, Bhubaneswar	Member
14.	Branch Head of Consnet to Establish Cell, SPC Board, Odisha, Bhubaneswar	Convener

The Technical Committee has been merged with Consent Committee vide Office Order No. 12547, dtd.20.07.2015.

Table - 3.2 Members of the Technical Committee

Sl. No.	Technical Committee constituted for	Sectoral Experts
1.	Mining Projects whose leasehold area is 1000 Ha or more. (vide Office Order No. 10729, dt. 03.05.07)	Prof. S. Jayantu, Dept. of. Mining Engineering, NIT Rourkela Sri B. N. Mishra, Ex-Director (T) MCL, CMD, EDL, Bhubane- swar
2.	Iron and Steel Projects (vide Office Order No. 27958, dt. 16.11.06 & No. 10735 dt. 03.05.2007	Dr. Somanath Mishra, Ex- Principal, REC, Rourkela, Dr. R. C. Gupta, Professor and Head, /Department of Metal- lurgical Engineering, Institute of Technology, Banaras Hindu University
3.	Power Projects (vide Office Order No. 10761, dt. 03.05.07)	Sri B. C. Jena, Ex-CMD, Grid Corp. of Odisha Ltd, Bhubaneswar Mr. G. S. Panda, Ex. Head TTPS, Sailashree Vihar, Bhubaneswar
4.	Chemical and Allied industries (vide Office Order No. 10850, dt. 05.05.07)	Prof. G. K. Roy, Dept. of Chemical Engineering, NIT, Rourkela Sri R. K. Dash, Former Executive Director, PPL & OCFL,VIM 484 (near post office), Sailashree Vihar, Bhubaneswar
5.	Petroleum Refineries (vide Office Order No. 10761, dt. 03.05. 07)	Dr. M. O. Garg, Director, Institute of Petroleum, Dehradun Prof. P. Rath, HOD, Department of Chemical Engineering, NIT, Rourkela
6.	Aluminium Smelter (vide Office Order No. 14791, dt. 22.06.07)	Dr. R. K. Paramguru, Scientist – G, Head, Hydro & Electrometallurgy Dept., Institute of Minerals & Materials Technology (formerly known as Regional Research Laboratory) Bhubaneswar, Odisha Sri R. N. Jena, Ex-General Manager, NALCO Smelter Plant, Angul
7	Port Projects (vide office order No. 16387,dt. 05.07.2008)	Dr. R. Sundarvadivelu, Professor and Head, Department of Ocean Engineering, Indian Institute of Technology, Chennai – 600 036 Or Dr. Sannasi Raj, Associate Professor, Department of Ocean Engineering, Indian Institute of Technology, Chennai – 600 036 Sri Dibakar Mohapatra, (Retd. Chief Engineer, Paradeep Port Trust), Plot No. 7A, Brahmeswar Bag, Tankapani Road, Bhubaneswar

3.1.2 Consent Committee Meetings

Eleven Consent Committee meetings were held for consideration of 98 proposals for establishment during the financial year 2019-20. The details are given in Table - 3.3.

Table - 3.3 Details of Consent Committee Meeting

Sl. No.	Date of Consent Committee meeting	No. of cases disucssed
1.	03.04.2019	14
2.	22.05.2019	15
3.	24.06.2019	07
4.	24.07.2019	09
5.	27.08.2019	11
6.	30.09.2019	11

Sl. No.	Date of Consent Committee meeting	No. of cases disucssed
7.	28.10.2019	07
8.	29.11.2019	05
9.	06.01.2020	08
10.	28.01.2020	08
11.	28.02.2020	03
Total		98

Constitution of Internal Consent Committee

In pursuance of office order No.352, dt. 08.01.2019, an internal consent committee has been reconstituted with the members reflected in Table 3.4 to evaluate the applications for grant of consent to establish (NOC) for the following projects:

- 17 categories of highly polluting industries having investment of less than ₹ 50 crores.
- Other than 17 categories of polluting industries (Red and Orange Category) having investment of ₹50 crores or more.

Table – 3.4 Members of the Internal Consent Committee

1.	Branch Head dealing with Consent to Establish, SPC Board, Odisha, Bhubaneswar	Chairman
2.	Senior Officer not below the rank of DEE & DES, SPC Board , Odisha, Bhubaneswar dealing with Consent to Establish.	Member
3.	Senior Officer not below the rank of DEE & DES, SPC Board, Odisha, Bhubaneswar dealing with Consent to Operate of Industry / Mines.	Member
4.	Senior Officer not below the rank of DEE & DES, SPC Board, Odisha, Bhubaneswar dealing with the subject of Hazardous Waste.	Member
5.	Senior Officer not below the rank of DEE & DES, SPC Board , Odisha, Bhubaneswar dealing with the subject of Environmental Monitoring.	Member
6.	Branch officer of Consnet to Establish Cell, SPC Board, Odisha, Bhubaneswar	Convenor

3.1.3 Internal Consent Committee Meetings

Four Internal Consent Committee meetings were held on following dates and twelve consent to establish cases were discussed. The details are given in Table - 3.5.

Table – 3.5 Details of Internal Consent Committee Meeting

Sl. No.	Date	No. of cases discussed
1.	18.11.2019	03
2.	22.01.2020	04
3.	18.02.2020	03
4.	18.03.2020	02
	Total	12

3.1.4 Constitution of Technical Committee for issue of "No Increase in Pollultion Load" Certificate for Changes in Plant Configuration and Product Mix for the Project.

In pursuance to MoEF&CC, Govt.of India Notification vide So.3518(E) dtd.23.11.2016, State Pollution Control Board has constituted a Technical Committee with the following members to examine the application and to make recommendations for issue of "No Increase in pollution load" certificate for changes in plant configuration & product mix for the project.

Table - 3.6 Members of Technical Committee for issue of "No Increase in Pollultion Load" Certificate

Sl. No.	Name	Designation
1.	Member Secretary, State Pollultion Control Baord, Odisha	Chairman
2.	Dr. Sanjat Ku. Sahu, Professor, Dept. of Env. Science, Sambalpur University, Sambalpur (Nominated by F&E Department).	Member
3.	Dr. Himanshu B. Sahu, Associate Professor, Dept. of Mining Engineering, NIT, Rourkela (Nominated by F&E Department).	Member
4.	Dr. Chitta Ranjan Mohanty, Associate Projessor, Dept. of Civil Engineering, SSUT, Burla (Nominated by F&E Department).	Member
5.	Dr. Abhaya Ku Dalai, Former Reader in Botany, Ravenshaw University, 6GH/1150, C-15, Sector-9, CDA, Cuttack-753014, (Nominated by F&E Department).	Member
6.	Sri R.C. Saxena, Regional Director, CPCB, Kolkata or his nominee not below the rank of Addl. Director,	Member
7.	Sr. Env. Scientist, L-I/Sr. Env.Engineer, L-I, SPC Board, dealing with Consent to Establish of Industries / Mines	Member
8.	Sr. Env. Scientist, L-I/Sr. Env. Enginer, L-I, SPC Board,dealing with Consent to Operate of Industries	Member
9.	Sr. Env. Scientist, L-I/Sr. Env.Engineer, L-I, SPC Board, dealing with Consent to Operate of Mines	Member
10.	Sr. Env.Engineer, L-II, SPC Board, dealing with Consent to Establish of Industries & Mines.	Member

3.2 PURCHASE COMMITTEE FOR SCIENTIFIC STORE

3.2.1 Constitution of the Purchase Committee

In pursuance of the provision Under Section 9 of the Water (Prevention & Control of Pollution) Act, 1974 and Under Section 11 of the Air (Prevention & Control of Pollution) Act, 1981, a purchase committees has been constituted for the financial year 2019-20 vide order No. 4871, dt.22.05.2019 with the following members for the purchase and maintenance jobs of scientific items of the Central Laboratory as well as Regional Offices laboratories of the Board valuing ₹15,000.00 and above is given in Table 3.7.

Table – 3.7 Members of the Purchase Committee for ₹ 15,000.00 and above.

1.	Member Secretary, State Pollution Control Board, Odisha	Chairman
2.	Chief Env. Scientist, Central Lab. State Pollution Control Board, Odisha	Member
3.	Dr. B.S.Jena, Sr. Principal Scientist, Institute of Materials and Minerals Technology (IMMT), Bhubaneswar.	Member
4.	Financial Adviser-cum-Addl.Secretary to Govt., Forest & Environment Dept., Govt. of Odisha, Bhubaneswar	Member
5.	Director or his representative, Directorate of Export Promotion & Marketing, Bhubaneswar	Member
6.	Addl. Administrative Officer, State Pollution Control Board, Odisha	Member
7.	Accounts Officer, State Pollution Control Board, Odisha, Bhubaneswar	Member
8.	Env. Scientist, (Purchase), CLP Cell, State Pollution Control Board, Odisha, Bhubaneswar.	Member Convenor

Technical Committee has been constituted vide order No. 4866, dt.22.05.2019 for the specification of various equipments & instruments and to study the nature of requirement of different chemicals, glass wares, plastic wares, filtration products etc. required by the laboratory in Table - 3.8.

Table - 3.8- Members of the Technical Committee

1.	Chief Environmental Scientist, Central Lab., State Pollution Control Board, Odisha	Chairman
2.	Sr. Environmental Scientist, (L-I) Central Lab., State Pollution Control Board, Odisha	Member
3.	Dr. S.G. Kumar,Senior Scientist, Regional Plant Resource Centre, Bhubaneswar	Member
4.	Env. Scientist, (In charge of Chemical and Biological Laboratory), State Pollution Control Board, Odisha, Bhubaneswar	Member
5.	Env. Scientist, (In charge of (Air Lab.), State Pollution Control Board, Odisha, Bhubaneswar	Member
6.	Addl. Administrative Officer, State Pollution Control Board, Odisha, Bhubaneswar	Member
7.	Accounts Officer, State Pollution Control Board, Odisha, Bhubaneswar.	Special Invitee
8.	Env. Scientist, (Purchase), State Pollution Control Board, Odisha, Bhubaneswar	Member Convenor

3.3 LIBRARY PURCHASE COMMITTEE

In pursuance of Section 9 of the Water (Prevention & Control of Pollution) Act, 1974 and Section 11 of the Air (Prevention & Control of Pollution) Act, 1981 an Internal Purchase Committee has been constituted vide office order No. 11994 dt. 23.07.2014 and amended vide office order No.2235/Estt. (Misc.) 60/2010 dt.28.02.2019 for examining and recommending purchase of Books, Journals, Reports, Non-book materials, furniture and other requisites for the Library. Members of the committee are given in Table - 3.9.

Table - 3.9 Members of the Library Purchase Committee

1.	Member Secretary, State Pollution Control Board, Odisha	Chairman
2.	Senior Environmental Engineer- L-I (N), State Pollution Control Board, Odisha	Member
3.	Senior Environmental Engineer- L-I (C), State Pollution Control Board, Odisha	Member
4.	Senior Environmental Scientist – L-I (P), State Pollution Control Board, Odisha	Member
5.	Administrative Officer, State Pollution Control Board, Odisha	Member
6.	Sr. Law Officer,State Pollution Control Board, Odisha	Member
7.	SES, In-Charge of Library upto 27.02.2019 (Order No.15332, dtd.23.11.2017) and SEE, In-Charge of Library (Order No. 2235/Estt. (Misc)60/2010 dtd. 28.02.2019)	Member Convener

CHAPTER - IV

BOARD MEETING

4.1 In the year 2019-20, two Board Meetings were held.

The 119th & 120th Board meetings of the State Pollution Control Board, Odisha were held on 29th June, 2019 & 2nd January, 2020 respectively.

4.2 IMPORTANT DECISIONS OF THE 119th BOARD MEETING ARE AS FOLLOWS:

- The Board confrmed the proceedings of 118th Board Meeting held on 29th January, 2019.
- The Board approved the proposal for delegation of financial power to the Addl. Administrative Officer for sanction to an extent of Rs. 75,000/- (Rupees Seventy Five Thousand) only in each case in order to meet day to day official expenses.
- The Board approved the proposal for revision of sampling and analysis charges at par with the rate fixed by the CPCB, New Delhi.
- The Board approved the proposal of extending the project work on "Development of Geo-Database for Environmental Mapping and Web Based GIS Application conducted in Critically Pollulted Areas" to the whole state in Odisha.
- The Board approved the proposal to revise the categorization of HCEs in the State of Odisha as follows:
 - 1) HCEs having wastewater generation< 100 KLD and having ≥ 30 beds to be categorized as Orange category.
 - 2) HCEs having less than 30 beds to be categorized as "white category". They will be regulated under authorization administration under Bio Medical Waste Management Rules. 2016.
- The Board approved the proposal for delegation of power for grant/refusal of Consent to Operate of Common Hazardous Waste Treatment, Storage & Disposal facility (CHWTSDF) to the Member Secretary.
- The Board ratified delegation of power, made to the officers of the Board under authorization of Biomedical Waste Management Rules, 2016.
- The Board ratified the constitution of "Technical Committee" & "Purchase Committee" for procurement of scientific items and their maintenance.
- The Board approved the proposal for adoption the policy for Regulating Consent to Establish and Authorisation of Hazardous Waste Recycling Industries / Actual users.

4.3 IMPORTANT DECISIONS OF THE 120th BOARD MEETING ARE AS FOLLOWS:

- The Board confirmed the proceedings of the 119th Board meeting held on 29.06.2019.
- The Board approved the draft Annual Repot for the Financial Year 2018-19.
- The Board approved delegation of financial power to the Member Secretary to incur expenditure and sanction for a sum of Rs. 10.00 lakh (Rupees Ten Lakh) in each case.
- The Board approved the proposal for filling up of the existing base level vacant posts of Asst. Env. Engineers (13 posts), Asst. Env. Scientists (15 posts), in Group-B category.
- The Board approved the proposal of filling up of base level vacant posts of Sr. Scientific Assistant (07 posts) and Asst. Law Officer (01 post) following due procedure as contained in the "Recruitment and Conditions of Service of Employees of the SPC Board, Orissa Regulation -2011".
- The Board ratified the action taken by the Chairman for realisation of EPF employer share withdrawn by the employees prior to Pension Regulation 2011 Policy Thereon.
- The Board ratified the Pension / Family Pension of Pre-2016 and post-2016 Pensioners/Family Pensioners.

CHAPTER - V

ACTIVITIES

5.1 CONSENT TO ESTABLISH (CTE)

5.1.1 Projects related to Manufacturing and Service Sectors

Board received 992 applications from different manufacturing and service sectors for consent to establish during 2019-20 and 401 pending proposals were carried forward from the year 2018-19.

Consent to establish was granted to 874 units. The detailed status of 1393 Consent to Establish applications processed during 2019-20 is given in Table-5.1 and 5.2.

Table - 5.1 Status of Consent to Establish (CTE)

Sl. No.	Status	Head office (H.O.)	Regional Offices (R.O.)	Total
1.	No. of applications received during 2019-20	104	888	992
2.	No. of applications carried forward from 2018-19	90	311	401
	Total applications	194	1199	1393
	Consent to establish granted	100	774	874
	Consent to establish refused/applications rejected.	00	158	158
	No. of applications under evaluation	94*	267	361

N.B: *Incomplete applications and asked to comply-94 Nos.

Table - 5.2 Details of Consent to Establish Status by Regional Offices

Regional Office	No. of applica- tions received during 2019- 20	tions received during 2019- forward from		No. of units granted	No. of units refused/ rejected	No. of cases dis- posed off	Under evalua- tion
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)
Angul	30	28	58	42	00	42	16
Balasore	69	03	72	62	01	63	09
Berhampur	139	37	176	146	22	168	08
Bhubaneswar	150	126	276	61	102	163	113
Cuttack	33	11	44	44	00	44	00
Jharsuguda	71	02	73	72	00	72	01
Kalinga Nagar	52	11	63	54	00	54	-9
Keonjhar	40	08	48	30	02	32	16
Paradeep	22	06	28	24	00	24	04
Rayagada	83	43	126	50	28	78	48
Rourkela	96	15	111	74	02	76	35
Sambalpur	103	21	124	115	01	116	08
Total	888	311	1199	774	158	932	267

5.1.2 Mines, Minor Minerals and Stone&Sand Quarry

The detailed status of 99 applications processed for consent to establish for mining, Minor Minerals and Stone & Sand Quarry operations during 2019-20 is given in Table-5.3.

Table - 5.3 Status of Consent to Establish for Mines, Minor Minerals and Stone & Sand Quarry of Regional Office & H.O.

Sl. No.	Status	Mines, Minor Minerals &Stone, Sand Quarry
1.	Applications received during 2019-20	88
2.	Applications carried forward from 2018-19	11
3.	Total number of applications	99
	Consent to Establish granted	72
	Consent to Establish refused/ clarification raised	08
	No. of applications under evaluation	19

5.1.3 Status of Consent to Establish of Brick Manufacturing Units

Details of consent to establish of brick manufacturing units during 2019-20 are given in Table-5.4.

Table - 5.4 Status of Consent to Establish Brick Manufacturing Units

Sl. No.	Status	Number of Cases
1.	No. of applications received during 2019-20	11
2.	No. of applications carried forward from 2018-19	11
	Total number of complete applications	22
3.	Consent to Establish granted	11
4.	Consent to Establish refused	11
5.	No. of applications under evaluation	00

5.1.4 Status of Consent to Establish of Stone Crushers, Iron Ore Crushers, Mineral Beneficiation Units/Processing Units & Mineral Stack yards

Consent to establish status of Stone Crushers, Iron Ore Crushers, Mineral Beneficiation Units/Processing Units & Mineral Stack yards during 2019-20 is given in Table-5.5.

Table - 5.5 Status of Consent to Establish of Stone Crushers, Iron Ore Crushers, Mineral Beneficiation Units/Processing Units & Mineral Stack yards

Sl. No.	Status	Number of Cases
1.	No. of applications received during 2019-20	108
2.	No. of applications carried forward from 2018-19	51
	Total Number of complete applications	159
3.	Consent to Establish granted	108
4.	Consent to Establish refused	15
5.	No. of applications under evaluation	36

5.2 CONSENT TO OPERATE (CTO)

5.2.1 Status of Consent to Operate

Board has received 2801 applications from industries, mines, stone crushers, iron ore crushers, brick kilns, hotels, hospitals, ceramic and refractories, telecom services, urban local bodies / townships and country liquor manufacturing units etc. and 774 pending cases were carried forward from 2018-19 and disposed 2935 applications for consent to operate during the year 2019-20. The details are given in Table-5.6.

Table - 5.6 Status of Consent to Operate

Name of the office	No. of complete Appli- cations received 2019-20	No. of cases carried forward from 2018-19	Total no. of complete appli-cati- ons	No. of units granted CTO	No. of units refused/ rejected/ clarification raised	No. of cases disposed	No. cases under eval- ua-tion	No. of Show Cause Notices Issued
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)	9
Angul R.O.	187	144	331	264	00	264	67	17
Balasore R.O.	108	16	124	118	05	123	01	44
Berhampur R.O.	334	143	477	368	64	432	45	55
BBSR, R.O	546	188	734	158	383	541	193	86
Cuttack R.O.	80	08	88	87	00	87	01	00
Keonjhar R.O.	62	03	65	43	02	45	20	05
Rayagada R.O.	154	112	266	207	11	218	48*	23
Rourkela R.O.	111	48	159	121	06	127	32	32
Sambalpur R.O.	595	80	675	517	04	521	154	83
Kalinga Nagar R.O	141	10	151	127	00	127	24	20
Jharsuguda RO	174	01	175	156	00	156	19	13
Paradeep RO	36	05	41	34	05	39	02	00
Head office	273	16	289	252	03	255	34	40
Total	2801	774	3575	2452	483	2935	640	418

N.B: * Out of 48 applications, 38 are incomplete and 10 are under process.

Category wise consent to operate status during 2019-20 is given in Table-5.7 (a),(b)&(c)

Table - 5.7 Categorywise Consent to Operate Status

(a) Mines, Minor Minerals, Stone quarry and Sand bed.

Name of the office	No. of complete appli- cations received 2019-20	No. of cases carried forward from 2018-19	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused/ clarificat-ion raised	No. of cases disposed	Under evalua- tion	No. of Show Cause Notices Issued
1	2	3	4(2+3)	5	6	7(5+6)	8(4-7)	9
Angul R.O.	13	06	19	19	00	19	00	00
Balasore R.O.	12	00	12	12	00	12	00	00
Berhampur R.O.	23	03	26	23	03	26	00	00

Name of the office	No. of complete appli- cations received 2019-20	No. of cases carried forward from 2018-19	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused/ clarificat-ion raised	No. of cases disposed	Under evalua- tion	No. of Show Cause Notices Issued
Bhubaneswar R.O	13	01	14	04	10	14	00	08
Cuttack R.O.	02	00	02	01	00	01	01	00
Jharsuguda R.O.	43	00	43	36	00	36	07	00
Kalinga Nagar R.O.	13	02	15	13	00	13	02	07
Keonjhar R.O.	09	00	09	06	00	06	03	00
Paradeep RO	00	00	00	00	00	00	00	00
Rayagada R.O.	17	00	17	09	00	09	08	00
Rourkela R.O.	10	09	19	14	00	14	05	00
Sambalpur R.O.	35	02	37	37	00	37	00	00
Head office	87	09	96	92	01	93	03	07
Total	277	32	309	266	14	280	29	22

(b) Status of Consent to Operate (Stone Crusher, Iron ore Crusher & Mineral Beneficiation Unit)

Name of the office	No. of complete Appli- cations received 2019-20	No. of cases carried forward from 2018-19	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused	No. of cases disposed	Under evalua- tion	No. of Show Cause Notices Issued
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)	9
Angul R.O.	60	92	152	125	00	125	27	11
Balasore R.O.	45	00	45	45	00	45	00	05
Berhampur R.O.	36	19	55	43	06	49	06	00
Bhubaneswar R.O	210	30	240	29	184	213	27	14
Cuttack R.O.	01	03	04	04	00	04	00	00
Jharsuguda R.O.	16	00	16	14	00	14	02	00
Kalinga Nagar R.O.	53	05	58	50	00	50	08	03
Keonjhar R.O.	12	02	14	06	00	06	08	03
Paradeep R.O.	00	00	00	00	00	00	00	00
Rayagada R.O.	25	03	28	18	00	18	10	13
Rourkela R.O.	14	14	28	26	00	26	02	02
Sambalpur R.O.	28	14	42	36	00	36	06	05
Total	500	182	682	396	190	586	96	56

(c) Brick Manufacturing Units

Name of the office	No. of complete Appli- cations received	No. of cases carried forward from 2018-19	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused	No. of cases disposed	Under evalua- tion	No. of Show Cause Notices Issued
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)	9
Angul R.O.	00	10	10	00	00	00	10	00
Balasore R.O.	00	00	00	00	00	00	00	16
Berhampur R.O.	00	00	00	00	00	00	00	00
Bhubaneswar R.O	04	00	04	00	04	04	00	00
Cuttack R.O.	00	00	00	00	00	00	00	00
Jharsuguda R.O	00	00	00	00	00	00	00	00
Kalinga Nagar R.O	00	00	00	00	00	00	00	00
Keonjhar R.O.	00	00	00	00	00	00	00	00
Paradeep RO	01	00	01	00	01	01	0	00
Rayagada R.O.	00	00	00	00	00	00	00	00
Rourkela R.O.	00	06	06	00	06	06	00	24
Sambalpur R.O.	00	01	01	00	01	01	00	00
Total	05	17	22	00	12	12	10	40

5.2.2 Status of Consent to Operate for wastewater treatment facility by the Urban Local Bodies/Townships under Water (Prevention & Control of Pollution) Act, 1974

The Urban Local Bodies (ULBs) and the industrial townships are required to be regulated under consent administration for disposal of sewage effluent as per provisions under Section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974.

The Board has issued directions to all Municipal authorities as per the CPCB direction dtd. 21.04.2015 to seek Consent under Water (PCP) Act, 1974 and submit the detail compliance with time bound action plan for setting up sewerage system/septage management covering proper collection, treatment & disposal of sewage generated in the local / urban area. The Board intimated all the ULBs to improve sanitary conditions of open drain carrying sewage/sullage as per the CPCB guidelines. The new standards formulated by CPCB, Delhi for treated sewage effluent has been intimated to all the ULBs and concerned departments with instruction that the treated effluent shall meet the latest prescribed standard.

5.2.3 Status of Installation of GPRS based Real Time Data Acquisition System (RT-DAS) from the Online Monitoring Stations of the Industries in Odisha

The Board has implemented online monitoring system as a tool for self-regulation for the industries and at the same time, maintain transparency with the regulators i.e, SPCBs and CPCB. The CPCB advised all the SPCBs to install central server and software for acquisition of real time data. The system has been introduced with an objective to receive realtime data through online monitoring from all the States and to maintain a central data base by CPCB for the whole country.

The State Pollution Control Board, Odisha has developed a GPRS based Real Time Data Acquisition System (RT-DAS) using 'Y' cable to receive tamper proof data directly from online Stack, AAQ & Effluent monitoring systems installed by the industries. The central RT-DAS server has been installed in the Computer Cell of State Pollution Control Board, Odisha at its Head Office, Bhubaneswar. This RT-DAS server is receiving data from 152 industries and 24 mines operating in the State. The status of RT-DAS for the online is given in **Table -5.8.**

Table - 5.8 Status of Real Time Data Acquisition from the Online Continuous Monitoring Stations of Industries & Mines in Odisha

INDUSTRIES

Sl. No.	Name & Address	No. of Online Monitoring Stations Connected to RT-DAS Server of the SP Board, Odisha till 31.03.2020		
		AAQMS	CEMS	EQMS
1	Arcelor Mittal Nipon Steel Ltd. Formerly Essar Steel India Ltd	3	1	0
2	Bhagawati Steels Pvt Ltd	0	1	0
3	Bhushan Energy Limited	0	3	0
4	DALMIA DSP UNIT OCL India Ltd	1	3	0
5	Emami Cement Ltd. Grinding Unit	0	2	0
6	Essar Power Orissa Ltd	2	1	1
7	Facor Power Limited	3	1	0
8	GM Iron & Steel Company Limited	0	2	0
9	GOA CARBON LIMITED	2	1	0
10	Grasim Industries Ltd (formerly known as Jayshree Chemicals Ltd)	0	5	1
11	Hindustan Coca-Cola Beverages Pvt Ltd	0	0	1
12	Indian Farmer Fertilizer Cooperation	3	8	1
13	Indian Metals & Ferro Alloys Ltd (120 MW PP)	4	2	0
14	Indian Metals & Ferro Alloys Ltd.	0	2	0
15	JK Lakshmi Cement Limited	1	1	0
16	JSW Cement LIMITED	1	2	0
17	Jai Hanuman Udyog Ltd	0	1	0
18	Jay Jagannath Steel & Power Ltd.	0	2	0
19	K.J.S. Ahluwalia Ltd. (Hima Ispat Pvt. Ltd)	0	3	0
20	KAMANDA STEEL PLANT	4	5	0
21	ACC Ltd	3	4	1
22	Grewal Associates (P) Ltd.	0	2	0
23	MAA MANASHA DEVI ALLOYS PVT LTD	0	1	0
24	Meta Sponge (P) Ltd	0	1	0
25	Neelachal Ispat Nigam Limited	3	4	2
26	Rourkela Steel Plant	4	21	8
27	Tata Sponge Iron Ltd	3	3	0
28	Visa Steel Ltd	4	7	1

S1. No.			T-DAS Serv	er of the SPC
		AAQMS	CEMS	EQMS
29	Emami Paper Mill Ltd.	3	3	1
30	Birla Tyres	1	3	0
31	Green Waves Pvt. Ltd.	0	0	1
32	Jalan Carbons and Chemicals Pvt. Ltd.	1	0	0
33	Jindal Steel & Power Limited	2	2	0
34	Kapilas Cement Manufacturing Works(A unit of OCL India Ltd)	3	1	0
35	MSP Sponge Iron Ltd	0	3	1
36	Talcher Thermal Power Stations	4	6	1
37	Tata Steel Limited	7	18	2
38	Utkal Metaliks Ltd	0	1	0
39	Vedanta Limited (2400 MW Thermal Power Plant)	4	4	1
40	Vedanta Limited (Smelter & CPP)	4	33	3
41	Virajaa Steel &Power Pvt. Ltd.	0	1	0
42	Vishal Metallics Pvt. Ltd	0	1	0
43	KJ Ispat Ltd.	0	1	0
44	Kalinga Sponge Iron Limited	0	1	0
45	Mahakali Ispat Pvt. Ltd.	0	1	0
46	Shree Ganesh Metaliks Limited	0	3	0
47	Aaditya Kraft and Papers Pvt. Ltd	0	1	1
48	Aarti Steels Ltd.	4	8	0
49	Aditya Aluminium (A unit of Hindalco Industries Ltd.)	4	14	1
50	Agarsen Sponge Private Limited	0	2	0
51	Aryan Ispat & Power Ltd.	3	2	0
52	B.R. Sponge & Power Limited	0	1	0
53	BRG Iron & Steel Co. Ltd.	0	2	0
54	Bhaskar Steel & Ferro Alloys Ltd.	0	1	0
55	Bhubaneshwar Power Pvt. Ltd.	4	2	1
56	Bhusan Power & Steel Ltd	2	35	4
57	Boudh Distillery Pvt Ltd	0	1	1
58	Brand Steel & Power Pvt. Ltd	0	1	0

Sl. No.	Name & Address	No. of Online Monitoring Stations Connected to RT-DAS Server of the SPC Board, Odisha till 31.03.2020		
		AAQMS	CEMS	EQMS
59	Crackers India (Alloys) Ltd.	0	1	0
60	GMR Kamalanga Energy Ltd.	4	3	1
61	Ganesh Sponge Pvt. Ltd	0	1	0
62	Govindam Projects (P) Ltd.	0	1	0
63	Hindalco Industries Ltd. (Smelter Plant)	2	7	5
64	Hindalco Industries Ltd.(CPP)	3	5	1
65	Hindalco Industries Ltd. (FRP)	0	3	2
66	IB Thermal Power Station (OPGC)	6	4	2
67	Indian Metals & Ferro Alloys Ltd.(138 MW)	0	6	0
68	J.K. Paper Ltd.	3	3	1
69	Jai Balaji Jyoti Steels Ltd	0	2	0
70	Jay Iron & Steels Limited	0	1	0
71	Jindal Coke Limited	0	1	1
72	Jindal India Thermal Power Ltd.	4	2	0
73	Jindal Stainless Steel Ltd.	4	6	1
74	Jindal Steel and Power Ltd.	4	37	3
75	Kashvi International Pvt Ltd.	0	2	0
76	Kaushal Ferro Metals (P) Ltd.	0	1	0
77	Khedaria Ispat Limited	0	1	0
78	L.N. Metallics Ltd.	0	1	0
79	Maa Samaleswari Industries Pvt. Ltd.	0	1	0
80	Maa Shakumbari Sponge Pvt. Ltd.	0	1	0
81	Mayur Electro Ceramics (P) Ltd.	0	2	0
82	N.K. Bhojani Pvt. Ltd.	0	1	0
83	Narbheram Power & Steel Ltd.	0	1	0
84	Nava Bharat Ventures Ltd. (CPP)	3	3	1
85	New Laxmi Steel and Power Pvt. Ltd. (Unit III) (Formerly known as Suryaa Sponge Iron Limited)	0	2	0
86	OCL INDIA Ltd.	4	10	1
87	OCL Iron and Steel Ltd.	0	4	0
88	Ores Ispat Pvt. Ltd.	0	1	0

Sl. No.	Name & Address	No. of Online Monitoring Stations Connected to RT-DAS Server of the S Board, Odisha till 31.03.2020		er of the SPC
		AAQMS	CEMS	EQMS
89	Paradeep Phosphate Limited	4	8	3
90	Paradeep Refinery Project IOCL	7	21	1
91	Patnaik Steel & Alloys.	0	1	0
92	Pawanjay Sponge Iron Ltd.	0	1	0
93	Pooja Sponge (P) Ltd.	0	2	0
94	Prabhu Sponge Pvt. Ltd.	0	2	0
95	R.B. Sponge Iron Pvt. Ltd.	0	1	0
96	Rourkela Sponge LLP (Formerly known as Maa Tarini Industries Ltd)	0	2	0
97	Rathi Steel and Power Ltd	0	1	0
98	Reliable Sponge Pvt. Ltd.	0	1	0
99	Rexon Strips Ltd.	0	1	0
100	SMC Power Generation Ltd	4	2	0
101	Seeta Integrated Steel & Energy Ltd.	0	2	0
102	Shakti Sugar Ltd. (Distillery Unit)	0	1	2
103	Shiv Mettalicks (P) Ltd.	0	1	0
104	Shiva Cement Ltd.	0	4	0
105	Shree Hari Sponge Pvt. Ltd.	0	1	0
106	Shree Jagannath Steels & Power Ltd.	0	3	0
107	Shri Mahavir Ferro Alloys Private Limited.	0	4	0
108	Shyam Metaliks & Energy Ltd.	4	10	1
109	Sponge Udyog Pvt. Ltd.	0	1	0
110	Sree Metaliks Ltd.	0	9	0
111	Sri Balaji Metallics Pvt. Ltd.	0	1	0
112	Sri Hardev Steels Pvt. Ltd.	0	1	0
113	Suraj Products Ltd.	0	3	0
114	Surendra Mining Indsutries (P) Ltd	0	2	0
115	Swastik Ispat Pvt. Ltd.	0	2	0
116	T.R. Chemicals Pvt. Ltd.	0	1	0
117	TIMES STEEL POWER PVT LTD	0	1	0
118	Toshali Cements Pvt. Ltd.	0	2	0

Sl. No.	Name & Address	No. of Online Monitoring Stations Connected to RT-DAS Server of the SPC Board, Odisha till 31.03.2020		
		AAQMS	CEMS	EQMS
119	Vasundhara Metaliks Pvt. Ltd.	0	2	0
120	Vikram Pvt. Ltd.	0	1	0
121	Viraj Steel & Energy Pvt. Ltd	0	3	0
122	Yazdani Steel and Power Ltd	0	2	0
123	MGM Minerals Limited(Formerly MGM Steels Ltd.)	0	1	0
124	Maa Samaleswari Ferro Metals Pvt. Ltd	0	1	0
125	Mideast Integrated Steels Ltd	4	5	1
126	NALCO CPP	4	10	1
127	NALCO Ltd(Smelter Unit)	4	10	1
128	NTPC Ltd Darlipali	4	1	1
129	NTPC-SAIL Power Company (P) Limited. (CPP-II)	3	2	1
130	Reliable Hi-Tech Infrastructure Pvt. Ltd	0	1	0
131	Reliable Hi-Tech Infrastructure Pvt. Ltd	0	0	0
132	Reliable Sponge Pvt Ltd	0	1	0
133	Rungta Mines Ltd.(SID)	4	2	0
134	Sakthi Sugars Limited	0	1	1
135	Sani Clean Pvt Ltd.	0	1	0
136	Scan Steels Ltd (Unit-2)	0	3	0
137	Scan Steels Ltd. (Unit-1)	0	1	0
138	Seven Star Steels Limited	0	2	0
139	Sumrit Metaliks Pvt Ltd	0	1	0
141	Talcher Super Thermal Power Station NTPC	4	6	1
142	Tata Steel BSL	7	34	6
143	Tata Steel Ltd. Ferro Managnese Plant	0	4	0
145	Thakur Prasad Sao & Sons Pvt. Ltd (Unit-IV)	0	2	0
146	Thakur Prasad Sao & Sons Pvt.Ltd (Unit-1)	0	1	0
147	Thakur Prasad Sao & Sons Pvt.Ltd (Unit-3)	0	2	0
148	Toshali Cements Pvt Ltd	0	1	0
149	Ultratech Cement Limited	4	2	0
150	Utkal Alumina International Limited	1	3	0

Sl. No.	Name & Address	No. of Online Monitoring Stations Connected to RT-DAS Server of the SPC Board, Odisha till 31.03.2020		
		AAQMS	CEMS	EQMS
151	Vedanta Limited	6	3	0
152	Visa Sun Coke Limited	0	2	0
	Total	188	558	73

MINES

Sl. No	Name of the Mine		CEMS	EQMS
1	Barsuan-Taldih-Kalta Iron Ore Mines of SAIL, Sundargarh	3	0	0
2	Balda Block Iron Mines of Serajuddin & Co, Keonjhar	4	0	0
3	Bolani Iron Ore Mines of SAIL, Keonjhar	4	0	0
4	Jajang Iron and Manganese Mines of Rungta Mines Ltd., Keonjhar	4	0	0
5	Joda East Iron Mines of Tata Steel Ltd, Keonjhar	3	0	0
6	Kamarda Chromite Mines of B. C. Mohanty & Sons Pvt. Ltd., Jajpur	0	0	2
7	Kalarangiatta Chromite Mines of FACOR Ltd., Jajpur	0	0	2
8	Kaliapani Chromite Mines of Balasore Alloys Ltd., Jajpur	0	0	2
9	Katamati Iron Ore Mines of TATA Steel Ltd., Keonjhar	3	0	0
10	Koira Iron Ore Mine of M/s. Essel Mining Industries Ltd, Sundargarh	3	0	0
11	Nadidih Iron and Manganese Ore Mines of Bonai Industrial Co. Ltd., Sundargarh	3	0	0
12	Nadidih Iron and Manganese Ore Mines of Feegrade & Co. Pvt. Ltd., Sundargarh	4	0	0
13	Nuagaon Iron Ore Mines of KJS Alhuwalia, Keonjhar	3	0	0
14	Oraghat Iron Ore Mines of Rungta Sons (P) Ltd., Sundargarh	3	0	0
15	Ostapal Chromite Mines of FACOR, Jajpur	0	0	2
16	Saruabil Chromite Mines of Mishrilal Mines (P) Ltd., Jajpur	0	0	2
17	Serenda Bhadrasahi Iron & Manganese Mine of M/s. OMC Ltd, , Keonjhar	1	0	0
18	South Kaliapani Chromite Mines of OMC Ltd., Jajpur	0	0	5
19	Sukinda Chromite Mines	0	0	2
20	Mahagiri Chromite Mines of M/s IMFA, Jajpur			
	Sukinda Chromite Mines of TATA Steel Ltd, Jajpur	0	0	3
21	Tailangi Chromite Mines of IDCOL, Jajpur	0	0	2
22	Thakurani Iron Ore Mines of Kaypee Enterprises, Keonjhar	4	0	0
23	Jillinga Mines of Essel Mining Corporation, Keonjhar	3	0	0
24	Kahandbondh Iron ore mines of Tata Steel , Keonjhar	3	0	0
	Total	48	0	22

5.3 CLOSURE DIRECTIONS

As a part of the Board's regulatory role, all units brought under consent administration, if found defaulting the prescribed standards, are allowed reasonable time to comply with the standards. On persistent non-compliance, the defaulting units are served with Show Cause Notices (Table 5.6) followed by personal hearing and are generally prescribed time bound action plan for compliance. Consistent non-compliances lead to issue of closure directions. Table-5.9 shows the status of closure directions, issued by the Board.

Table - 5.9 Status of Closure Directions issued during 2019-20.

No. of directions issued	No of industries under closure	No. of revocations after due compliance
127	95	32

5.4 PUBLIC HEARING

The State Pollution Control Board has been entrusted with the responsibility of conducting public hearing for the projects requiring environmental clearance from the Ministry of Environment and Forests with the assistance from the District Administration as per EIA Notification No. S.O.-1533 (E), dt. 14.09.2006.

Details of public hearings conducted during the period 2019-20 are given in Table-5.10 and 5.11.

Table - 5.10 Status of Public Hearings

1	Number of projects received by the Board for public hearing during the financial year 2019-20.	
2	Number of projects carried forward from previous financial year 2018-19	07
3	Total Number of projects received for public hearing	37
4	4 Number of projects for which public hearing have been conducted	
5	Number of cases wherein Collectors were requested to fix up date	10
6	Number of cases for which public hearing date fixed	05

Table - 5.11 Details of Projects for which Public Hearings Conducted

Sl. No.	Name & Address of the project	Purpose	Date
1	Bharat Petroleum Corporation Ltd., Baulsingha, Bhatli, Dist-Bargarh	LPG bottling plant of storage capacity of 3x300 MT.	17-07-2019
2	Bhagabanpur Decorative Stone Mine, Illiyas Granite, Dist-Ganjam	Production of decorative stone over an area of 24.225 Ha (Cluster area 28.333 Ha).	06-08-2019
3	M/s Orissa Mining Corporation Ltd., Mahaparbat (Unchabali) Iron Ore Mines, Unchabali and Balda villages, Joda Block , Dist-Keonjhar	Enhancement of Iron Ore production from 0.07 MTPA to 1.0 MTPA over an area of 68 Ha.	28-08-2019
4	Ghatapada Garnet Mines , At-Ghatapada village, Tehasil: Kesinga, Dist- Kalahandi	Production of Gemstone of 264 Kg/Annum quanitity over an area of 25.127 ha	28-08-2019
5	Ghatapada Garnet Mines, At-Ghatapada village, Tehasil:Kesinga ,Dist- Kalahandi	Production of Gemstone quantity of 41 Kg/Annum over an lease area of 40.946 Ha	28-08-2019
6	Dhunkapara Decorative Stone Mine , At- Dhunkapara, Tehasil:Polasara, Dist-Ganjam	Production of Decorative Stone Mine 13,272 TPA and processed stone of 2960 m3 over an area of 23.337 ha (55.8 Ha cluster)	18-09-2019
7	M/s JSW Utkal Steel Ltd. Slurry Pipeline near Joda , Dist- Keonjhar	Iron ore grinding and de-sliming palnt to produce 30 MTPA Iron Ore concentrate (Dry process)	19-09-2019

Sl. No.	Name & Address of the project	Purpose	Date
8	M/s ShriMahavir Ferro Alloys Pvt. Ltd. At - Jiabahal, Kalunga Industrial Estate, Kalunga, Dist-Sundergarh	Expansion of Pellet plant with beatification (1800 TPD to 4800 TPD), DRI Plant (300 TPD to 1000 TPD), SMS Plant (0.1 MTPA to 0.3 MTPA), Captive Power Plant (12 MW to 38 MW) and Rolling Mill capacity of 0.25 MTPA at Jiabahal, Kalunga Industrial Estate,	26-09-2019
9	Daitari Iron Ore Mines of M/s OMC Ltd., At-Talapada village, Keonjhar, Jajpur district (Keonjhar district)	Enhancement of Iron Ore production capacity from 3.0 MTPA to 6.0 MTPA over lease area of 1018.3085 ha in village Talapada, Rebana Reserve Forest in Harichandanpur tehsil in Keonjhar and Daitari Protected Forest in Jajpur (Keonjhar district)	01-10-2019
10	Daitari Iron Ore Mines of M/s OMC Ltd., At-Talapada, Keonjhar, Jajpur district (Keonjhar district)	Eenhancement of Iron Ore production capacity from 3.0 MTPA to 6.0 MTPA over lease area of 1018.3085 ha in village Talapada, Rebana Reserve Forest in Harichandanpur tehsil in Keonjhar and Daitari Protected Forest in Jajpur (Jajpur district)	04-10-2019
11	Tata Steel Ltd,Kalinganagar,Duburi, Dist- Jajpur	Expansion of steel Plant capacity 6MTPA to 8MTPA	25.10.2019
12	M/s NLC India Ltd. 3x800 MW NLC Talabira Thermal Power Project, At- Khumbhari and Tareikela, Dist-Jharsuguda and Thelkoloi village in the district of Sambalpur(For Jharsuguda Dist)	3 x 800 MW Coal based super critical Thermal Power Plant	13.11.19
13	Paikadakulguda Semi Precious Stone (Cat's Eye) Mine of Sri Bijay Kumar Bansal,At- Paikadakulguda and Kandhadakuluguda, Tehasil; BisamCuttack,Dist- Rayagada	Production of Gemstone quantity 41 Kg per annum ML area 40.946 Ha	15.11.19
14	Kurmitar Iron and Manganese Mines of M/s OMC Ltd, At-Tilkuda,Uskuda,Sareikala and Khandadhar Reserve forest, Bonai subdivision of Sundargarh Dist.	Enhancement of Iron ore Production from 2.4 MTPA to 6.0 MTPA, ML area 651 Ha	19.11.19
15	Pottangi Bauxite Mines M/s. NALCO Pottangi	Production of 3.5 MTPA Bauxite ML area 697.979Ha	17.12.19
16	M/s JSW Utkal Steel Ltd in JatadhariMuhan , Dist-Jagatsinghpur. (development of All Weather, Multi-cargo,)	Establishment of 52 MTPA Captive Jetty	20.12.19
17	M/s JSW Utkal Steel Ltd. for establishment of Integrated Steel Plant Paradeep , district - Jagatsinghpur.	Establishment of 13.2 MTPA Crude Steel Plant along with 900 MW CPP & 10 MTPA Cement Plant	20.12.19
18	M/s NLC India Ltd. , Talabira Thermal Power Project ,At- Khumbhari and Tareikela ,Dist-Jharsuguda and Thelkoloi village in the district of Sambalpur (For Sambalpur Dist.)	Establishment of 3x800 MW NLC Talabira Thermal Power Project	10.01.2020
19	Green Tech Environment Management (P) Ltd AT: Plot No. 473, Chaka khata Po- 536 and 207, Mouza: Parmanpur, Dist-Sambalpur	Proposed common Biomedical waste treatment facility	18.01.2020

Sl. No.	Name & Address of the project	Purpose	Date
20	M/s Kandheikela O.S. Shop of Sri LaxmandasRawalani, At- Kandheikela,Lakhanpur Tehasil Dist- Juarsuguda	Production of 1.350 KLD Mahua Flower based Country Sprit/ Liquor	20.01.2020
21	Rarbahal Graphite Mines of ShriAntaryami Mishra, At –Rarbahal,P.O:Belpara. Tehsil -Patnagarh ,Dist- – Bolangir.	Production of Graphite ore upto 0.0138 MTPA over lease area of 20.675 Ha	22.01.2020
22	Raikela Iron ore mines of M/s GeetaraniMohanty,At- Raikela, Tehasil-Koira , Dist- Sundargarh	Enhancement in iron ore production from 0.864 MTPA to 2.99 MTPA over an area of 67.586 ha.	26.02.2020

5.5 STATUS OF WATER CESS

The Water Cess Act, 1977 has been repealed with effect from 01.07.2017.

5.6 ENFORCEMENT UNDER THE ENVIRONMENT (P) ACT, 1986

5.6.1 Implementation of the Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016.

Ministry of Environment, Forest and Climate Change, Govt. of India in supersession of Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2008 has notified the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 on 4th April, 2016. These rules apply to the management of hazardous and other waste as specified in the Schedules to these rules.

5.6.1.1. Authorisation

The Authorization status of hazardous waste generating industries during 2019-20 is given in Table 5.13.

Table 5.13 Authorization Status of Hazardous Waste

Sl. No.	Authorization status	Number	
1	Total no. of applications received	171	
2	No. of units granted authorisation	111	
3	No. of units refused		
4	Total No. of applications disposed 120		
5	No. of applications under evaluation 5		
6	No of show cause notices issued 40		

5.6.1.2 Utilization and Disposal of Hazardous Waste Utilisation of Aluminium Dross Rejects / Residues:

Aluminium Dross is a Hazardous Waste generated from the Aluminium Smelters. Although, a good numbers of actual users have been established and operating for reprocessing of the Aluminium Dross, there is no reprocessing unit in Odisha for utilisation of dross rejects / residue generated from Aluminium Dross reprocessing activities. As such rejects / residues constitute about 80% of dross, its disposal in Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF) becomes very uneconomical. In the meantime, an entrepreneur, M/s A. K. Enterprises, Plot No. 45, Mouza - Brahmapur, Dist - Khurda has developed a technology in consultation with M/s Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, a CSIR laboratory for production of non-ferric Alum by utilisation of Aluminium Dross rejects/residues. The unit has already been established with Consent Establish (CTE) of the Board. Trial permission has been accorded by CPCB and trial run has been witnessed by officials of Central Pollution

State Pollution Control Board

Control Board (CPCB) and State Pollution Control Board (SPCB), Odisha in the presence of the Scientist of the IMMT and the report has been sent to CPCB for consideration.

(A) Authorisation Status of Actual Users of Hazardous Wastes:

During the period 2019-20, 26 Nos. of Actual Users (inside Odisha) and 23 Nos. of Actual Users (Outside Odisha) have been authorised by the Board for recycling / reprocessing of different hazardous wastes (Used Oil, Waste Oil, Used Anode Butt, Aluminium Dross, Spent Pot Lining, Used Lead Acid Battery, Zinc Skimming / Zinc Ash / Zinc Dross, Flue Gas Dust / Gas Cleaning Plant (GCP) Sludge, Vanadium Sludge, etc.) under Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.

List of Actual users (Processor / Recyclers) having valid authorization of SPCB (Inside Odisha)

Sl. No.	Name & Address of the Actual Users Authorized by SPCB, Odisha	Quantity of Hazardous Waste	Validity
1	Hindalco Industries Ltd., Smelter Unit, (In-house Dross Recycling Plant) At/Po- Hirakud, Dist - Sambalpur, Odisha – 768016 E-mail: ak.agarwala@adityabirla.com hirakud.e@adityabirla.com jagannath.p.nayak@adityabirla.com Mobile: 9090060015	Aluminium Dross - 4,000 T/A	31.03.2023
2	Aditya Aluminium Limited, (A Unit of Hindalco Industries Limited), (In-house Dross Recycling Plant) At/Po - Lapanga, Beside SH - 10, Dist – Sambalpur, Odisha – 768212 E-mail: ranjan.j@adityabirla.com Mobile: 8018043156	Aluminium Dross – 3,060 T/A & Used Anode Butt	31.03.2023
3	National Aluminium Company Ltd., Smelter Plant, NALCO Nagar, Dist-Angul-759145 E-mail: abhijit.sinha@nalcoindia.co.in Mobile: 9437155606	Used Anode Butt	31.03.2021
4	Vedanta Limited, (Smelter and CPP) At - Bhurkamunda, PO - Siripura, Dist - Jharsuguda, Odisha – 768202 E-mail : ASP.Mishra@vedanta.co.in Mobile : 9937285045	Used Anode Butt	31.03.2021
5	A. K. Enterprises Plot No A/29, Sarua Industrial Area, Khurda, Odisha - 752057 E-mail: enterprisesake@yahoo.co.in Mobile: 9437199846 / 9238444846	Aluminium Dross – 1,125 T/M	31.03.2021
6	A. K. Enterprises, Plot No. 45, Mouza - Brahmapur, Dist - Khordha, Odisha E-mail: enterprisesake@yahoo.co.in Mobile: 9437199846 / 9238444846	Aluminium Dross Rejects to manufacture Alum- 100T/M	31.03.2023
7	A. K. Enterprises, Plot No. 07, Khordha Industrial Estate, Dist - Khordha, Odisha E-mail: enterprisesake@yahoo.co.in Mobile: 9437199846 / 9238444846	Aluminium Dross – 920 T/M	31.03.2021

Sl. No.	Name & Address of the Actual Users Authorized by SPCB, Odisha	Quantity of Hazardous Waste	Validity
8	Murugappa Enterprises At - Beherapat, Po - H. Kantapali, Dist - Jharsuguda, Odisha E-mail : khanmoinuddin927@gmail.com Mobile : 9824711777	Aluminium Dross – 750 T/M	31-03-2021
9	Shri Sai Metallik At – Jamunalia, PO - Badaposhi VIA – Naranpur, Dist - Keonjhar, Odisha E-mail : shrisaimetalik@gmail.com Mobile : 977601244	Aluminium Dross – 640 T/M	30-09-2021
10	Shree Shyam Minerals, At/Po - Hirma, Dist – Jharsuguda, Odisha E-mail : lalitpoddar@gmail.com Mobile : 9437559511	Aluminium Dross – 1500 T/M	31-03-2021
11	BNDM Enterprises, At: Ladukhai, PO- Kalamati, PS-Burla, Dist: Sambalpur, Odisha- 768025 E-mail: bndmenterprises@gmail.com Mobile: 7377621835	04.10.2020	
12	Metacast International, At/Po - Katapali, Dist - Sambalpur, Odisha E-mail: mci1990@hotmail.com Mobile: 9437052973	Used Anode Butt - 28 T/Day	31.03.2021
13	Green Energy Resources, At - Shanti Nagar Road, Near Furniture Point, Budharaja, Dist - Sambalpur, Odisha – 768004 E-mail: gerodisha@gmail.com Mobile: 9437045555	Spent Pot Lining (Carbon Portion) - 43,200 T/A	31-03-2023
14	ECO Resource Solutions At - Kuradhamalla, Dalaiput, Dist - Khurda, Odisha E-mail: swayamprakashj@gmail.com Mobile: 9178764604	Decontamination of Empty Barrels / Containers / Liners used for handling of hazardous wastes/chemicals as per SOPs of CPCB - 700Nos./Day	31.03.2022
15	Suraj Products Ltd., At - Barapali, Post - Kesharmal, Rajgangpur, Dist - Sundargarh, Odisha E-mail : suproduct@gmail.com Mobile : 9437049074 Flue Gas Dust / Ga Cleaning Plant (GC) Sludge of LD Furna / Electric Arc Furna (EAF) / Blast Furna Blast Furnace - 68,500 T/A GCP Sludge of Ferr Alloy Plant - 2,400 T,		31.03.2024
16	Asian Petro Chemicals, At-Asanabahali, PoBarada, Gundichapada, Dist-Dhenk Mobile: 9040181849	Used Oil - 960 KL/A	31.03.2021
17	Chemical & Metallurgical Co., Shed No. S/III-24, Industrial Estate, Kalunga, Rourkela E-mail : chemical_042@yahoo.com	Used Oil - 720 KL/A	31.03.2021

Sl. No.	Name & Address of the Actual Users Authorized by SPCB, Odisha	Quantity of Hazardous Waste	Validity
18	Jay Maa Durga Industries, Plot No A/6, Industrial Estate , Kalunga-770031, Dist- Sundargarh E-mail : felixkumar007@yahoo.com Mobile : 9439231461	Used Oil - 80 T/A	31.03.2023
19	N. S. Chemicals, Plot NoE/72, Chhend Colony, Rourkela, Sundargarh E-mail: nschemical_2902@yahoo.in Mobile: 9437220798	Used Oil - 936 KL/A	31.03.2023
20	Shree Durga Petrochemicals, Plot No. 89A, New Industrial Estate, Phase-II, Jagatpur, Dist - Cuttack, Odisha - 754021 E-mail: sdpetrochem.103@gmail.com Mobile: 9437021103	Used oil - 2,160 KL/A	31.03.2022
21	M/s. Phoenix India, (Formerly M/s. Purbanchal Petroleum Private Limited), At: Kaligarh, PO: Jadupur, Marsaghai, Dist: Kendrapara, Odisha- 754 213 E-mail: phoenixindia.2015@rediffmail.com Mobile: 8596020218	Used Oil – 3,650KL/A & Waste Oil -12,045 KL/A	31.03.2021
22	Swaraj Lubricants, At - Gobinda, Po - Haldipada, Dist - Balasore, Odisha E-mail : swarajlubricants@gmail.com Mobile : 9777076006	Used Oil - 1,500 KL/A & Waste Oil - 6,000 KL/A	31.03.2023
23	N. C. Oil Refinery Pvt. Ltd., Vill- Sova, Po - Osakana, Balikuda, Dist - Jagatsinghpur, Odisha E-mail: ncoil2010@gmail.com Mobile: 7978386334	Waste Oil - 5,000 KL/A	31.03.2023
24	Omm Sai Refinery, 58/263, Kochilagadia, Po Darpanigarh, Dist - Jajpur, Odisha E-mail : prafulla_raj@yahoo.com Mobile : 9437108545	Waste Oil - 10,400 KL/A	31-03-2021
25	Shriya Metals & Chemicals, At - Khairbandh, PO - Ranto Birkera, PS- Bramhanitarang, Dist - Sundargarh, Odisha – 770037 E-mail: shriya.engineersandchemicals001@gmail.com Mobile: 9438245981 Waste Oil - 7,350		31.03.2023
26	Gajanan Petro-Chemical Industry, At-Batijanga, PO: Haridaspur, Dharmasala, Dist: Jajpur, Odisha E—mail: gajananpetrochemical@gmail.com Mobile: 9437090148	Waste Oil – 10,400/KL/A	31.03.2025

List of Actual users (Processor / Recyclers) having valid authorization of SPCB (Outside Odisha)

Sl.	Name & Address of the actual Users	Capacity of	Validity of
No.	Authorized by SPCB, Odisha	Re-processing	Authorisation
1	Ashirwad Enterprise, Plot No. 17, Jalaram Industrial Estate, B/H RUDA Trans port, Sonkhada, NavagamTa & Di: Rajkot - 360003 E-mail: dmjethava@gmail.com Mobile: 9998953184	Aluminium Dross – 500 T/M	31-03-2021

Sl. No.	Name & Address of the actual Users Authorized by SPCB, Odisha	Capacity of Re-processing	Validity of Authorisation
2	Shivam Metallurgicals Pvt. Ltd., At - 16/1, CSIDC Phase - 2, Siltara Raipur, Chhattisgarh E-mail : shivammetal123@gmail.com Mobile : 8435011000	Aluminium Dross 1,000 T/M	26.10.2021
3	Green Living, Sy. No. 24/3, D-2 of Chimalapalli (V), Porlupalem Gram Panchayat, Visakhapatnam, Dist. (Andhra Pradesh) E-mail: greenliving.vizag@gmail.com Mobile: 8142323683	Spent Anode Butt – 15 T/Day	31.03.2021
4	Alfa Pigment & Chemicals Pvt. Ltd., At/PO: Dankuni, PS: Dankuni, Dist: Hooghly, West Bengal E-mail: spca@gmail.com Mobile: 9674302401	Zinc Dross/Ash/ Skimming-200 T/Month	30.06.2021
5	Cosmo Agromet Industries, At – Plot No. – 409, Industrial Area, Phase – 1, Panchkula – 134113, Haryana E-mail: cosmoagromet@yahoo.com Mobile: 9814334856	Zinc Dross /Ash / Skimmings – 11,724 T/A Brass Dross – 5,400 T/A	06-02-2022
6	G M Admixtures, At-Plot No. 189, Industrial Area, Phase-I, Panchkula, Haryana-134109 E-mail: gmadmixtures@gmail.com Mobile: 9816631328	Zinc Dross / Ash / Skimming - 6,000 T/A	05-02-2022
7	Neelam Metal Products , At – F-40, RIICO Industrial Area, Odela Road, Dholpur, Rajasthan-21 E-mail : neelammetalproducts@gmail.com Mobile : 98370251	Zinc Dross /Ash / Skimmings / Scrap 900 T/A Copper Scrap / Copper wire - 39.96 T/A	31.03.2021
8	R K Products, Village -Mahishrekha, PS - Uluberia, Dangadi, Dist - Howrah, West Bengal E-mail : banerjee.shiv1@gmail.com Mobile : 8910302315	Zinc Dross / Ash / Skimming - 7,200 T/A	31-12-2020
9	Bachhelal Metal Industries, At/Po - 22G Shiv Krishna Daw Lane, Kolkata, West Bengal – 700054 E-mail : bachhelalmetalindustries2015@rediffmail.com Mobile : 9830836045	Lead acid battery plates / ashes / residue / scraps - 4,320 T/A	31-10-2020
10	OM Industries, 7 K. M. Stone, VPO- Titoli, Jind Road, Rohtak, Haryana-124001, India E-mail : happykumarkamra@ymail.com Mobile : 8076652698	Used Oil - 1,000 KL/A	31-03-2021
11	Bharat Petro Industries, At - Khasra No. 2, Plot No - 3A, Khodamatand Area, Udaipur, Madanganj, Dist – Ajmer, Rajasthan - 305801 E-mail : bharatpetroind@gmail.com Mobile : 9269166829	Used Oil - 2,000 KL/A Waste Oil - 800 KL/A	31.03.2023
12	Haryana Petro Oils, At - Plot No. 31, Phase - III rd , Industrial area, Sirsa, Haryana E-mail: sachin_love82@yahoo.com / haryanapetrooil@yahoo.com Mobile: 9215655572/76	Used Oil / Waste Oil - 500 KL/A	30.09.2021
13	JMR Petro Industries, At - Plot No EE - 24, AIE Pedagantyada, Gajuwaka, Visakhapatnam, A.P E-mail : jmrpetro@gmail.com Mobile : 9866678645 / 9963487854	Used Oil - 250 KL/A Waste Containing Oil - 2,000 KL/A	31.03.2023

Sl. No.	Name & Address of the actual Users Authorized by SPCB, Odisha	Capacity of Re-processing	Validity of Authorisation
14	K M Oils Pvt Ltd., Plot No-75, 76, 77 (A-Part) 2 nd Phase, Kapnoor Industrial Area, Kalaburagi, Banagalore Mobile: 9886927866	Used Oil - 1,500 KL/A Waste Oil - 3,000 KL/A	31.03.2021
15	Lakhdata Petro Chemicals, At-Ramsara, Near GGS Refinery Main Gate, Bhatinda, Punjab E-mail : lakhdatachemical@gmail.com Mobile : 9810015932	Used Oil - 200 KL/A Waste Oil - 1,000 KL/A	30-09-2022
16	Lubrina Recycling Pvt. Ltd., Joy Chandipur, PO- Bakrahat, PS- Bishnupur, Dist - 24 Parganas (South), West Bengal – 743377 E-mail : aashish@lubrinare.com Mobile : 9874290909 / 9831151692	Used Oil - 4,800 KL Waste Oil - 1,800 KL	31.03.2024
17	National Lubricants, At - Gut No 495/498 (P), Plot No 29, Vill - Kondale, Tal Wada, Dist - Palghar, Maharashtra - 421312 E-mail : info@nationallubricants.in Mobile : 9820520853	Used Oil - 1,500 KL/A Waste Oil - 1,500 KL/A	31-03-2021
18	Plus Lubricants, Gvt No228, Survey No43, Satepada Road, City-Abhitghar-421303, Thane, Maharashtra E-mail: pluslubricants@pluslubricants.in Mobile: 9867421136 / Ph : 022-2666-5151	Used Oil -1000 KL/A Waste Oil - 3000 KL/A	31.03.2023
19	R. S. Oil Industries, Junglepur, Jalan Industrial Complex, Baniyara, Begri (G.P.), Domjur, Howrah - 711 411 E-mail: rsoilind90@gmail.com Phone: 033 - 24598574 / 8576	Used Oil - 100 KL Waste Oil - 1500 KL	31.03.2021
20	Sri Lakshmi Narayana Industries At - Pidimgoyyi (V), Rajahmundry, Dist - East Godavari, Andhra Pradesh E-mail : krishna.nsr111@gmail.com Mobile : 9396622208	Used Oil - 500 KL/A Waste Oil - 1,000 KL/A	31-03-2025
21	Tanu Petrochem Products Private Limited, Plot No - 238, Phase - II, I.D.A, Pashamylarm, Dist - Medak, Andhra Pradesh – 502307 E-mail: tanu_petrochem@yahoo.com Mobile: 9885082850	Used Oil - 1,000 KL/A Waste Oil - 3,000 KL/A	30-09-2022
22	Bristol Petroleum Pvt. Ltd., At: 26/5/D-E, A.M. Ghosh Road, Budge Budge, 24 parganas (S) West Bengal E-mail: bristolpetroleum74@gmail.com Mobile: 9007005515	Used Oil - 500 KL/A Waste Oil - 500 KL/A	31-05-2021
23	N.K. Company, At: 816, Jaigirghat Road, Panerara, Thakurpukur, Kolkata, West Bengal-700 063 E-mail : nkcompany99@gmail.com Mobile : 9230058555	Used Oil – 2,000 KL/A Waste Oil – 3,000 KL/A	30-06.2022

(B) Common Facility for Disposal of Hazardous Wastes

A Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF) has been established during financial year 2010-11 at Kanchichuan, Jajpur, Odisha operated by M/s Ramky Enviro Engineers Ltd., Hyderabad with consented capacity of 75,000 T/A. During this period, 179 nos. of Industries / Mines have entered into membership agreement with Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF).

The status of disposal of hazardous waste at CHWTSDF is as follows:

Hazardous waste received from various Industries/Mines by CHWTSDF -46903.17T

i. Landfill after treatment(LAT) Waste
 ii. Direct Land Fill(DLF) Waste
 12079.40 T

5.6.2 Implementation of Manufacture, storage and Import of Hazardous Chemical Rules, 1989 and amendments thereof

The Board has not received any application for import of Hazardous Chemicals to the State during 2019-20.

5.6.3. Implementation of Public Liability Insurance Act, 1991

As per provisions of the Public Liability Insurance Act, 1991, the industries handling hazardous substances above the regulatory quantity are required to take insurance policy for providing immediate relief to the victims in case of chemical accidents. Efforts have been made to create awareness among the concerned industries to take such insurances. During this period 24 nos. of industries handling hazardous chemicals have renewed their insurance policies under the PLI Act, 1991.

5.6.4. Implementation of Batteries (M & H) Rule, 2001

The Board has received 110 nos. of half yearly returns from April' 2019 to Sep' 2019 and 105 nos. of half yearly returns from Oct' 2019 to March' 2020 from battery units. These returns have been received from Manufacturer, Re-conditioner, Assembler, Dealer, Bulk Consumer, Auctioneer, Importer & Recycler.

5.6.5 Implementation of the Biomedical Waste Management Rules, 2016

It is the prime responsibility of every occupier of the **Health Care Establishments** (HCE) generating Biomedical Wastes (BMWs) to ensure requisite management and disposal of wastes as per the Biomedical Waste Management Rules, 2016. Biomedical wastes generated in different HCEs are required to be disposed off safely without causing any adverse impacts on the environment and human health.

5.6.5.1 Inventorisation of Health Care Establishments (HCE)

The Board has brought 3619 nos. of HCEs under the authorization administration under the Biomedical Waste Management Rules 2016 and the district wise distribution of such HCEs with respect to bed strength is given in Table- 5.14.

Table - 5.14 Districtwise Distribution of Health Care Establishment under Authorization Administration.

Sl. No.	District	< 50 beds	50 beds and < 200 beds	200 beds and <500 Abeds	500 beds and above	Other Category*	Total
1	Angul	47	9	0	0	73	129
2	Balangir	36	2	01	0	62	101
3	Balasore	47	4	01	0	110	162
4	Bargarh	40	2	0	0	72	114
5	Bhadrak	19	5	01	0	55	80
6	Boudh	05	1	0	0	12	18
7	Cuttack	230	23	02	01	266	522
8	Deogarh	07	1	0	0	08	16
9	Dhenkanal	38	4	0	0	37	79
10	Gajapati	15	2	0	0	21	38
11	Ganjam	116	9	0	01	142	268
12	Jagatsinghpur	22	3	0	0	44	69

Sl. No.	District	< 50 beds	50 beds and < 200 beds	200 beds and <500 Abeds	500 beds and above	Other Category*	Total
13	Jajpur	38	0	02	0	75	115
14	Jharsuguda	27	3	0	0	32	62
15	Kalahandi	32	3	0	0	96	131
16	Kandhamal	18	2	0	0	49	69
17	Kendrapara	22	1	0	0	53	76
18	Keonjhar	49	4	0	0	100	153
19	Khurda	131	13	10	04	166	324
20	Koraput	24	3	01	0	79	107
21	Malkangiri	21	1	0	0	25	47
22	Mayurbhanj	42	4	01	0	81	128
23	Nawarangpur	12	2	0	0	49	63
24	Nayagarh	33	3	01	0	57	94
25	Nuapada	10	3	0	0	16	29
26	Puri	48	1	01	0	66	116
27	Rayagada	22	3	01	0	64	90
28	Sambalpur	54	2	01	01	65	123
29	Sonepur	11	1	0	0	20	32
30	Sundargarh	53	9	04	01	197	264
	Total	1269	123	27	08	2192	3619

N.B: * Pathological Laboratories and Diagnostic Centers etc.

5.6.5.2 Management of Biomedical Waste

- » As per the provisions of the Biomedical Waste Management Rules, 2016 all the HCEs are required to treat and dispose different types of biomedical waste properly. Most of the Health Care Units in Odisha have taken up biomedical waste segregation, treatment and captive disposal method as specified in the rule.
- Three important Govt. Medical Colleges and Hospitals namely, S.C.B Medical College and Hospital (SCB MCH), Cuttack, M.K.C.G Medical College and Hospital (MKCG MCH), Berhampur and VIMSAR, Burla, Sambalpur have developed their own infrastructures such as incinerator, shredder, microwave etc. which are being operated by engaging private agencies for the treatment of Biomedical Wastes. The agencies are: M/s. Medi-Aid Marketing Services engaged by SCB MCH, M/s. Biotech Solution- engaged by VIMSAR & M/s. Life Line Pharma engaged by MKCG MCH. In addition, M/s. Medi-Aid Marketing Services is operating the biomedical waste management facility of Rourkela Govt. Hospital campus, Rourkela on Public Private Partnership mode. These facilities are also being shared by other nearby small Government HCEs.
- » The Common Biomedical Waste Treatment Disposal Facility (CBWTDF) namely M/s Saniclean Pvt. Ltd., at Tangiapada, Khordha is receiving segregated biomedical waste of hospitals in Cuttack city, Bhubaneswar city, Jagatpur, Choudwar, Duburi, Jatni, Paradeep & Khordha town.
- » Out of 3619 HCEs, 694 units are utilizing the services of aforesaid common facilities.

5.6.5.3 Status of Authorisation Application of Health Care Establishments

The authorisation application status of the HCEs during 2019-20 is presented in Table-5.15

Table - 5.15 Authorisation Status of HCEs During 2019-20

Sl. No.	Status of HCEs					
1	No. of applications received during 2019-20	1362				
2	No. of cases carried over from year 2018-19	596				
3	Total no. of applications received 1958					
4	No. of HCEs granted authorisation 1735					
5	No. of HCEs refused authorisation 02					
6	Total No. of applications disposed 1737					
7	No. HCEs under evaluation / Incomplete application 221					
8	No. of HCEs violating the Rules 62					
9	No. of HCEs issued show cause notices 30					
10	No. of inspection conducted	1578				

The Board has submitted the Annual Report on Biomedical Waste Management for 2018 to CPCB.

5.6.6. Implementation of the Solid Waste Management Rules, 2016

As per the Solid Waste Management Rules, 2016 the Urban Local Bodies (ULBs) are required to take action for proper management of municipal solid wastes, seek authorization for setting up and operation of waste processing and disposal facilities from the Board and submit the annual report in Form-II every year to the State Pollution Control Board, Odisha. The Board has been pursuing this matter with all urban local bodies since the enactment of the Rules.

The Board has submitted the Annual Report on solid waste management for the period 2019-20 to CPCB,New Delhi.

5.6.7. Implementation of Plastic Waste Management Rules, 2016

As per the provision of Plastic Waste Management Rules, 2016, the Board has been declared as prescribed authority to issue or renew registration to manufacturer of plastic products, multilayered packaging and plastic waste recycling & processing units. Brand owners who sell their commodity/products using multilayered plastics for packaging need to obtain registration from the Board for managing the plastic waste. The Board is consistently vigilant on carry bag manufacturing units for their compliance to the statutory provisions of the Plastic Waste Management Rules. So far, 14 plastic product manufacturing units (06 producers, 05 brand owners and 03 re-processors) have been registered with the Board during the reporting period.

- Major ULBs have been instructed to send segregated plastic waste to cement plants namely M/s. ACC Ltd., Bargarh, M/s. OCL Ltd., Rajgangpur, M/s. Shiva Cement, Sundargrh, M/s. Toshali Cement, Ampavali, Koraput for co-processing in cement Kiln.
- About 28 MT of plastic waste has been sent to M/s. ACC Ltd., Bargarh for co-processing (upto November, 2019).
- 4.6 MT of plastic waste has been used for construction of 9.6 km road in Deogarh and Sambalpur Districts.
- Consent to Establish has been granted to M/s. Hindalco Industries to convert 0.5 MT/Day plastic waste to oil.
- Annual report on Plastic waste management for the period 2019-20 has been sent to CPCB, New Delhi.

State Govt. has issued ban order vide Order No.18441, dtd. 30.09.2019 there by prohibiting sell, trade, manufacture, import, store, carry, transport, use or distribute polythene carry bags of any shape, thickness and size, PET bottles of less than 200 ml capacity and single use disposable cutleries made up of thermocol (polystyrene), polyurethane in all urban areas of the State with effect from 2nd October,2019.

5.6.8 Implementation of the E-Waste Management Rules, 2016.

After enforcement of E-waste Management Rules, 2016 i.e. on 01.10.2016, no individual E-waste collection centre is allowed to collect E-waste. However, the captive collection centres of Producer / Dismantler/ Recycler/ Refurbishers are only allowed to collect E-waste. The Board has granted authorization to 04. E-waste dismantling units, 02 collection-cum-dismantling units and 01 captive collection centre during 2019-20. Annual report on E-Waste management for the period 2019-20 has been sent to CPCB, New Delhi.

5.6.9. Construction and Demolition Waste Management Rules, 2016

- Ministry of Environment, Forest and Climate Change, Govt. of India has notified Construction and Demolition Waste Management Rules, 2016 on 29th March, 2016. This Rule is applicable to every waste resulting from construction, re-modeling, repair and demolition of any civil structure of individual or organisation or authority who generates construction and demolition waste such as building materials, debris & rubble etc.
- The authorities of Revenue Department, Housing & Urban Development Department, Works Department and Town Planning, Government of Odisha have been requested to take appropriate action for wide publicity of the Rules to create awareness amongst the local authorities and sensitize the general public about their responsibilities in handling such type of waste.
- All the construction and demolition waste generators have been requested through public notice
 in Daily News Papers to go through the aforesaid Rules which is available at the SPC Board
 website www.ospcboard.org and Ministry website www.moef.nic.in. Furthermore, the operators
 of the waste processing facilities have been asked to apply for authorization from State Pollution
 Control Board.
- Construction and Demolition Waste Processing facility is yet to be developed in Urban Local Bodies. The waste collected is generally disposed at existing solid waste dump site or low lying areas.
- Annual report on Construction & Demolition waste management has been sent to CPCB, New Delhi.

5.7 MONITORING NETWORK FOR WATER AND AIR QUALITY

5.7.1 National Water Quality Monitoring Programme (NWMP)

Inland Surface Water

The Board is monitoring the water quality of eleven river systems viz. Mahanadi, Brahmani, Baitarani, Rushikulya, Nagavali, Subarnarekha, Budhabalanga, Kolab, Vansadhara, Indravati and Bahuda at 127 stations under the CPCB assisted National Water Quality Monitoring Programme (NWMP); one station on Brahmani river and one station on Baitarani river under National river Conservation Programme (NRCP).

Board is also monitoring the water quality of other surface water bodies such as canals (Taladanda and Puri canal), ponds in Puri, Bhubaneswar, Angul and Jeypore, Lakes (Chilka, Anshupa and Tampara), Atharabanki Creek and coastal water at Puri, Gopalpur and Paradeep under NWMP. Details of monitoring stations are given in Table-5.16.

The following water quality parameters are determined on monthly basis at all stations.

- (a) Physical parameters: Temperature, pH, Alkalinity, Total suspended solids (TSS)
- (b) Indicators of Organic pollution: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD),

Chemical Oxygen Demand (COD), Free ammonia – Nitrogen, Ammonical (Ammonium + ammonia) – Nitrogen, Total Kjeldahl Nitrogen (TKN)

- (c) Bacteriological parameters: Total Coliform (TC) and Fecal Coliform (FC)
- (d) Mineral constituents: Electrical Conductivity (EC), Total Dissolved Solids (TDS), Boron, Sodium Absorption Ratio (SAR), Total Hardness (TH), Chloride, Sulphate, Fluoride.
- (e) Nutrients: Nitrate (Nitrate + Nitrite) Nitrogen, Phosphate Phosphorous
- (f) Metals: Chromium (Cr) (total and hexavalent), Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), Cadmium (Cd), Mercury (Hg), Lead (Pb) are determined only during lean period, that is, in the month of April or May.
- (g) Biological Indices: Saprobic Index (SI) and Diversity Index (DI) are monitored at selected stations and in the months of January, April and October.

Table-5.16 Surface Water Quality Monitoring Stations conducted by the Board under NWMP and NRCP

Source of	Total No.	of Stations	Sampling Station
monitoring	NWMP	NRCP	Monthly
River system			
Mahanadi	55	<u>-</u>	Ib:(1) Sundargarh, (2) Jharsuguda, (3) Brajarajnagar U/s, (4) Brajarajnagar D/s; Bheden: (5) Jharsuguda; Hirakud reservoir: (6) Hirakud; Power Channel: (7) Power Channel U/s (8), Power Channel D/s; Mahanadi: (9) Sambalpur U/s, (10) Sambalpur D/s, (11) Sambalpur FD/s at Shankarmath, (12) Sambalpur FD/s at Huma, (13) Sonepur U/s, (14) Sonepur D/s, (15) Tikarpada, (16) Narasinghpur, (17) Mundali, (18) Cuttack U/s, (19) Cuttack D/s, (20) Cuttack FD/s, (21) Paradeep U/s, (22) Paradeep D/s; Ong: (23) Dharuakhaman; Tel: (24) Monmunda; Kathajodi: (25) Cuttack U/s, (26) Cuttack D/s, (27) Cuttack FD/s at Mattagajpur, (28) Cuttack FFD/s at Kamasasan; Serua: (29) Cuttack FD/s at Sankhatrasa; Kuakhai: (30) Bhubaneswar FU/s, (31)Bhubaneswar U/s; Daya: (32) Gelapur, (33) Bhubaneswar D/s, (34) Bhubaneswar FD/s, (35) Kanas; Gangua: (36) Near Rajdhani Engg. College, (37) Hanspal, (38) Samantarpur, (39) Vadimula; Birupa: (40) Choudwar D/s; Kushabhadra: (41) Bhingarpur, (42) Nimapara, (43) Gop; Bhargavi: (44) Chandanpur; Mangala: (45) Malatipatpur, (46) Golasahi; Devi: (47) Machhagaon; Gobari: (48) Kendrapada U/s, (49) Kendrapada D/s; Nuna: (50) Bijipur; Kusumi: (51) Tangi; Kansari: (52) Banapur; Badasankha: (53) Langaleswar; Sabulia: (54) Rambha; and Ratnachira: (55) Kumardihi
	monitoring River system	monitoring NWMP River system	monitoring NWMP NRCP River system

S1.	Source of	Total No.	of Stations	Sampling Station
No.	monitoring	NWMP	NRCP	Monthly
2.	Brahmani	40	1	Sankh: (1) Sankh U/s; Koel: (2) Koel U/s; Brahmani: (3) Panposh U/s, (4) Panposh D/s, (5) Rourkela D/s, (6) Rourkela FD/s at Attaghat, (7) Rourkela FD/s at Biritola, (8) Bonaigarh, (9) Rengali, (10) Samal, (11) Talcher FU/s, (12) Talcher U/s, (13) Mandapal, (14) Talcher D/s, (15) Talcher FD/s, (16) Dhenkanal U/s, (17) Dhenkanal D/s, (18) Bhuban, (19) Kabatabandha, (20) Dharmasala U/s, (21) Dharmasala D/s*, (22) Pottamundai; Nandira: (23) Nandira U/s, (24) Nandira D/s; Kisindajhor: (25) Kisindajhor; Kharasrota: (26) Khanditara, (27) Binjharpur, (28) Aul; Guradih nallah: (29) Guradih nallah; Badajhor: (30) Badajhor; Damsala: (31) Dayanabill; Gonda nallah: (32) Marthapur; Lingira: (33) Angul U/s, (34) Angul D/s; Ramiala: (35) Kamakhyanagar; Banguru nallah: (36) Bangurunallah; Singada jhor: (37) Singadajhor; Tikira: (38) Kaniha U/s, (39) Kaniha D/s; Bangurusingada jhor: (40) Bangrusingada jhor; and Karo: (41) Barbil
3.	Baitarani	13	1	Kundra: (1) Joda; Kusei: (2) Deogaon; Baitarani: (3) Naigarh, (4) Unchabali, (5) Champua, (6) Tribindha, (7) Joda, (8) Anandpur, (9) Jajpur, (10) Chandbali U/s and (11) Chandbali D/s*; Salandi: (12) Bhadrak U/s, (13) Bhadrak D/s; and Dhamra: (14) Dhamra
4.	Rushikulya	6	-	Russelkunda reservoir: (1) Russelkunda; BadaNadi: (2) Aska; Rushikulya: (3) Aska, (4) Nalabanta, (5) Madhopur; and (6) Potagarh
5.	Nagavali	3	-	Nagavali: (1)Penta U/s, (2) Jaykaypur D/s, and (3) Rayagada D/s
6.	Subarnarekha	1	-	Subarnarekha: (1) Rajghat
7.	Budhabalanga	4	-	Budhabalanga: (1) Baripada D/s, (2) Balasore U/s, (3) Balasore D/s; and Sone: (4) Hatigond
8.	Kolab	1	-	Kerandi: (1) Sunabeda
9.	Vamsadhara	2	-	Vansadhara: (1) Muniguda, and (2) Gunupur
10.	Indravati	1	-	Indravati: (1) Nawarangpur
11.	Bahuda	1	-	Bahuda: (1) Damodarpally
	Sub Total	127	2	
(B)	Canal	9	-	Taladanda canal: (1) Jobra, (2) Ranihat, (3) Chatrabazar, (4) Nuabazar (5) Biribati, (6) Atharabanki; Puri Canal: (7) Hansapal, (8) Jagannathpur, and (9) Chandanpur
(C)	Ponds	8	-	Bhubaneswar: (1) Bindusagar; (4 bathing ghats on each side of the pond) Puri: (2) Narendra pokhari, (3) Markanda Pokhari, (4) Indradyumna tank, (5) Swetaganga, (6) Parvati sagar; Angul: (7) Raniguda; and Jeypore: (8) Jagannathsagar

S1.	Source of	Total No.	of Stations	Sampling Station
No.	monitoring	NWMP	NRCP	Monthly
(D)	Lakes	7	-	Chilka lake: (1) Rambha, (2) Satapada; Anshupa lake: (3) Kadalibari, (4) Sarandagarh, (5) Subarnapur, (6) Bishnupur; and Tampara lake: (7) Tampara lake
(E)	Sea	3	-	(1) Puri, (2) Gopalpur and (3) Paradeep
(F)	Creek	1	-	(1) Atharabanki creek
(G)				(1) STP at CDA-Bidanasi, Cuttack, (2) STP at Mangalaghat, Puri and (3) STP at Mandapal, Talcher
	Total	1	.60	
* NRO	CP stations			

River Water Quality Monitoring

The annual average and range values of the criteria parameters such as pH, DO, BOD and TC, obtained during the year 2019 for the river water quality monitoring stations listed under Table-5.16 are given in Table-5.18. Water quality in respect of other parameters is given in Table-5.19.

From assessment point of view of assessment of the river water quality on the basis of its use to which the river is put by the community, the water quality should conform to Class-C (drinking water source with conventional treatment followed by the disinfection). Comparison of the water quality has been made with respect to the tolerance limits stipulated for Class-C surface water bodies (IS: 2296-1982). Water quality data given in Table-5.18 indicate that out of the four critical parameters such as pH, DO, BOD and TC, parameters like pH and DO at most of the stations remained within the criteria limits, whereas BOD and/or TC have exceeded the criteria limits at several places. Non-compliance has been observed at 14 stations with respect to both BOD & TCand 2 stations with respect to TC alone (Table-5.17). The probable cause of downgrading the water quality from its desired use, are of organic origin. A major contribution towards this is from the discharge of untreated domestic water from the townships to the nearby water bodies. Out of 129 stations, one station is monitored on drain.

Table-5.17 Water quality status of river monitoring stations during 2019

Sl. No.	River System	Total no. of Monitoring	Conforming	Non-co	onforming stat	tions
		Stations	Stations	Both BOD & TC	BOD alone	TC alone
1	Mahanadi	55	42	11	-	2
2	Brahmani *	41	37	03	-	-
3	Baitarani	14	14	-	-	
4.	Rushikulya	06	06	_	-	-
5.	Nagavali	03	03	-	-	
6.	Subarnarekha	01	01	-	_	-
7.	Budhabalanga	04	04	-	-	-
8	Kolab	01	01	-	_	_
9.	Vansadhara	02	02	-	-	-
10.	Indravati	01	01	_	_	-
11.	Bahuda	01	01	_	-	-
	Total	129	112	14		2
* 1 station	is Drain					

Water quality with respect to other parameters at all the monitoring stations except at Paradeep D/s, Devi at Macchagaon, Potagarh, Chandbali U/s, Chandbali D/s and Dhamra remain within the criteria limit for Class - C water quality laid down under IS: 2296-1982 (Tolerance limits for inland surface water bodies). Water quality at Paradeep D/s, Devi at Macchagaon, Potagarh, Chandbali U/s, Chandbali D/s and Dhamra are greatly influenced by the tidal effect as these stations are very close to the sea confluence.

Table-5.18 Annual Average and Range values of Four Criteria Parameters (January-December, 2019)

(A) Mahanadi River System (2019)

SI. No	Sampling Location	No. of Obs.	A	(Range	erage val of values meters		of vio	quency olation ent of vi- n) from gnated ia value	Designated Class	Existing Class	Parameters responsible for down- grading	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			the water quality	
Ib r	iver											
1.	Sundar- garh	12	7.2 (6.7- 8.0)	7.1 (5.8- 8.1)	0.8 (0.2- 1.7)	1012 (2-3500)	0	0	С	С		
2.	Jharsuguda	12	7.3 (6.5- 8.2)	7.9 (7.4- 8.8)	1.3 (0.3- 2.0)	2103 (640- 4900)	0	0	С	С		
3.	Brajarajna- gar U/s	12	7.5 (6.7- 8.2)	7.9 (7.6- 8.6)	1.0 (0.4- 1.6)	1759 (330- 4700)	0	0	С	С		
4.	Brajarajna- gar D/s	12	7.5 (6.9- 8.2)	7.5 (7.2- 8.0)	1.5 (0.5- 2.6)	2341 (490- 4900)	0	0	С	С		
Bhe	eden river											
5.	Jharsuguda	12	7.6 (7.0- 8.4)	7.8 (7.4- 8.6)	1.1 (0.2- 2.0)	1560 (20-4900)	0	0	С	С		
Hira	akud reservo	oir										
6.	Hirakud reservoir	12	7.7 (7.3- 8.4)	8.0 (7.0- 8.6)	0.7 (0.2- 1.3)	508 (2-220)	0	0	С	С		
Pov	ver Channel											
7.	Power Channel U/s	12	7.7 (7.2- 8.2)	7.3 (6.2- 8.2)	0.7 (0.4- 1.2)	285 (2-1100)	0	0	С	С		
8.	Power Channel D/s	12	7.5 (6.6- 7.9)	7.2 (6.0- 8.2)	0.8 (0.4- 1.3)	424 (2-1300)	0	0	С	С		
Mal	nanadi river											
9	Sambalpur U/s	12	7.4 (6.7- 7.8)	7.3 (6.2- 8.2)	0.8 (0.5- 1.1)	1549 (45-4900)	0	0	С	С		
10	Sambalpur D/s	12	7.5 (6.7- 8.3)	7.2 (6.6- 7.8)	1.4 (0.7- 1.9)	4716 (130- 35000)	0	2 (17)	С	Doesn't conform to Class C	ТС	Wastewater of Sam- balpur city

Sl. No	Sampling Location	No. of Obs.	A	(Range	erage val of values meters		of vio	quency olation ent of vi- n) from	Desig- nated Class	Existing Class	Parameters responsible for	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/		gnated ia value TC			down- grading the water	
11.	Sambalpur FD/s at Shankar- math	12	7.4 (7.0- 7.7)	7.1 (6.4- 7.8)	1.0 (0.3- 1.6)	2452 (110- 22000)	0	1 (8)	С	Doesn't conform to Class C	quality TC	Wastewater of Sam- balpur city
12.	Sambalpur FFD/s at Huma	12	7.5 (7.0- 8.2)	7.4 (6.8- 8.2)	0.9 (0.3- 1.9)	817 (20-3500)	0	0	С	С		
13.	Sonepur U/s	12	7.6 (7.0- 8.3)	7.4 (6.6- 8.2)	0.6 (0.3- 1.0)	585 (2-3500)	0	0	С	С		
14.	Sonepur D/s	12	7.6 (7.0- 8.2)	6.9 (6.2- 7.8)	0.9 (0.4- 2.3)	1082 (20-3500)	0	0	С	С		
15.	Tikarapada	12	7.4 (6.7- 8.3)	7.5 (6.2- 8.6)	0.6 (0.3- 0.9)	403 (2-1300)	0	0	С	С		
16.	Narasing- hpur	12	7.3 (6.6- 8.3)	8.0 (6.2- 9.2)	0.8 (0.3- 1.7)	2139 (20-7900)	0	1 (8)	С	С		
17.	Mundali	12	7.3 (6.6- 8.3)	7.7 (6.4- 8.9)	0.7 (0.3- 1.3)	1181 (120- 3500)	0	0	С	С		
18.	Cuttack U/s	12	7.4 (6.7- 8.3)	7.9 (6.4- 9.1)	0.7 (0.4- 1.0)	1292 (20-3300)	0	0	С	С		
19.	Cuttack D/s	12	7.4 (6.9- 8.0)	7.4 (4.8- 8.7)	1.2 (0.5- 1.8)	4090 (78- 17000)	0	2 (17)	С	С		
20.	Cuttack FD/s	12	7.4 (6.9- 8.0)	8.0 (7.3- 9.3)	0.9 (0.4- 1.4)	3111 (45- 13000)	0	1 (8)	С	С		
21.	Paradeep U/s	12	7.5 (6.8- 8.2)	7.6 (6.0- 9.0)	1.0 (0.2- 1.9)	720 (78-2200)	0	0	С	С		
22.	Paradeep D/s	12	7.6 (7.1- 8.2)	7.3 (5.8- 9.0)	0.9 (0.5- 1.5)	327 (2-1100)	0	0	С	С		
Ong	River											
23.	Dharu- akhaman	12	7.6 (7.1- 8.2)	7.1 (6.2- 7.8)	0.9 (0.2- 1.2)	275 (2-2200)	0	0	С	С		
Tel	River											
24.	Monmunda	12	7.6 (6.9- 8.1)	7.21 (6.6- 7.8)	0.7 (0.4- 1.2)	379 (2-2200)	0	0	С	С		

Sl. No	Sampling Location	No. of Obs.	A		erage val of values		of vi	juency olation ent of vi-	Desig- nated	Existing Class	Parameters respon-	Possible Reason
				Para	meters		desi	n) from gnated ia value	Class		sible for down- grading	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			the water quality	
Kat	hajodi river											
25.	Cuttack U/s	12	7.6 (7.0- 8.4)	7.6 (6.0- 8.8)	0.7 (0.4- 1.1)	1256 (20-3500)	0	0	С	С		
26.	Cuttack D/s	12	7.5 (7.0- 8.0)	7.0 (4.9- 8.4)	2.1 (0.8- 3.9)	35350 (2200- 160000)	2 (17)	8 (67)	С	Doesn't conform to Class C	BOD, TC	Waste water of Cuttack city
27.	Matt- agajpur (Cuttack FD/s)	12	7.4 (6.6- 8.4)	6.5 (5.0- 8.6)	2.0 (0.5- 3.5)	19229 (140- 160000)	2 (17)	4 (33)	С	Doesn't conform to Class C	BOD, TC	
28.	Kamasasan (Cuttack FFD/s)	12	7.4 (6.6- 8.1)	7.3 (5.7- 8.8)	1.0 (0.5- 1.6)	1641 (20-3500)	0	0	С	С		
Seri	ua River											
29.	Sankhatra- sa (Cuttack FD/s)	12	7.3 (6.8- 7.9)	7.5 (6.4- 8.6)	1.5 (0.7- 3.1)	7925 (1300- 54000)	1 (8)	3 (25)	С	Doesn't conform to Class C	BOD, TC	Waste water of Cuttackcity
Kua	khai river										•	
30	Bhubane- swar FU/s	12	7.4 (6.6- 8.3)	7.4 (5.5- 8.7)	1.1 (0.8- 2.2)	1479 (330- 3500)	0	0	С	С		
31.	Bhubane- swar U/s	12	7.4 (6.8- 8.0)	7.4 (6.1- 9.6)	1.5 (1.0- 2.8)	2778 (330- 4900)	0	0	С	С		
Day	a river											
32.	Gelapur	12	7.4 (6.7- 8.2)	7.9 (5.5- 9.1)	0.9 (0.4- 2.3)	1888 (260- 3500)	0	0	С	С		
33.	Bhubane- swar D/s	12	7.3 (6.8- 7.5)	6.1 (4.1- 7.7)	3.8 (1.8- 7.3)	38000 (3500- 160000)	7 (58)	10 (83)	С	Doesn't conform to Class C	BOD, TC	Waste water of Bhubane- swar city
34.	Bhubane- swar FD/s	12	7.3 (6.7- 7.9)	6.3 (4.9- 7.5)	3.0 (1.3- 7.1)	26500 (2400- 160000)	5 (42)	9 (75)	С	Doesn't conform to Class C	BOD, TC	
35.	Kanas	12	7.4 (6.9- 8.1)	6.5 (4.4- 8.1)	2.0 (0.9- 5.1)	7117 (1300- 17000)	1 (8)	6 (50)	С	Doesn't conform to Class C	BOD, TC	Human activities

Sl. No	Sampling Location	No. of Obs.	A		erage val of values		of vi	uency olation ent of vi-	Desig- nated	Existing Class	Param- eters respon-	Possible Reason
				Para	meters		olatio desi	n) from gnated ia value	Class		sible for down- grading	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			the water quality	
Gan	gua River											
36.	Near Rajdhani Engg. College	12	7.0 (6.5- 7.5)	2.2 (0.9- 5.5)	9.7 (0.7- 20.6)	138250 (24000- 160000)	11 (92)	12 (100)	С	Doesn't conform to Class C	DO#, BOD, TC	
37.	Palasuni	12	7.0 (6.6- 7.8)	2.4 (1.0- 4.6)	11.7 (1.2- 25.5)	148667 (24000- 160000)	11 (92)	12 (100)	С	Doesn't conform to Class C	DO##, BOD, TC	Waste water
38.	Samantray- pur	12	7.1 (6.5- 8.0)	1.7 (0.6- 4.3)	14.7 (1.7- 39.2)	160000 (160000- 160000)	11 (92)	12 (100)	С	Doesn't conform to Class C	DO#, BOD, TC	of Bhubane- swar city
39.	Vadimula	11	7.0 (6.7- 7.4)	3.7 (0.9- 5.6)	5.4 (2.0- 12.6)	121455 (16000- 160000)	9 (82)	12 (100)	С	Doesn't conform to Class C	DO###, BOD, TC	
Birt	ıpa River											
40.	Choudwar D/s	12	7.5 (6.8- 8.5)	7.5 (6.0- 8.7)	0.8 (0.2- 2.4)	1629 (260- 3500)	0	0	С	С		
Kus	habhadra R	iver										
41.	Bhingarpur	12	7.6 (6.7- 8.4)	8.1 (6.5- 10.6)	1.2 (0.2- 2.3)	2203 (230- 4300)	0	0	С	С		
42.	Nimapara	12	7.5 (6.8- 8.2)	7.4 (5.8- 9.3)	1.5 (0.6- 2.6)	2740 (490- 5400)	0	1 (8)	С	С		
43.	Gop	12	7.5 (6.9- 8.3)	7.2 (5.9- 9.1)	1.2 (0.3- 2.5)	2349 (790- 4000)	0	0	С	С		
# ## ###	Frequency Frequency	of viola	ation for	DO is 10	times (83% of tota	al obsei	vation)				
Bha	rgavi River											
44.	Chandan- pur	12	7.5 (6.5- 8.4)	7.0 (5.5- 8.2)	1.0 (0.3- 1.6)	3391 (790- 9200)	0	1 (8)	С	С		
Mar	ngala River											
45.	Malatipat- pur	12	7.4 (6.5- 8.5)	6.4 (5.4- 7.8)	1.0 (0.5- 1.7)	2155 (170- 3500)	0	0	С	С		
46.	Golasahi	12	7.5 (6.7- 8.4)	6.9 (5.4- 8.9)	2.9 (0.8- 7.4)	4080 (20- 11000)	3 (25)	3 (25)	С	Doesn't conform to Class C	BOD, TC	Human activities

Sl. No	Sampling Location	No. of Obs.	A		erage val of values		of vi	uency olation ent of vi-	Desig- nated	Existing Class	Param- eters respon-	Possible Reason
				Para	meters		olatio desi	n) from gnated ia value	Class		sible for down- grading	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			the water quality	
Dev	i River											
47.	Mach- hagaon	12	7.6 (6.7- 8.2)	7.6 (5.8- 9.8)	1.1 (0.4- 1.8)	459 (2-3500)	0	0	С	С		
Gob	ariRiver											
48.	Kendrapa- ra U/s	12	7.7 (7.0- 8.3)	7.2 (6.0- 8.8)	1.0 (0.5- 1.8)	2189 (79-4300)	0	0	С	С		
49.	Kendrapa- ra D/s	12	7.5 (6.7- 8.1)	6.1 (4.2- 8.4)	1.4 (0.7- 2.3)	3690 (490- 16000)	0	2 (17)	С	С		
	aRiver											
50.	Bijipur	12	7.5 (6.8- 8.3)	6.3 (4.7- 7.7)	1.6 (0.6- 2.5)	2825 (1100- 4700)	0	0	С	С		
Kus	umi River			•					•			
51.	Tangi	12	7.4 (6.6- 8.2)	7.3 (6.1- 9.1)	1.4 (0.5- 2.6)	3267 (1300- 5400)	0	1 (8)	С	С		
Kan	sariRiver								•			
52.	Banapur	12	7.3 (6.6- 8.2)	6.7 (5.8- 7.9)	1.3 (0.5- 2.5)	3326 (490- 4900)	0	0	С	С		
Bad	lasankha Riv	er										
53.	Lan- galeswar	12	7.2 (6.6- 8.2)	6.5 (4.5- 8.5)	1.4 (0.6- 2.3)	2752 (330- 4900)	0	0	С	С		
Sab	ulia River											
54.	Rambha	12	7.4 (6.8- 8.4)	6.8 (5.8- 7.8)	1.2 (0.4- 2.2)	2801 (270- 5400)	0	2 (17)	С	С		
Rati	nachira Rive	r										
55.	Kumardihi	12	7.4 (6.6- 8.1)	6.9 (5.5- 7.8)	1.0 (0.4- 2.7)	2463 (170- 3500)	0	0	С	С		
	Class 'C' wat quality Criter IS-2296-198	ria	6.5- 8.5	4 and above	3 or less	5000 or less				g water sou ment follow		onventional infection

NB :The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml. (Ref : IS 2296-1982 foot note)

(B) Brahmani River System (2019)

Sl. No	Sampling Location	No. of Obs.	A	(Range	erage val of values		of viol	quency olation cent of ation) desig-	Designated Class	Existing Class	Parameters responsible for down-	Possible Reason
				Para	meters		nated	criteria alue			grading the	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
San	khriver											
1.	Sankh U/s	12	7.2 (6.6- 7.6)	7.3 (5.6- 9.1)	0.8 (0.2- 1.5)	1601 (45-4900)	0	0	С	С		
Koe	l River											
2.	Koel U/s	12	7.2 (6.8- 7.5)	7.2 (5.8- 9.0)	0.9 (0.2- 2.0)	2059 (210- 3500)	0	0	С	С		
Bra	hmani river											
3.	Panposh U/s	12	7.3 (6.8- 7.9)	7.6 (6.2- 8.9)	1.1 (0.4- 2.3)	1800 (490- 3500)	0	0	С	С		
4.	Panposh D/s	12	7.2 (6.4- 7.7)	5.8 (4.2- 7.6)	4.1 (2.2- 5.3)	19642 (3500- 54000)	10 (81)	11 (89)	С	Doesn't conform to Class C	BOD, TC	Waste water of Rourkela town and Steel Plant
5.	Rourkela D/s	12	7.1 (6.5- 7.7)	5.9 (4.5- 8.1)	3.1 (0.5- 4.6)	10075 (2100- 22000)	7 (57)	7 (57)	С	Doesn't conform to Class C	BOD, TC	-do-
6.	Rourkela FD/s (Attaghat)	12	7.2 (6.5- 7.6)	6.9 (5.2- 8.2)	2.0 (0.5- 4.6)	2497 (340- 11000)	1 (8)	1 (8)	С	Doesn't conform to Class C	BOD, TC	-do-
7.	Rourkela FD/s (Biri- tola)	12	7.3 (6.6- 7.9)	7.1 (5.0- 8.4)	1.0 (0.4- 1.8)	1020 (1.8- 3500)	0	0	С	С		
8.	Bonaigarh	12	7.4 (6.7- 7.8)	7.4 (6.1- 9.4)	0.8 (0.2- 1.2)	1863 (20- 11000)	0	1 (8)	С	С		
9.	Rengali	12	7.5 (6.9- 8.4)	7.4 (6.0- 9.6)	0.8 (0.4- 1.3)	318 (130- 1100)	0	0	С	С		
10.	Samal	12	7.5 (6.9- 8.2)	7.6 (6.0- 9.4)	0.9 (0.3- 1.8)	851 (130- 3500)	0	0	С	С		
11	Talcher FU/s	12	7.5 (7.0- 8.2)	7.6 (6.8- 9.2)	0.8 (0.2- 1.3)	499 (45- 1400)	0	0	С	С		
12	Talcher U/s	12	7.4 (6.6- 8.2)	7.8 (7.0- 8.8)	0.8 (0.2- 1.9)	904 (45- 2400)	0	0	С	С		
13.	Mandapal	12	7.5 (6.7- 7.9)	7.2 (6.6- 8.0)	1.0 (0.4- 2.0)	2358 (230- 4000)	0	0	С	С		

Sl. No	Sampling Location	No. of Obs.	A		erage val of values		of vi (Per	quency olation cent of ation)	Designated Class	Existing Class	Parameters responsible for	Possible Reason
				Para	meters		from nated	desig- criteria			down- grading the	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	тс			water quality	
14.	Talcher D/s	12	7.5 (6.8- 8.1)	7.8 (7.0- 9.0)	1.2 (0.4- 2.1)	1363 (130- 3500)	0	0	С	С		
15.	Talcher FD/s	12	7.6 (7.2- 8.2)	8.1 (6.6- 9.4)	0.8 (0.2- 2.2)	508 (20- 1300)	0	0	С	С		
16.	Dhenkanal U/s	12	7.5 (7.1- 7.9)	8.0 (7.2- 8.6)	0.7 (0.3- 1.2)	488 (45- 1100)	0	0	С	С		
17.	Dhenkanal D/s	12	7.7 (7.0- 8.4)	8.1 (7.2- 8.8)	1.0 (0.3- 1.8)	1250 (130- 4900)	0	0	С	С		
18.	Bhuban	12	7.5 (6.7- 8.1)	7.9 (7.2- 8.8)	0.9 (0.2- 1.6)	1314 (20- 3500)	0	0	С	С		
19.	Kabat- abandha	12	7.6 (6.9- 8.4)	7.8 (7.2- 9.2)	0.7 (0.1- 1.2)	593 (78- 1700)	0	0	С	С		
20.	Dharmasa- la U/s	12	7.6 (7.0- 8.4)	7.6 (7.2- 8.1)	0.9 (0.4- 1.7)	1798 (330- 5400)	0	1 (8)	С	С		
21.	Dhar- masalaD/s	12	7.6 (7.1- 8.3)	7.5 (6.8- 8.4)	1.1 (0.6- 2.1)	2250 (330- 5400)	0	1 (8)	С	С		
22.	Pottamun- dai	12	7.8 (7.0- 8.4)	7.6 (5.8- 9.6)	0.6 (0.3- 1.1)	2420 (130- 5400)	0	1 (8)	С	С		
Nar	ndira river											
23.	Nandira U/s	12	7.6 (7.0- 7.9)	7.8 (6.0- 9.4)	0.8 (0.4- 1.4)	1079 (45- 2400)	0	0	С	С		
24.	Nandira D/s	12	7.8 (7.1- 8.2)	7.4 (6.4- 9.2)	1.3 (0.6- 1.9)	1714 (170- 3500)	0	0	С	С		
Kisi	indajhor											
25.	Kisinda- jhor	12	7.7 (7.2- 7.9)	6.7 (5.0- 8.7)	1.1 (0.2- 1.9)	1569 (130- 3500)	0	0	С	С		
Kha	rasuanRiver						•					
26.	Khanditara	12	7.7 (7.1- 8.3)	7.6 (6.8- 8.2)	0.6 (0.2- 1.1)	1175 (110- 4300)	0	0	С	С		
27.	Binjharpur	12	7.5 (6.8- 8.2)	7.6 (6.5- 8.4)	0.8 (0.1- 1.8)	2828 (330- 4600)	0	0	С	С		

CI	6124	NT.	Α.	1	1		D		D. da	E-1-41	D	D 9.1
S1. No	Sampling Location	No. of	A		erage val of values			uency olation	Desig- nated	Existing Class	Param- eters	Possible Reason
110	Locuton	Obs.		(Tunge	OI VAIACS	<u></u>		cent of	Class	Cluss	respon-	Reason
							viol	ation)			sible for	
				Para	meters			desig-			down-	
								criteria			grading	
					Don	ma		alue			the water	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/	BOD	TC			quality	
				(mg/l)	(IIIg/1)	100 ml)						
28.	Aul	12	7.8	7.5	0.9	1821	0	0	С	С		
			(7.0-	(6.4-	(0.4-	(200-						
			8.4)	9.2)	1.8)	3500)						
Gui	radih nallah											
29.	Guradih	12	7.3	4.7	5.4	64117			Drain			
	nallah		(6.4-	(2.8-	(2.9-	(3500-						
			8.4)	8.0)	8.5)	160000)						
Bac	ljhor nallah											
30.	Badjhor	12	7.8	7.5	1.2	1893	0	0	С	С		
	nallah		(7.3-	(5.6-	(0.4-	(230-						
_	4 54		8.0)	9.4)	1.8)	3500)						
Dar	nsala River											
31.	Dayanabil	12	7.5	7.1	0.7	1519	0	0	С	С		
			(6.6-	(6.4-	(0.1-	(78-						
			8.4)	8.4)	1.5)	3500)						
Gar	ndanallah											
32.	Marthapur	12	7.5	7.0	1.2	1374	0	0	С	С		
			(6.9-	(6.2-	(0.9-	(92-						
т.	. D'		8.1)	8.1)	1.6)	4600)						
	gira River			,								
33.	Angul U/s	12	8.1	7.5	0.8	1206	0	0	С	С		
			(7.5- 8.5)	(4.6- 10.2)	(0.2- 1.3)	(170- 3500)						
24	Angul D/a	12			1.0	2158	0	1	С	С		
34.	Angul D/s	12	8.1 (7.7-	7.3 (4.0-	(0.2-	(700-	0	(8)				
			8.4)	9.8)	1.6)	5400)		(0)				
Ran	niala River											
35.	Kam-	12	7.6	8.0	0.8	1369	0	0	С	С		
00.	akhyana-	12	(7.0-	(6.6-	(0.2-	(110-						
	gar		8.1)	9.4)	1.7)	3500)						
Bar	nguru nallah											
36.	Banguru	12	7.4	7.6	0.9	779	0	0	С	С		
	nallah		(6.8-	(6.2-	(0.4-	(45-						
			7.9)	9.2)	1.9)	3500)						
Sin	gadajhor											
37.	Singada-	12	7.8	7.4	1.0	1386	0	0	С	С		
	jhor		(6.6-	(4.8-	(0.2-	(230-						
			8.3)	9.8)	2.0)	3500)						
Tiki	ira River											
38.	KanihaU/s	12	7.9	7.8	0.8	1140	0	0	С	С		
			(7.1-	(5.2-	(0.2-	(20-						
			8.3)	9.2)	1.7)	3500)						

Sl. No	Sampling Location	No. of Obs.	A	(Range	erage val of values meters		of viol (Per- viol from nated	quency olation cent of ation) desig- criteria alue	Designated Class	Existing Class	Parameters responsible for down- grading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	тс			water quality	
39.	KanihaD/s	12	7.8 (7.0- 8.4)	7.5 (6.0- 8.6)	1.0 (0.3- 1.7)	1945 (40- 4900)	0	0	С	С		
Bar	ngurusingada	ajhor										
40.	Bangu- rusingada- jhor	12	7.6 (6.8- 8.1)	7.2 (5.4- 9.6)	1.0 (0.2- 2.2)	1614 (68- 4900)	0 0		С	С		
Kar	o River											
41.	Barbil	12	7.5 (7.0- 8.0)	(7.0- (5.9- (0.3-		480 (110- 1700)	0	0	С	С		
	Class 'C' ter quality Cr IS-2296-198		6.5- 4 and 3 or 5000 o less			5000 or less				ng water so atment follo		convention- sinfection

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

(C) Baitarani river System (2019)

Sl. No	Sampling Location	No. of Obs.	A	(Range	erage val of values meters		Frequency of violation (Percent of violation) from designated criteria value		Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
Kun	dra nallah											
1.	Joda	12	7.3 (6.5- 7.7)	6.7 (5.8- 8.6)	1.0 (0.5- 1.8)	1754 (170- 4900)	0	0	С	С		
Kus	ei River											
2.	Deogaon	12	7.5 (6.8- 8.3)	7.5 (5.7- 10.8)	1.1 (0.3- 2.2)	3158 (1100- 9400)	0	0	С	С		
Bait	arani River											
3.	Naigarh	12	7.4 (6.5- 8.0)	7.0 (5.8- 8.2)	0.8 (0.3- 1.7)	951 (170- 4700)	0	0	С	С		

S1. No	Sampling Location	No. of Obs.	Annual average values (Range of values) Parameters		of violation		Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason		
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
4.	Unchabali	12	7.3 (6.5- 7.8)	6.8 (6.0- 7.9)	0.7 (0.3- 1.4)	978 (68-3500)	0	0	С	С		
5.	Champua	12	7.4 (6.5- 7.8)	6.9 (6.2- 8.3)	0.9 (0.4- 1.8)	794 (92-1700)	0	0	С	С		
6.	Tribindha	12	7.5 (6.6- 8.0)	7.1 (6.3- 9.1)	0.6 (0.3- 1.3)	965 (130- 2200)	0	0	С	С		
7.	Joda	12	7.4 (6.6- 7.8)	6.6 (5.5- 8.0)	0.9 (0.3- 1.8)	1827 (260- 4900)	0	0	С	С		
8.	Anandpur	12	7.5 (6.7- 8.1)	7.4 (6.2- 8.6)	0.9 (0.3- 1.6)	2499 (490- 4700)	0	0	С	С		
9.	Jajpur	12	7.6 (7.1- 8.2)	7.3 (6.4- 7.9)	1.1 (0.3- 2.4)	2248 (490- 4300)	0	0	С	С		
10.	Chandbali U/s	12	7.7 (7.0- 8.5)	7.3 (6.0- 8.4)	0.6 (0.2- 1.6)	2481 (430- 5400)	0	1 (8)	С	С		
11.	Chandbali D/s	12	7.6 (7.0- 8.4)	7.4 (6.4- 8.4)	1.0 (0.2- 2.3)	3080 (920- 5400)	0	1 (8)	С	С		
Sala	ındi River											
12.	Bhadrak U/s	12	7.7 (6.8- 8.2)	7.3 (6.0- 8.8)	0.7 (0.2- 1.2)	1463 (110- 4300)	0	0	С	С		
13.	Bhadrak D/s	12	7.6 (6.9- 8.1)	7.0 (5.8- 8.8)	1.2 (0.4- 2.3)	3058 (700- 5400)	0	1 (8)	С	С		
Dha	ımra River											
14.	Dhamra	12	7.6 (7.0- 8.0)	7.5 (6.4- 8.4)	1.1 (0.4- 1.8)	953 (1.8- 3500)	0	0	С	С		
	Class 'C' water quality Criteria (IS-2296-1982) 6.5- 12 3 or less less			5000 or less				ng water so atment follo		convention- sinfection		

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(D) Rushikulya River System (2019)

Sl. No	Sampling Location	No. of Obs.	Annual average values (Range of values) Parameters			of vi (Per viol from nated	quency olation cent of ation) desig- criteria alue	Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason	
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
Rus	selkunda Re	eservoi	r									
1.	Russelkun- da	12	7.6 (6.9- 8.4)	8.6 (6.8- 11.0)	1.1 (0.2- 1.9)	1868 (1.8- 3500)	0	0	С	С		
Bad	aNadi											
2	Aska	12	7.8 (7.1- 8.3)	7.4 (5.6- 9.2)	1.4 (0.4- 2.3)	3113 (460- 9200)	0	1 (8)	С	С		
Rus	hikulya Rive	er					'					
3.	Aska	12	7.8 (7.0- 8.3)	7.1 (5.3- 8.2)	1.1 (0.6- 2.3)	3517 (1100- 5400)	0	2 (17)	С	С		
4.	Nalabanta	12	7.9 (7.2- 8.4)	7.0 (4.5- 9.3)	1.3 (0.2- 2.4)	4143 (130- 16000)	0	2 (17)	С	С		
5.	Madhopur	12	7.9 (7.1- 8.4)	7.1 (5.0- 8.5)	1.2 (0.5- 2.0)	3263 (230- 16000)	0	1 (8)	С	С		
6.	Potagarh	12	7.9 (7.4- 8.4)	7.8 (4.7- 10.0)	1.4 (0.2- 2.6)	1188 (1.8- 3500)	0	0	С	С		
	Class 'C' water quali- ty Criteria (IS-2296-1982)		6.5- 8.5	4 and above	3 or less	5000 or less				ng water so atment follo		convention- sinfection

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

(E) Nagavali River System(2019)

Sl. No	Sampling Location	No. of Obs.	A	(Range	erage values of values) meters		of viol (Perviol from nated	quency colation cent of ation) desig- criteria	Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
Nag	gavali river											
1.	Penta U/s	12	7.5 (6.6- 8.4)	7.5 (7.2- 7.8)	0.8 (0.3- 1.3)	1350 (170- 3500)	0	0	С	С		

Sl. No	Sampling Location	No. of Obs.	Annual average values (Range of values) Parameters				of viol (Perviol from	Frequency of violation (Percent of violation) from designated criteria value		Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
2.	J.K. Pur D/S	12	7.5 (6.7- 8.4)	6.6 (6.2- 7.1)	1.3 (0.4- 2.2)	2528 (230- 5400)	0	1 (8)	С	С		
3.	Rayagada D/S	12	7.5 (6.9- 8.3)	7.1 (6.2- 7.5)	1.0 (0.2- 1.9)	1580 (110- 3500)	0	0	С	С		
	Class 'C' wat quality Crite IS-2296-198	ria	6.5- 8.5	4 and above	3 or less	5000 or less				ng water so atment follo		convention- sinfection

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

(F) Subarnarekha River System (2019)

SI. No	Sampling Location	No. of Obs.	Ai	Annual average values (Range of values) Parameters				quency olation cent of ation) desig- criteria alue	Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	тс			water quality	
Sub	arnarekha	river										
1.	Rajghat	12	7.8 (7.0- 8.5)	7.5 (6.4- 8.4)	1.2 (0.4- 1.9)	1364 (260- 3500)	0	0	С	С		
	Class 'C' wat quality Crite IS-2296-198	ria	6.5- 4 and 3 or 15000 or 16ss less						ng water so atment follo		convention- sinfection	

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(G) Budhabalanga River System (2019)

SI. No	Sampling Location	No. of Obs.	Ai	(Range	erage values of values) neters		of violation (Percent of violation) from designated criteria value		Designated Class	Existing Class	Parameters responsible for down- grading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
Buc	lhabalanga	river										
1.	Baripada D/s	12	7.6 (6.9- 8.0)	7.4 (6.0- 8.8)	1.1 (0.3- 1.8)	3633 (2200- 5400)	0	1 (8)	С	С		
2.	Balasore U/s	12	7.6 (7.1- 7.9)	7.3 (6.4- 8.4)	1.2 (0.4- 1.9)	2950 (1700- 4900)	0	0	С	С		
3.	Balasore D/s	12	7.5 (6.9- 7.9)	6.9 (5.6- 8.0)	1.7 (1.0- 2.5)	6008 (2400- 17000)	0	2 (17)	С	С		
Son	e River											
4.	4. Hatigond 12 7.5 7.2 (7.0- (5.6- 7.9) 8.8)		1.3 (0.2- 2.7)	2052 (330- 3500)	0 0		С	С				
				4 and above	3 or less	5000 or less				ng water so atment follo		convention- sinfection

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

(H) Kolab River System (2019)

Sl. No	Sampling Location	No. of Obs.	Annual average values (Range of values) Parameters				of viol (Per viol from nated	quency olation cent of ation) desig- criteria alue	Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	тс			water quality	
Ker	andiRiver											
1.	Sunabeda	12	7.5 (6.9- 8.4)	7.2 (6.3- 7.9)	0.8 (0.2- 1.4)	657 (20- 1700)	0	0	С	С		
(Class 'C' water quality Criteria (IS-2296-1982) Class 'C' water 6.5- 4 and 3 or less less						ng water so atment follo		convention- sinfection			

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(I) Vansadhara River System (2019)

Sl. No	Sampling Location	No. of Obs.	Annual average values (Range of values) Parameters				of vi (Per viol from nated	Frequency of violation (Percent of violation) from designated criteria value		Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	TC			water quality	
Van	Vansadhara River											
1.	Muniguda	12	7.6 (7.0- 8.3)	7.4 (6.9- 7.8)	0.9 (0.2- 1.9)	1090 (78- 4900)	0	0	С	С		
2.	Gunupur	12	7.6 (6.6- 8.4)	7.8 (7.1- 8.9)	0.9 (0.2- 1.6)	1399 (78- 4900)	0	0	С	С		
(Class 'C' water quality Criteria (IS-2296-1982)		6.5- 8.5	4 and above	3 or less	5000 or less				ng water so atment follo		convention- sinfection

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

(J) Indravati River System (2019)

Sl. No	Sampling Location	No. of	A		erage val of values		Frequency of violation		Desig- nated	Existing Class	Param- eters	Possible Reason
		Obs.	Parameters			viol from nated	cent of ation) desig- criteria	Class		responsible for downgrading the		
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	тс			water quality	
Ind	ravati River											
1.	Nawarang- pur	12	7.5 (6.6- 8.2)	7.4 (6.4- 8.2)	0.8 (0.2- 2.0)	860 (170- 3500)	0	0	С	С		
	Class 'C' wat quality Crite IS-2296-198	ria	6.5- 4 and 3 or 5000 or less less						ng water so atment follo		convention- sinfection	

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(K) Bahuda River System (2019)

Sl. No	Sampling Location	No. of Obs.	Annual average values (Range of values) Parameters				of viol (Per viol from nated	quency olation cent of ation) desig- criteria alue	Designated Class	Existing Class	Parameters responsible for downgrading the	Possible Reason
			pН	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	BOD	тс			water quality	
Bah	nuda River											
1.	Damodar- pally	12	7.9 (6.9- 8.4)	7.6 (5.8- 9.0)	1.3 (0.2- 2.4)	1459 (45- 4300)	0	0	С	С		
	Class 'C' water quality Criteria (IS-2296-1982)		6.5- 8.5	4 and above	3 or less	5000 or less				ng water so atment follo		convention- sinfection

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

Table-5.19: Water Quality With Respect to Other Parameters during 2019 (January-December)

(2013)	
System	
II KIVET S	
Mananadi Kiver System (2013	
₹)	

		T			0.293	(0.160- 0.430)	0.320	0.478)	0.362	(0.233- 0.495)	0.334	(0.234-	ì	0.863	(0.224-1.410)		0.357	080		0.317	0.443)	0.300 (0.168- 0.393)
		4			<u> </u>																-	
		\mathbf{SO}_4			<u> </u>	(2.11-)	12.98	17.78)	-	(6.55- 17.28)	12.85	(7.02-		27.49	(7.71-74.87)		12.88 (7.46-	707.18		13.78	19.77)	14.28 (11.19- 21.52)
ts		CI	(mg/l)		9.7 (3.8-	16.3)	9.9 (3.8-	10.0)	9.8 (4.8-	14.4)	10.2	(5.8-	(23.0	(5.8-76.9)		9.7 (7.6-12.4)			9.9 (3.8-14.4)		9.8 (3.8-16.3)
tituen		Ш	(m)		09	(32- 92)	68	108)	28	(40- 102)	62	108)	(77	(52- 140)		71 (60-	(00		72 (60-	84)	75 (60- 92)
Mineral constituents		TDS			-09) 26	158)	107 (84-	(761	-52) 96	132)	101 (84-	148)		152 (92-	296)		105 (88- 120)			109 (88- 124)		108 (84- 128)
Mine	(1)	В			0.010	(0.003-	0.118	0.560)	0.047	(0.003- 0.140)	0.046	(0.007-0.09)		0.035	(0.003-		0.046 (0.003-	0.204)		0.014	0.031)	0.024 (0.010- 0.035)
	(Range of values)	SAR			0.41	(0.12-0.60)	0.44	0.80)	0.46	(0.27- 0.70)	0.45	(0.21-0.066)		0.84	(0.22-2.99)		0.36 (0.28-	0.51)		0.36	0.68)	0.34 (0.19- 0.57)
		EC	(\alpha S/\cm)		154 (95-	285)	177	263)	160	(110- 210)	167	(136-	, i	255	(141- 486)		175 (152-	(617		178 (141-	224)	177 (139- 215)
Bacteri- ological parameter	average values	FC	(MP- N/100ml)		419	(2-1700)	1038	(0000-077)	628	(45-2200)	866	(78-2700)		989	(1.8-2400)		206 (1.8-940)			137 (1.8-700)		185 (1.8-700)
cators	Annual a	TKN			2.92	(0.56- 6.16)	2.64	5.60)	2.68	(0.56- 5.88)	2.66	(0.84-	Ì	2.38	(0.56-5.32)		2.18 (0.84-	0.00		2.57	4.76)	2.57 (1.12- 4.76)
Organic pollution Indicators		Free NH ₃ -N	(mg/l)		0.010 (0-	0.070)	0.010 (0-	0.040)	0.012 (0-	0.045)	0.023 (0-	0.084)		0.025	(0-0.175)		0.032	(601.0		0.025	0.090)	0.026 (0-
anic pollu		NH ₄ -N	(n		0.826	(0.056-2.240)	0.705	1.960)	0.616	(0.056- 1.400)	0.943	(0.112-	ì	0.635	(0.056-1.400)		0.779	1.000)		0.770	1.680)	1.148 (0.056- 3.920)
Org		СОО			7.2	(3.8- 9.7)	9.1	(4.0 - 15.6)	8.0	(5.2- 9.5)	10.9	(5.2-17.2)	Î.	0.6	(5.5- 15.3)		7.5 (4.0-	11.0)		7.2	11.6)	8.1 (3.6- 11.6)
Physical parameters		Total alkal -inity	(mg/l)		64 (32-	(86)	69 (48-	102)	67 (44-	110)	66 (44-	118)		72 (48-	116)		(88) -99) 69			71 (56- 88)		74 (52- 98)
Physi		TSS	(m)		53	(2-368)	19	(00-0)	20	(1-77)	19	(3-122)		21	(1-89)	<u>_</u>	20 (6-97)			15 (1-61)		20 (1-90)
Sam- pling Location				er	Sundar-	garh	Jharsug-	nna	Brajrajna-	gar U/s	Brajrajna-	gar D/s	Bheden river	Tharsug-	uda	Hirakud Reservoir	Hirakud reservoir	-	Fower Channel	Power Channel	s/n	Power Channel D/s
SI. No.				Ib river	1.		2.			က်	4.		Bhed	5.		Hirak	.9	٤	Fowe	7.		∞.

Si. No.	Sam- pling Location	Physic	Physical parameters	Org	anic pollt	Organic pollution Indicators	cators	Bacteri- ological parameter			Mine	Mineral constituents	tituents	100		
							Annual a	Annual average values		(Range of values)	(
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	TH	CI	SO_4	T
		m)	(mg/l)		u)	(mg/l)		(MP- N/100ml)	(\mu S/ cm)				(mg/l)	(1)		
Maha	Mahanadi river															
9.	Sambalpur 11/s	19	80	9.4	1.120	0.018 (0-	2.80	399	201	0.47	0.017	121	75	12.1	15.09 (10.32-	0.356
	e /)	(70-1)	104)	13.9)	3.640)	(200.0	6.72)	(1:0-1100)	246)	0.92)	0.045)	148)	92)	19.2)	19.40)	0.459)
10.	Sambalpur D/s	17 (2-52)	76 (48-96)	11.5 6.9- 16.2)	1.311 (0.056- 3.360)	0.031 (0-0.070)	3.87 (0.28- 8.68)	1022 (1.8-4900)	206 (150- 264)	0.45 (0.24- 0.64)	0.019 (0.003-0.066)	124 (88- 152)	80 (64-	12.8 (5.7- 19.2)	17.88 (10.24- 32.58)	0.378 (0.172- 0.573)
11.	Sambalpur FD/s at Shankar- math	24 (1-121)	81 (56- 100)	10.8 (5.7- 14.8)	1.055 (0.056- 3.360)	0.018 (0-0.050)	3,92 (1.12- 12.32)	542 (1.8-4900)	211 (153- 269)	0.49 (0.35- 0.68)	0.014 (0.003- 0.031)	129 (96- 156)	80 (64-100)	13.1 (7.7- 21.2)	18.01 (7.14- 31.22)	0.432 (0.188- 0.558)
12.	Sambalpur FFD/s at Huma	17 (1-63)	76 (58- 88)	8.8 (4.0- 15.6)	1.031 (0.056- 3.360)	0.019 (0-0.042)	3.64 (0.84- 14.56)	216 (1.8-1700)	194 (152- 249)	0.43 (0.29- 0.74)	0.012 (0.005- 0.035)	118 (96- 148)	76 (60- 94)	11.2 (7.7- 19.2)	16.77 (10.59 -28.48)	0.358 (0.209- 0.452)
13.	Sonepur U/s	28 (1-201)	78 (62- 92)	6.8 (3.5- 11.6)	1.023 (0.056- 2.520)	0.028 (0-0.109)	2.73 (0.28- 5.32)	68 (1.8-460)	196 (156- 285)	0.45 (0.33- 0.64)	0.043 (0.003- 0.353)	119 (92- 168)	76 (64- 96)	11.1 (5.8- 21.1)	16.52 (11.90- 29.85)	0.339 (0.180- 0.487)
14.	Sonepur D/s	23 (2-127)	84 (64- 108)	8.5 (4.0- 17.1)	1.517 (0.280- 5.040)	0.035 (0-0.113)	3.50 (1.40- 6.44)	282 (1.8-1700)	209 (159- 271)	0.50 (0.15- 0.70)	0.023 (0.003- 0.131)	129 (88- 184)	81 (64- 108)	12.8 (3.8- 19.2)	15.35 (5.22- 35.57)	0.326 (0.183- 0.467)
15.	Tikarapa- da	25 (1-78)	80 (62- 96)	7.5 (3.1- 9.7)	0.630 (0.280- 2.240)	0.018 (0-0.112)	3.57 (0.84- 19.60)	126 (1.8-490)	190 (157- 233)	0.45 (0.33- 0.57)	0.059 (0.003- 0.239)	118 (96- 144)	77 (64- 110)	11.8 (7.7- 18.3)	12.62 (7.59- 24.17)	0.304 (0.207- 0.672)
16.	Narasing- hpur	64 (1-435)	82 (66- 88)	9.0 (5.6- 17.1)	0.985 (0.056- 2.520)	0.029 (0-0.137)	2.71 (0.28- 6.16)	901 (1.8-3300)	189 (155- 241)	0.42 (0.17- 0.78)	0.075 (0.003- 0.367)	119 (104- 146)	80 (64- 108)	12.7 (4.8- 19.2)	10.08 (4.64- 16.79)	0.383 (0.159- 0.962)
17.	Munduli	48 (2-230)	81 (68- 92)	7.8 (5.2- 11.6)	1.031 (0.056- .080)	0.024 (0-0.154)	2.82 (0.56- 7.28)	401 (1.8-1300)	188 (154- 244)	0.35 (0.19- 0.51)	0.089 (0.003-0.388)	114 (96- 134)	77 (66-88)	10.3 (4.8- 17.3)	10.90 (3.81- 17.29)	0.344 (0.180- 0.589)

SI. No.	Sam- pling Location	Physic rame	Physical parameters	Org	anic pollu	Organic pollution Indicators	cators	Bacteri- ological parameter			Mine	Mineral constituents	tituent	vo.		
							Annual a	average values		(Range of values)						
		TSS	Total alkal -inity	СОО	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	THI	CI	\mathbf{SO}_4	T
		lm)	(mg/l)		n)	(mg/l)		(MP- N/100ml)	(µS/ cm)				(mg/l)	(1/3		
18.	Cuttack U/s	45 (1-148)	78 (56- 88)	7.6 (5.6- 10.5)	0.681 (0.056- 1.400)	0.016 (0-0.109)	2.85 (1.12- 7.84)	498 (20-3300)	185 (152- 216)	0.38 (0.15- 0.54)	0.085 (0.006- 0.343)	110 (92- 138)	76 (64- 92)	10.0 (3.8- 15.3)	11.36 (3.45- 20.02)	0.345 (0.177- 0.587)
19.	Cuttack D/s	36 (1-154)	85 (64- 96)	10.3 (6.9- 13.0)	0.868 (0.056- 1.680)	0.016 (0-0.056)	2.59 (0.84- 8.68)	1900 (45-7900)	203 (147- 264)	0.45 (0.10- 0.75)	0.054 (0.010- 0.154)	124 (92- 158)	81 (64- 100)	12.0 (2.8- 21.1)	13.48 (5.12- 21.76)	0.34 (0.171- 0.636)
20.	Cuttack FD/s	36 (1-154)	85 (64- 96)	10.3 (6.9- 13.0)	0.933 (0.280- 1.960)	0.021 (0-0.069)	2.59 (0.84- 8.68)	1900 (45-7900)	203 (147- 264)	0.45 (0.10- 0.75)	0.054 (0.010- 0.154)	124 (92- 158)	81 (64- 100)	12.0 (2.8- 21.1)	13.48 (5.12- 21.76)	0.34 (0.171- 0.636)
21.	Paradeep U/s	31 (4-97)	84 (60- 124)	13.3 (5.4- 31.0)	0.775 (0.056- 2.240)	0.017 (0-0.073)	2.96 (0.84- 8.96)	238 (20-790)	4683 (158- 13540)	11.12 (0.09- 31.11)	0.481 (0.011- 1.277)	3040 (104- 8700)	605 (60- 1800)	1614.3 (2.9- 5096.0)	160.8 (7.6- 661.7)	0.446 (0.186- 0.772)
22.	Paradeep D/s	86 (6-479)	102 (52- 192)	23.9 (9.7- 60.3)	0.826 (0.056- 3.360)	0.019 (0.001- 0.067)	2.75 (0.56- 10.64)	132 (1.8-490)	19123 (238- 44023)	41.48 (0.52- 105.28)	0.516 (0.011- 1.277)	14736 (144- 37740)	1866 (84- 3760)	7888.0 (13.5- 18740.0)	907.11 (20.36- 1815.88)	0.800 (0.261- 1.140)
Ong River	River															
23.	Dharu- akhaman	31 (2-177)	104 (60- 156)	8.8 (4.0- 13.6)	1.143 (0.280- 3.360)	0.043 (0.001- 0.146)	3.36 (1.12- 7.84)	42 (1.8-170)	250 (140- 336)	0.49 (0.14- 0.71)	0.045 (0.005- 0.357)	150 (88- 192)	96 (60- 128)	15.0 (3.8- 24.9)	16.64 (5.12- 42.91)	0.491 (0.190- 0.670)
Tel River	iver															
24.	Monmun- da	77 (2-316)	78 (52- 96)	7.9 (5.2- 11.2)	0.723 (0.280- 1.400)	0.020 (0-0.056)	2.49 (0.80- 5.32)	117 (1.8-790)	180 (118- 249)	0.35 (0.09- 0.54)	0.051 (0.006- 0.402)	110 (72- 138)	72 (48- 92)	9.8 (1.9-	10.29 (1.31- 30.09)	0.293 (0.218- 0.424)
Katha	Kathajodi River															
25.	Cuttack U/s	48 (2-169)	76 (52- 98)	8.6 (5.2- 12.2)	0.541 (0.056- 1.120)	0.017 (0-0.070)	2.24 (0.56- 6.44)	573 (20-1700)	189 (140- 283)	0.38 (0.18- 0.63)	0.048 (0.005- 0.098)	112 (84- 164)	74 (60- 96)	11.3 (3.8- 17.5)	11.72 (4.29- 21.90)	0.321 (0.180- 0.562)
26.	Cuttack D/s	50 (1-242)	92 (64-	16.8 (7.2- 21.2)	0.77 (0.28- 1.96)	0.015 (0-0.056)	4.27 (1.12- 17.36)	31520 (940-160000)	239 (157- 366)	0.53 (0.22- 1.04)	0.067 (0.017- 0.108)	141 (92- 208)	87 (64- 116)	16.0 (5.8 34.0)	15.20 (8.33- 23.38)	0.292 (0.177- 0.458)

SI.	Sam- pling	Physic rame	Physical parameters	Org	anic pollu	Organic pollution Indicators	cators	Bacteri- ological			Mine	Mineral constituents	tituents	10		
	Location							parameter								
							Annual a	Annual average values		(Range of values)	(i)					
		TSS	Total alkal -inity	COD	NH_4 -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	Ш	CI	\mathbf{SO}_4	Ţ
		m)	(mg/l)		u)	(mg/l)		(MP- N/100ml)	(\mu S/				(mg/l)	(1/		
Gang	Gangua River															
36.	Near Rajdhani Engg. College	23 (2-51)	79 (52- 124)	41.2 (15.1- 81.8)	1.680 (0.280- 3.080)	0.011	7.63 (1.96- 16.80)	138250 (24000- 160000)	273 (164- 460)	1.03 (0.46- 1.81)	0.037 (<0.003- 0.084)	158 (96- 240)	75 (52- 120)	32.6 (15.4- 56.4)	15.58 (3.45- 42.91)	0.201 (0.099- 0.439)
37.	Palasuni	42 (3-109)	79 (40- 120)	45.3 (18.9- 90.5)	1.858 (0.280- 3.920)	0.016 (0-0.137)	7.82 (0.84- 22.96)	148667 (24000- 160000)	335 (218- 528)	1.53 (0.87- 2.96)	0.050 (<0.003- 0.171)	190 (124- 304)	77 (56- 98)	45.9 (28.8- 85.6)	20.76 (11.19- 42.91)	0.347 (0.113- 0.985)
38.	Saman- trapur	45 (3-151)	85 (58- 122)	51.0 (15.1- 100.1)	1.759 (0.112- 3.640)	0.025 (0-0.182)	7.19 (0.56- 22.96)	151167 (54000- 160000)	353 (211- 541)	1.31 (0.55- 2.39)	0.050 (<0.003- 0.099)	203 (132- 312)	89 (64- 112)	45.5 (21.2- 85.6)	23.36 (11.78- 47.60)	0.441 (0.144- 1.110)
39.	Vadimula	57 (4-325)	82 (52-154)	28.1 (18.5- 48.4)	1.156 (0.112- 3.080)	0.003 (0-0.014)	4.65 (1.40- 9.80)	103673 (5400- 160000)	297 (167- 544)	1.07 (0.26- 2.14)	0.047 (<0.003- 0.111)	173 (104- 292)	82 (52- 128)	35.7 (12.8- 85.6)	18.52 (5.95- 34.80)	0.367 (0.144- 0.782)
Birut	Birupa River															
40.	Choudwar D/s	25 (1-131)	77 (64-90)	9.2 (5.2- 17.3)	0.793 (0.280- 1.400)	0.019 (0.0.087)	1.77 (0.84- 3.64)	672 (110-2400)	191 (129- 246)	0.45 (0.20- 0.99)	0.068 (0.003- 0.164)	116 (84- 140)	74 (56- 84)	12.4 (3.8- 28.8)	11.90 (7.96- 18.78)	0.324 (0.180- 0.419)
Kush	Kushabhadra River	'er														
41.	Bhingar- pur	17 (2-85)	94 (64- 146)	10.6 (5.2- 15.8)	0.887 (0.280- 3.360)	0.066 (0-0.420)	3.09 (1.12- 6.72)	1277 (45-3500)	240 (132- 363)	0.55 (0.19- 0.90)	0.033 (0.003- 0.100)	148 (84- 232)	89 (56- 130)	18.7 (5.8- 31.9)	15.85 (7.96- 23.88)	0.267 (0.188- 0.328)
42.	Nimapara	31 (5-146)	81 (48- 112)	11.9 (8.0- 17.6)	0.793 (0.280- 2.240)	0.025	2.94 (0.84- 6.44)	1172 (130-2500)	223 (147- 281)	0.61 (0.40- 1.00)	0.025 (0.003- 0.094)	131 (92- 156)	75 (50- 90)	17.4 (9.6- 26.0)	14.52 (7.46- 21.14)	0.254 (0.174- 0.332)
43.	Gop	58 (3-445)	83 (34- 108)	10.6 (6.8- 14.1)	0.933 (0.280- 2.520)	0.032 (0-0.246)	2.78 (0.84- 5.32)	1283 (330-2400)	221 (142- 291)	0.59 (0.18- 0.95)	0.025 (0.003-0.090)	135 (88- 184)	74 (40- 96)	16.9 (5.8- 31.9)	15.45 (7.50- 22.63)	0.243 (0.158- 0.309)

	Sam- pling Location	Physic	Physical pa- rameters	Org	anic pollu	Organic pollution Indicators	cators	Bacteri- ological parameter			Mine	Mineral constituents	ittuent	N		
							Annual a	Annual average values		(Range of values)	(\$					
		TSS	Total alkal -inity	СОО	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	HI	Cl	\mathbf{SO}_4	ম
		lm)	(mg/l)		u)	(mg/l)		(MP- N/100ml)	(\mu S/				(mg/l)	(1/3		
Bhargavi River] ,															
Chandan- pur	n-	45 (1- 180)	83 (64-124)	9.6 (5.6- 19.3)	0.910 (0.280- 2.240)	0.031 (0-0.210)	3.06 (1.12- 5.60)	1109 (170-2200)	252 (156- 580)	0.65 (0.12- 1.59)	0.042 (0.003- 0.076)	145 (92- 310)	81 (64- 110)	81 (64- 18.6 (4.8- 110) 46.1)	20.61 (8.57- 57.10)	0.290 (0.137- 0.501)
Mangala River] ,															
Malatipat- pur	at-	48 (6- 173)	85 (52- 144)	9.5 (5.2- 14.1)	0.793 (0.280- 3.080)	0.020 (0-0.087)	3.22 (0.84- 11.20)	1031 (45-2400)	234 (125- 412)	0.65 (0.13- 2.58)	0.092 (0.021- 0.274)	141 (76- 232)	81 (48-132)	81 (48 19.2 (3.8- 132) 57.6)	13.07 (4.52- 21.76)	0.288 (0.148- 0.543)
Golasahi	ıi	79 (4- 184)	121 (64- 276)	25.9 (7.5- 64.8)	0.817 (0.280- 1.400)	0.028 (0-0.140)	2.50 (1.12- 4.20)	1628 (1.8-5400)	5030 (180- 25530)	11.17 (0.62- 53.89)	0.698 (0.038- 2.495)	3593 (104- 19220)	635 (56- 2680)	1921.9 (17.3- 10528.6)	108.11 (15.47- 394.20)	0.348 (0.140- 0.575)
Devi River																
Mach- hagaon		48 (6- 98)	90 (56-112)	28.6 (5.4- 60.9)	1.055 (0.056- 3.360)	0.031 (0-0.210)	3.97 (0.28- 18.48)	91 (1.8-490)	12445 (147- 37240)	22.85 (0.43- 64.39)	1.033 (0.027- 2.751)	8873 (88- 27240)	1478 (56- 4680)	4843. (7.7-13826.2)	398.36 (8.33- 1691.60)	0.472 (0.212- 0.707)
Gobari River																
Kendrapa- ra U/s	тра-	25 (2- 80)	96 (56- 128)	11.1 (5.7- 21.2)	0.747 (0.280- 1.960)	0.026 (0-0.055)	2.05 (0.84- 4.20)	953 (45-2400)	560 (146- 1128)	2.41 (0.48- 6.34)	0.093 (0.006- 0.207)	354 (92- 752)	118 (52- 220)	118.4 (13.5- 317.3)	33.11 (3.69- 81.12)	0.253 (0.171- 0.424)
Kendrapa- ra D/s	ıpa-	30 (5- 72)	105 (56- 136)	12.8 (7.6- 19.3)	1.030 (0.280- 2.560)	0.022 (0-0.073)	3.78 (1.40- 8.12)	1981 (130-9200)	711 (150- 1368)	3.23 (0.47- 7.01)	0.071 (0.014- 0.168)	458 (100- 920)	132 (56- 212)	170.3 (9.6- 346.0)	40.20 (4.40- 107.60)	0.236 (0.140- 0.382)
Nuna River																
Bijipur		57 (2- 165)	93 (52- 178)	14.6 (10.3- 21.7)	1.027 (0.280- 3.360)	0.041 (0-0.328)	4.29 (1.68- 6.72)	1225 (330-2200)	248 (128- 529)	0.61 (0.25- 1.07)	0.033 (0.007- 0.073)	148 (88- 296)	82 (56- 136)	82 (56- 18.5 (7.7- 136) 28.8)	16.03 (3.33- 31.46)	0.329 (0.207- 0.413)

Annual Report 2019-20 - 59 •

Time	Si. No.	Sam- pling Location	Physic	Physical parameters	Org	Organic pollu	lution Indicators	cators	Bacteri- ological parameter			Mine	Mineral constituents	tituent	S		
Task Total CoD NH ₄ -N Free TKN Free TKN Free TKN Task TKN TKN TAsk TKN TKN TKN TAsk TKN TKN TKN TAsk TKN								Annual a	verage values		of values	(1					
The color The			TSS	Total alkal -inity	СОО	NH_4 -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	THI	CI	\mathbf{SO}_4	Ŧ
31 90 12.5 0.826 0.021 3.08 1868 456 0.93 0.052 152 (76 80 28.7 12.00 17.9) (4.75 1.20) (4.15 1.20) (4			m)	g/1)		u)	1/gr		(MP- N/100ml)	(mS/cm)				вш)	3/1)		
31 90 12.5 0.826 0.021 3.08 1868 456 0.039 0.055 152 (76 80 28.7 12.00 1.74 1.82 1.960) 0.056 0.056 0.0390 0.116 0.034 0.0179 0.0179 0.179 1.48 1.29 1.007 1.48 1.29 1.007 1.48 1.29 1.29 1.48 1.29 1.20 1.48 1.29 1.20 1.48 1.29 1.20 1.48 1.29 1.20 1.48 1.29 1.20 1.48 1.29 1.20 1.48 1.29 1.20 1.20 1.48 1.20	Kusu	mi River															
47 94 114 0.865 0.016 4.45 1591 241 0.62 0.095 144 83 18.9 10.07 47 94 114 0.865 0.016 4.45 1591 241 0.62 0.095 144 83 18.9 10.07 48 17.5 2.240 0.009 3.69 1160 931 2.49 0.134 5.64 186 170.9 12.89 49 144 17.5 2.240 0.0045 11.2 (45.2200) 11.2 (45.2200) 11.2 (45.2200) 12.02 0.0787 2988 700 124.9 58.90 41 137 0.687 0.015 2.39 1179 5.27 1.150 2.53 1.150 2.89 10.05 2.89 10.05 41 13 10 1.050 0.023 2.80 1184 2.52 0.89 0.053 149 76 2.28 110.5 41 13.6 3.080 0.0091 0.84 (45.3500) 1.77 0.134 2.98 118 6.92 2.25 41 13.6 3.080 0.081 0.84 (45.3500) 1.77 0.134 2.98 118 6.92 2.25 42 13.6 3.080 0.081 0.84 0.84 0.17 0.134 2.98 118 6.92 2.25 42 13.6 3.080 0.081 0.84 0.84 0.17 0.134 2.98 118 6.92 2.25 42 13.6 3.080 0.081 0.84 0.8	51.	Tangi	31 (3-76)	90 (52- 182)	12.5 (3.4- 35.3)	0.826 (0.112- 1.960)	0.021	3.08 (0.56- 15.40)	1868 (330-3500)	456 (116- 452)	0.93 (0.34- 2.28)	0.052 (<0.003- 0.179)	152 (76- 268)	80 (48- 148)	28.7 (7.7-91.5)		0.268 (0.093- 0.522)
47 94 114 0.865 0.016 4.45 1591 241 0.62 0.095 144 83 189 10.07 (5-229) (64 (7.5 (0.280- (0.0090) (1.12 (78-3300) (168 (0.15 (0.010 (92-60) (92-60) (1.2 (1.280 (0.0045) (1.12 (1.280 (1.12 (1.280 (1.12 (1.280 (1.12	Kans	ıri River															
27 147 13.6 0.747 0.009 3.69 1160 931 2.49 0.134 564 186 170.9 79.64 (4-130) (92-260) (3.9-260) (3.9-260) (3.9-260) (0.20-1) (12-20) (14-200) (15-20	52.	Banapur	47 (5-229)	94 (64- 144)	11.4 (7.5- 17.5)	0.865 (0.280- 2.240)	0.016	4.45 (1.12- 18.20)	1591 (78-3300)	241 (168- 341)	0.62 (0.15- 1.28)	0.095 (0.010- 0.270)	144 (92- 216)	83 (56- 134)	18.9 (5.7- 55.3)	10.07 (1.62- 26.86)	0.159 (0.085- 0.305)
32 147 13.6 0.747 0.009 3.69 1160 931 2.49 0.134 564 186 170.9 79.64 (4-130) (92-260) (3.9-6) (0.280-6) (0.045) (1.12-6) (45-2200) (195-6) (0.39-6) (0.27-7) (124-6) (76-6) (1.24-6) (3.8-6) (1.12-6)	Bada	sankha Rive	r														
27 184 13.7 0.687 0.015 2.39 1179 522 1.07 0.190 308 162 53.8 23.16 (5-96) (5-264) (7.7- (0.284) (0.280- (7.7- (0.280- (0.0091)) (1.12- (4.76) (78-3500) (1.12- (1.12- (1.12-)) (141- (1.12-) (0.12-) (0.12-) (0.007-) (1.150) (3.69) (3.69- (3.69) (0.280-) (0.280-) (0.023) (0.091) 2.80 (0.84- (0.84- (45-3500)) (1.46- (1.46-) (0.54-) 1.150) (0.51- (0.000-) (0.000-) (0.134) 1.184 (3.69-) (3.69-) (3.69-) (3.69-) (3.69-) (3.69-) (3.69-) 1.184 (48-12) (7.2-) <b< th=""><th>53.</th><td>Lan- galeswar</td><td>32 (4-130)</td><td>147 (92-260)</td><td>13.6 (3.9- 27.8)</td><td>0.747 (0.280- 1.680)</td><td>0.009 (0-0.045)</td><td>3.69 (1.12- 8.96)</td><td>1160 (45-2200)</td><td>931 (195- 5070)</td><td>2.49 (0.39- 12.02)</td><td>0.134 (0.020- 0.787)</td><td>564 (124- 2988)</td><td>186 (76- 700)</td><td>170.9 (10.6- 1249.9)</td><td>79.64 (5.83- 589.00)</td><td>0.339 (0.144- 0.505)</td></b<>	53.	Lan- galeswar	32 (4-130)	147 (92-260)	13.6 (3.9- 27.8)	0.747 (0.280- 1.680)	0.009 (0-0.045)	3.69 (1.12- 8.96)	1160 (45-2200)	931 (195- 5070)	2.49 (0.39- 12.02)	0.134 (0.020- 0.787)	564 (124- 2988)	186 (76- 700)	170.9 (10.6- 1249.9)	79.64 (5.83- 589.00)	0.339 (0.144- 0.505)
27 184 13.7 0.687 0.015 2.39 1179 522 1.07 0.190 308 162 53.8 23.16 (5-96) (56-264) (7.7- (2.20) (0.007) (1.12- (1.12-) (78-3500) (141- (141-) (0.12- (0.15-) (0.007- (0.607-) (88- (2.28) (52- (7.7-) (7.7- (7.8-1) (4.17- (7.8-1) 24 78 10.0 1.050 0.023 2.80 1184 252 0.89 0.053 149 76 28-6 13.85 (3-89) (48-122) (7.2- (1.3-6) (0.0091) (0.84- (0.84- (1.45-3500) (146- (1.45-3500) (146- (0.51- (0.013- (<0.003- (0.013- (88- (1.44- (1.44- (2.2-2) 13.6) 13.6 13.	Sabu	ia River															
24 78 10.0 1.050 0.023 2.80 1184 252 0.89 0.053 149 76 28.6 13.85 (3-89) (48-122) (7.2- (0.280- (0.280- (0.0091)))) (0.84- (45-3500)) (146- (0.51- (<0.003- (88- (48- (48- (14.4- (5.24- (5.24- (3.48- (48- (48- (48- (48- (48- (48- (48- (54.	Rambha	27 (5-96)	184 (56-264)	13.7 (7.7- 22.2)	0.687 (0.280- 1.400)	0.015	2.39 (1.12- 4.76)	1179 (78-3500)	522 (141- 792)	1.07 (0.12-2.53)	0.190 (0.007- 1.150)	308 (88- 536)	162 (52- 228)	53.8 (7.7- 110.5)	23.16 (4.17- 78.61)	0.382 (0.127- 0.689)
mardihi 24 78 10.0 1.050 0.023 2.80 1184 252 0.89 0.053 149 76 28.6 13.85 (3-89) (48-122) (7.2- (0.280- (0-0.091) (0.84- (45-3500) (146- (0.51- (<0.03- (88- (48- (14.4- (5.24- (5.24- (5.24- (5.24- (1.44-	Ratna	chira River															
- - - - - - - - - - 600 - - - - - - - - 600	55.	Kumardihi	24 (3-89)	78 (48-122)	10.0 (7.2- 13.6)	1.050 (0.280- 3.080)	0.023 (0-0.091)	2.80 (0.84- 5.60)	1184 (45-3500)	252 (146- 534)	0.89 (0.51- 1.77)	0.053 (<0.003- 0.134)	149 (88- 298)	76 (48- 118)	28.6 (14.4- 69.2)	13.85 (5.24- 22.26)	0.335 (0.089- 1.070)
600 - 600 -	Class	ʻC,		ı		ı	'	ı	ı		<u>'</u>	ı	1500		009	400	1.5
	Class	E,		,		,		1		2250	26	2.0	2100		009	1000	ı

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C' :Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality

(A) Contd..

S.	Sampling Location	Z	Nutrients				H	Heavy metals	ıls			
No.				Annu	ıal Avera	ge values	Annual Average values (Range of values)	f values)				
		Nitrate as NO ₃ .	PO_4^{3} -P	Cr(VI)	T. Cr##	Fe##	Ni##	Cu##	Zn##	##PO	Hg##	Pb##
			(mg/l)					(mg/l)				
Ib River	er.											
1.	Sundargarh	1.77 (0.65-5.62)	0.067 (0.003-0.321)	<0.002	0.010	0.152	0.001	0.002	0.011	0.0028	1	0.003
2.	Jharsuguda	1.86 (0.46-12.54)	0.058 (0.010-0.216)	<0.002	0.018	0.363	0.004	0.004	0.017	0.0023	1	0.007
3.	Brajrajnagar U/s	1.11 (0.48-2.35)	0.060 (0.007-0.199)	<0.002	0.015	0.273	0.004	0.007	0.008	0.0018	I	0.007
4.	Brajrajnagar D/s	0.90 (0.44-1.85)	0.077 (0.005-0.293)	<0.002	0.020	0.145	0.009	0.005	0.014	0.0029	ı	0.012
Bhede	Bheden river											
5.	Jharsuguda	0.89 (0.36-2.04)	0.067 (0.007-0.239)	<0.002	0.013	0.202	0.004	0.003	0.012	0.0029	1	0.008
Hirakı	Hirakud reservoir											
6.	Hirakud reservoir	1.22 (0.50-4.62)	0.097 (0.002-0.541)	<0.002	0.024	0.151	0.006	600.0	0.012	0.0018	ı	0.004
7.	Power channel U/s	1.96 (0.42-9.39)	0.073 (0.002-0.494)	<0.002	0.020	0.167	0.007	0.005	0.007	0.0024	ı	0.008
8.	Power Channel D/s	1.04 (0.46-2.96)	0.097 (0.003-0.557)	<0.002	0.024	0.323	0.004	0.004	0.007	0.0029	I	0.004
Mahan	Mahanadi River											
9.	Sambalpur U/s	1.01 (0.43-1.67)	0.105 (0.004-0.589)	<0.002	0.027	0.031	0.003	0.002	0.011	0.0018	I	0.002
10.	Sambalpur D/s	0.99 (0.46-2.06)	0.167 (0.002-1.399)	<0.002	0:030	0.051	0.003	0.003	0.007	0.0017	ı	0.003
11.	Sambalpur FD/s at Shankarmath	1.13 (0.5-2.97)	0.124 (0.002-0.787)	<0.002	0.027	0.128	0.004	0.007	0.017	0.0018	ı	0.016
12.	Sambalpur FD/s at Huma	1.36 (0.57-4.93)	0.096 (0.003-0.589)	<0.002	0.024	0.033	0.008	0.006	0.009	0.0022	I	0.014

J	Sampling Location	Z	Nutrionte				H	Hoaxw metals	alc			
No.	0			Annu	al Averag	ge values	Annual Average values (Range of values)	f values)				
		Nitrate as NO ₃ .	PO ₄ P	Cr(VI)	T. Cr#	Fe##	Ni##	Cu##	Zn**	Cq##	Hg##	Pb##
			(mg/l)					(mg/l)				
13.	Sonepur U/s	1.17 (0.44-3.28)	0.164 (0.003-0.769)	<0.002	0.024	0.026	600.0	0.003	0.004	0.0024	I	0.009
14.	Sonepur D/s	2.35 (0.44-14.42)	0.108 (0.001-0.729)	<0.002	0.025	0.021	0.004	0.002	0.002	0.0017	I	0.002
15.	Tikarapada	1.76 (0.54-5.38)	0.068 (0.005-0.239)	<0.002	0.018	0.177	0.002	0.002	0.003	0.0024	I	0.003
16.	Narasinghpur	1.19 (0.38-4.27)	0.306 (0.005-1.947)	0.002	0.030	1.624	0.006	0.010	0.044	0.0029	I	0.010
17.	Munduli	0.93 (0.40-1.52)	0.132 (0.007-0.606)	<0.002	0.027	0.723	0.008	0.012	0.012	0.0024	I	0.008
18.	Cuttack U/s	0.94 (0.47-1.38)	0.109 (0.003-0.659)	<0.002	0.024	0.689	0.007	900.0	0.055	0.0023	1	0.004
19.	Cuttack D/s	1.08 (0.46-1.99)	0.069 (0.006-0.166)	<0.002	0.027	092:0	0.005	0.005	0.071	0.0016	I	0.004
20.	Cuttack FD/s	1.08 (0.46-1.99)	0.069 (0.006-0.166)	<0.002	0.027	0.760	0.005	0.005	0.071	0.0016	ı	0.004
21.	Paradeep U/s	0.86 (0.45-1.60)	0.068 (0.007-0.188)	<0.002	0.035	0.160	0.007	0.009	0.016	0.0014	I	0.005
22.	Paradeep D/s	1.24 (0.61-2.75)	0.361 (0.010-1.423)	<0.002	0.027	0.128	0.004	0.007	0.017	0.0018	ı	0.016
Ong River	iver											
23.	Dharuakhaman	1.20 (0.50-3.19)	0.097 (0.002-0.764)	<0.002	0.024	0.213	0.006	0.005	0.011	0.0023	ı	0.006
Tel River	iver											
24.	Monmunda	1.56 (0.58-4.45)	0.178 (0.002-1.662)	<0.002	0.025	0.146	0.004	0.004	0.010	0.0018	ı	0.004
Kathaj	Kathajodi River											
25.	Cuttack U/s	0.83 (0.50-1.33)	0.098 (0.003-0.660)	<0.002	0.024	0.652	0.005	0.011	0.053	0.0024	ı	0.006
26.	Cuttack D/s	1.97 (0.58-9.38)	0.142 (0.013-0.590)	<0.002	0.030	0.766	0.008	0.007	0.063	0.0029	1	0.004

7	Compliant Location	N	Nesterioreta					Hours motole	7			
No.	Sampung rocanon	1		V	Of Arrows	oraliano	(Pondo o	f vrolune)				
		Nitrate as NO ₃	PO ₄ P	Cr(VI)	T. Cr#	Fe#	(VI) T. Cr* Fe* Ni* Cu*	Cu##	Zn##	##PO	Hg##	Pb##
			(mg/l)					(mg/l)				
27.	Mattagajpur (Cuttack FD/s)	1.56 (0.71-2.96)	0.108 (0.015-0.245)	<0.002	0.025	0.844	0.005	0.004	0.051	0.0022	ı	0.008
28.	Kamasasan (Cuttack FFD/s)	2.04 (0.63-6.05)	0.178 (0.007-0.688)	<0.002	0.018	1.168	0.005	0.011	0.055	0.0023	I	0.003
Serua River	River											
29.	Sankhatrasa (Cuttack FD/s)	1.84 (0.566- 5.60)	0.221 (0.029-0.828)	<0.002	0.020	0.989	0.004	0.014	0.045	0.0021	ı	0.002
Kuakl	Kuakhai River											
30.	Bhubaneswar FU/s	1.99 (0.66-5.86)	0.144 (0.005-0.886)	<0.002	0.029	0.239	0.002	0.002	0.011	0.0028	I	900.0
31.	Bhubaneswar U/s	1.77 (0.50-4.65)	0.223 (0.016-1.673)	<0.002	0.027	0.125	0.003	0.006	0.010	0.0030	1	9000
Daya River	River											
32.	Gelapur	4.09 (0.61-31.82)	0.218 (0.005-0.910)	<0.002	0.029	0.114	0.003	0.007	0.017	0.0036	ı	0.005
30.	Bhubaneswar FU/s	1.99 (0.66-5.86)	0.144 (0.005-0.886)	<0.002	0.029	0.239	0.002	0.002	0.011	0.0028	I	900.0
31.	Bhubaneswar U/s	1.77 (0.50-4.65)	0.223 (0.016-1.673)	<0.002	0.027	0.125	0.003	900.0	0.010	0.0030	ı	9000
Daya River	River											
32.	Gelapur	4.09 (0.61-31.82)	0.218 (0.005-0.910)	<0.002	0.029	0.114	0.003	0.007	0.017	0.0036	ı	0.005
33.	Bhubaneswar D/s	9.03 (0.14-9.18)	0.432 (0.005-1.937)	<0.002	0.032	0.083	0.007	0.005	0.047	0.0033	I	0.005
34.	Bhubaneswar FD/s	9.38 (0.72-59.19)	0.391 (0.028-1.515)	<0.002	0.029	0.450	0.007	0.007	0.020	0.0028	ı	0.005
35.	Kanas	1.27 (0.57-4.16)	0.114 (0.024-0.335)	<0.002	0.024	0.074	0.004	0.004	0.007	0.0023	ı	0.005
Gange	Gangua River											
36.	Near Rajdhani Engg. College	5.51 (0.67-28.94)	0.457 (0.048-1.218)	<0.002	0.040	0.864	0.011	0.009	0.032	0.0035	ı	0.005

Annual Report 2019-20 — 63

2	Comment thank I continue	N.	Natural Careton					U corner des cotolo	-			
No.	Sampung Location	INC	in lenes	•		,	- -		ans			
		Nitrate as	PO ₄ P	Cr(VI)	T. Cr##	ge values Fe#	Annual Average values (Kange of Values) (VI) T. Cr** Fe** Ni** Cu**	Cu##	Zn##	Cq##	Hg##	Pb##
		NO_3		#								
			(mg/l)		,			(mg/l)				
37.	Palasuni	4.32 (0.46-13.94)	0.369 (0.086-1.009)	<0.002	0.040	0.870	0.008	0.013	0.013	0.0036	_	0.006
38.	Samantraypur	17.44 (0.68-65.46)	0.509 (0.096-1.673)	<0.002	0.047	0.414	0.004	0.005	0.101	0.0041	I	0.012
39.	Vadimula	9.26 (0.46-26.45)	0.329 (0.010-1.199)	<0.002	0.027	0.228	0.003	0.002	0.029	0.0018	-	0.004
Birupa	Birupa River											
40.	Choudwar D/s	0.87	0.073 (0.004-0.162)	<0.002	0.022	1.313	0.008	0.008	0.012	0.0018	-	0.002
Kusha	Kushabhadra River											
41.	Bhingarpur	2.81 (0.48-15.78)	0.094 (0.009-0.280)	<0.002	0.020	0.099	0.003	0.003	900.0	0.0014	ı	0.004
42.	Nimapara	1.19 (0.38-2.31)	0.103 (0.007-0.302)	<0.002	0.030	0.016	0.002	0.001	0.001	0.0016	I	0.002
43.	Gop	1.31 (0.59-2.70)	0.108 (0.007-0.339)	<0.002	0.029	0.363	0.003	0.005	200.0	0.0015	_	0.003
Bharg	Bhargavi River											
44.	Chandanpur	1.32 (0.29-2.14)	0.081 (0.010-0.225)	<0.002	0.024	0.406	0.003	0.003	0.011	0.0023	I	0.004
Manga	Mangala River	·										
45.	Malatipatpur	1.25 (0.13-2.95)	0.121 (0.013-0.443)	<0.002	0.027	0.442	0.004	0.003	0.007	0.0024	_	0.004
46.	Golasahi	8.83 (0.77-46.65)	0.200 (0.012-1.114)	<0.002	0.030	0.272	0.008	0.007	0.010	0.0015	I	0.004
Devi River	diver					,						
47.	Machhagaon	1.09 (0.52-2.06)	0.134 (0.008-0.397)	<0.002	0.030	0.144	0.012	0.007	0.010	0.0028	ı	0.004
Gobar	Gobari River											
48.	Kendrapara U/s	1.18 (0.64-3.04)	0.115 (0.014-0.448)	<0.002	0.024	0.327	0.005	0.008	0.009	0.0023	I	0.010
49.	Kendrapara D/s	2.38 (0.59-8.13)	0.181 (0.012-0.469)	<0.002	0.025	0.425	0.008	0.004	0.008	0.0020	I	0.006

SI.	Sampling Location	N	Nutrients				H	Heavy metals	als			
No.				Annu	al Avera	ge values	Annual Average values (Range of values)	f values)				
		Nitrate as NO ₃ .	PO_4^{3} -P	Cr(VI)	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cq##	Hg##	Pb##
			(mg/l)					(mg/l)				
Nuna River	River											
50.	Bijipur	1.58 (0.53-3.95)	0.195 (0.006-1.092)	<0.002	0.024	0.024	0.002	0.002	0.001	0.0016	1	0.002
Kusun	Kusumi River											
51.	Tangi	1.66 (0.67-5.28)	0.060 (0.005-0.288)	<0.002	0.022	0.396	0.005	0.004	0.007	0.0181	ı	0.002
Kansa	Kansari River											
52.	Banapur	1.08 (0.46-2.78)	0.100 (0.012-0.490)	<0.002	0.013	0.226	0.006	900.0	0.003	0.0021	ı	0.004
Badas	Badasankha River											
53.	Langaleswar	1.30 (0.46-5.74)	0.047 (0.012-0.099)	<0.002	0.024	0.853	0.005	0.002	0.101	0.0056	ı	0.010
Sabuli	Sabulia River											
54.	Rambha	2.16 (0.56-6.71)	0.063 (0.014-0.207)	<0.002	0.018	0.218	0.009	0.005	0.007	0.0026	1	0.004
Ratnac	Ratnachira River											
55.	Kumardihi	1.38 (0.22-2.55)	0.099 (0.011-0.393)	<0.002	0.018	0.987	0.004	0.003	0.007	0.0021	1	0.004
*Class 'C'	, c,	50		0.05		20		1.5	15.0	0.01		0.10
*Class 'E'	E,		,		,	,	ı	ı	ı			1

Class 'C': Class 'E':

*Tolerance limit for Inland Surface water bodies (IS-2296-1982) $\,$

##Data for the period April, 2019

Brahmani River System (2019)

SI. No.	Sampling Location	Physical	Physical parameters	Or	ganic pollt	Organic pollution Indicators	ators	Bacteriological parameter			Min	Mineral constituents	ituents			
							Annual	Annual Average values (Range of values)	s (Range	of values)						
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	ТН	CI	SO_4	F
		łm)	(mg/l)		u)	(mg/l)		(MP- N/100ml)	(mS/ cm)				(mg/l)	(/)		
Sank	Sankh river															
гi	Sankh U/s	40 (2-121)	64 (32-128)	8.7 (3.4- 27.0)	0.546 (0.112- 1.400)	0.006 (0-0.021)	2.89 (0.56- 5.04)	631 (20-3300)	152 (108- 246)	0.35 (0.21- 0.50)	0.018 (0.003- 0.052)	93 (68- 148)	60 (32- 114)	8.0 (3.8- 11.7)	9.27 (3.48- 15.42)	0.256 (0.171- 0.331)
Koel	Koel river															
2.	Koel U/s	45 (4-164)	77 (48-106)	7.2 (5.2- 15.4)	0.639 (0.112- 2.800)	0.009	2.81 (0.56- 6.16)	916 (170-2400)	177 (118- 247)	0.33 (0.12- 0.67)	0.030 (0.003- 0.114)	105 (76- 144)	72 (40- 108)	10.1 (3.8- 19.2)	9.41 (6.21- 14.80)	0.248 (0.174- 0.369)
Brah	Brahmani river															
က်	Panposh U/s	44 (3-196)	69 (48-128)	9.0 (3.8- 14.0)	0.448 (0.056- 1.120)	0.006 (0-0.022)	2.29 (0.28- 6.16)	605 (78-1700)	161 (112- 246)	0.37 (0.13- 0.56)	0.018 (0.003- 0.056)	97 (72- 148)	64 (40- 114)	8.8 (3.8- 13.4)	9.24 (3.86- 14.30)	0.260 (0.182- 0.357)
4.	Panposh D/s	57 (2-156)	65 (44-102)	27.6 (16.9- 36.7)	1.750 (0.280- 7.560)	0.011 (0-0.076)	5.18 (1.12- 13.16)	10708 (1400-35000)	325 (181- 472)	0.71 (0.26- 1.12)	0.034 (0.003- 0.105)	193 (112- 314)	102 (68 140)	23.9 (7.7- 40.4)	48.50 (12.68- 77.98)	1.279 (0.742- 1.660)
5.	Rourkela D/s	68 (2-275)	(36-2E)	21.4 (9.4- 31.0)	1.353 (0/280- 3.920)	0.010 (0-0.078)	4.22 (1.12- 12.04)	4294 (640-14000)	237 (137- 337)	0.55 (0.18- 0.92)	0.030 (<0.003- 0.080)	143 (88- 212)	81 (44- 124)	16.0 (5.8- 24.9)	29.68 (9.45- 59.10)	0.913 (0.296- 1.330)
9.	Rourkela FD/s (Attaghat)	55 (4-259)	70 (36-88)	14.2 (5.6- 23.3)	0.817 (0.280- 2.520)	0.008	2.80 (0.84- 10.64)	703 (78-2200)	212 (125- 328)	0.46 (0.11- 0.63)	0.037 (0.003- 0.112)	126 (76- 192)	77 (44- 120)	13.2 (3.8- 20.2)	21.03 (6.78- 48.26)	0.590 (0.196- 0.774)
7.	Rourkela FD/s (Biritola)	36 (4-142)	99 (36-86)	9.5 (5.2- 15.5)	0.770 (0.280- 1.680)	0.008 (0-0.022)	4.20 (1.12- 19.32)	394 (1.8-2200)	184 (117- 273)	0.46 (0.26- 0.68)	0.036 (<0.003- 0.087)	109 (76- 152)	67 (44- 98)	11.1 (6.7- 17.0)	16.73 (6.78- 32.58)	0.498 (0.196- 0.655)
∞	Bonaigarh	33 (1-152)	69 (48-98)	7.2 (5.2- 11.6)	1.036 (0.112- 3.360)	0.011 (0-0.22)	3.94 (0.56- 15.96)	636 (1.8-4900)	189 (127- 258)	0.45 (0.13- 0.77)	0.027 (<0.003- 0.027)	112 (76- 160)	68 (44- 108)	11.4 (3.8- 20.2)	15.31 (6.19- 23.63)	0.516 (0.207- 0.674)

		${ m SO}_4$		9.93 0.222 (5.71- (0.136- 19.28) 0.376)	11 00 0 969								
ents		CI	(mg/l)	8.4 (5.8 15.4)		(3.8-)	9.1 (3.8 24.9) 8.0 (3.8 (15.4)	8.0 8.0 8.0 15.4) 15.4) 8.3 (4.8 16.3)	9.1 (3.8 (4.8 (4.8 (4.8 (16.3) (3.8 (11.7)	(3.8 (3.8 (3.8 (3.8 (4.8 (4.8 (16.3) (3.8 (11.7) (11.6 (5.8 (5.8	8.0 8.0 8.0 8.0 8.3 8.3 8.3 8.2 16.3) 8.2 16.3) 11.6 11.7 11.6 11.7 11.7 11.7 11.7 11.7 11.7	8.0 (3.8 8.0 (3.8 (3.8 (3.8 (4.8 15.4) 15.4) 8.3 (4.8 16.3) 8.2 (3.8 11.7 11.7 11.7 11.7 11.6 (5.8 (6.8 (9.1 (3.8 8.0 8.0 8.3 (3.8 15.4) 15.4) 15.4) 15.4) 15.4) 15.4) 15.3 8.2 (3.8 11.7) 11.6 (5.8 (6.8 (6.8 (6.8 (7.8 (7.8 (11.7) 11.7) 11.7 11.6 (7.8 (
Mineral constituents		HT SUT		87 56 (52- (32- 128) 104)	92 59 (40-							-48	48 94 88
Mine		В		0.053 (0.006- 0.225)	0.051			, d - d -	-				
	(Range of values)	SAR		3- 0.37 (0.19- 0.57)	0.40 (0.14- 0.90)		0.35 (0.18- 0.56)	0.35 (0.18 0.56) 0.35 (0.18 0.56)	0.35 (0.18 0.56) 0.35 (0.18 0.56) 0.35 (0.23 0.49)	0.35 (0.18- 0.56) 0.35 (0.18- 0.56) 0.35- 0.49) 0.47 (0.31- 0.69)	0.35 0.18 0.56) 0.35 0.35 0.47 0.69) 0.50 0.69) 0.73	0.35 (0.18 0.56) 0.35 (0.18 0.56) 0.47 (0.23 0.47 (0.31- 0.69) 0.50 0.50 0.73 0.73	0.35 0.18 0.56) 0.35 0.18 0.50 0.23 0.47 0.69) 0.50 0.69) 0.69) 0.70) 0.70)
- a.c	lues (Rang	EC	(µS/ cm)	143 (83- 218)	152 (100- 241)		151 (114- 213)	(114- 213) 152 (114- 210)	(114- 213) 152 (114- 210) 150 (119- 196)	(114- (114- (114- 213) (114- 210) (119- 196) (119- 196) (135- 202 (135- 203)	(114- 213) 152 (114- 210) 150 (119- 196) 202 (135- 203) 202 (136- 203) 202 (136- 203) 202 (176- 243)	151 (114- 213) 152 (114- 210) 150 (119- 196) 202 (135- 203) 202 (135- 243) 173 (121- 255)	(114- 213) 152 (114- 210) 150 (119- 196) 202 (135- 203) 202 (136- 203) 202 (176- 243) 173 (176- 243) 173 (121- 255) 190 (138- 255)
Bacteriological parameter	Annual Average values	FC	(MP- N/100ml)	80 (14-330)	200 (20-490)		(1.8-330)	100 (1.8330) 247 (1.8-790)	(1.8-330) (1.8-730) (1.8-790) (45-2400)	(1.8-330) (1.8-330) (1.8-790) (1.8-790) (45-2400) (2-1700)	(1.8-30) (1.8-790) (45-2400) (45-2400) (2-1700) (2-490)	(1.8-330) (1.8-730) (1.8-790) (45-2400) (2-1700) (2-490) (2-490) (13-490)	(1.8-30) (1.8-30) (247 (1.8-790) 838 (45-2400) (2-1700) (2-490) (2-490) (2-490) (2-490) (2-490) (2-490)
icators	Annua	TKN		. 2.38 (0.56- 7.84)	2.77 (1.12- 6.72)		2.27 (1.12- 4.48)	2.27 (1.12- 4.48) 3.10 (1.40- 5.04)	2.27 (1.12- 4.48) 3.10 (1.40- 5.04) 3.43 (1.40- 7.84)	2.27 (1.12- 4.48) 3.10 (1.40- 5.04) 3.43 (1.40- 7.84) 4.93 (0.56- 20.72)	2.27 (1.12- 4.48) 3.10 (1.40- 5.04) 3.43 (1.40- 7.84) 4.93 (0.56- 20.72) 4.20 (0.56- 23.52)	2.27 (1.12- 4.48) 3.10 (1.40- 5.04) 3.43 (1.40- 7.84) 4.93 (0.56- 20.72) 4.20 (0.56- 23.52) 3.73 (1.12- 6.72)	2.27 (1.12- 4.48) 3.10 (1.40- 5.04) 3.43 (1.40- 7.84) 4.93 (0.56- 20.72) 4.20 (0.56- 20.72) 4.20 (0.56- 23.52) 3.73 (1.12- 6.72) 3.27 (1.12- 6.72) 3.27 (1.12- 6.72)
Organic pollution Indicators		Free NH ₃ -N	(mg/l)	0.020 (0-0.112)	0.013 (0-0.045)		0.012 (0-0.022)	0.012 (0- 0.022) 0.025 (0- 0.179)	0.012 (0-0.022) 0.025 (0-0.179) 0.016 (0-0.045)	0.012 (0-0.022) 0.025 (0-0.179) 0.016 (0-0.045) 0.015 (0-0.056)	0.012 (0-0.022) 0.025 (0-0.179) 0.016 (0-0.045) 0.015 (0-0.056) 0.014 (0.003-0.028)	0.012 (0-0.022) 0.025 (0-0.179) 0.016 (0-0.045) 0.015 (0-0.056) 0.028) 0.028) 0.016 0.016 0.028)	0.012 (0 0.022) 0.025 (0 0.179) 0.016 (0 0.045) 0.015 (0 0.028) 0.028) 0.028) 0.028) 0.028) 0.028) 0.0200 0.0200 0.0200
Organic po		NH ₄ -N		0.565 (0.280- 1.400)	0.518 (0.280- 1.120)		0.663 (0.112- 1.400)	0.663 (0.112- 1.400) 0.765 (0.224- 2.240)	0.663 (0.112- 1.400) 0.765 (0.224- 2.240) 0.719 (0.224- 1.680)	0.663 (0.112- 1.400) 0.765 (0.224- 2.240) 0.719 (0.224- 1.680) 0.817 (0.280- 1.680)	0.663 (0.112- 1.400) 0.765 (0.224- 2.240) 0.719 (0.224- 1.680) 0.817 (0.280- 1.680) 0.509 (0.224- 1.120)	0.663 (0.112- 1.400) 0.765 (0.224- 2.240) 0.719 (0.224- 1.680) 0.817 (0.280- 1.680) 0.509 (0.224- 1.120) 0.798 (0.056- 2.240)	0.663 (0.112- 1.400) 0.765 (0.224- 2.240) 0.719 (0.224- 1.680) 0.509 (0.280- 1.680) 0.509 (0.224- 1.120) 0.798 (0.056- 2.240) 0.733 (0.112- 3.080)
		COD		- 8.0 (3.8- 13.8)	8.2 (3.7- 17.3)								
Physical parameters		Total alkal -inity	(mg/l)	57 (40-96)	60 (40-102)		58 (42- 96)						
		TSS	u)	21 (1-153)	(1-74)		16 (1-99)	16 (1-99) 16 (1-100)	16 (1-99) 16 (1-100) 23 (1-82)	16 (1-99) 16 (1-100) 23 (1-82) 14	16 (1-99) 16 (1-100) (1-82) (1-82) 14 (2-86) 18 (1-102)	16 (1-99) 16 (1-100) 17 (1-102) 17 (1-102)	16 (1-99) 16 (1-100) (1-82) (1-82) (1-82) (1-102) (1-102) (1-105) (1-105)
Sampling Location				Rengali	Samal		Talcher FU/s	Talcher FU/s Talcher U/s	Talcher FU/s Talcher U/s Mandapal	Talcher FU/s Talcher U/s Mandapal Talcher D/s	Talcher FU/s Talcher U/s Mandapal D/s Talcher ED/s	Talcher FU/s Talcher U/s Mandapal Talcher D/s Talcher FU/s Talcher B/s Talcher ED/s Talcher Fu/s	Talcher FU/s Talcher U/s Mandapal D/s Talcher FD/s Talcher FD/s Dhen- kanal U/s Eanal D/s
SI. No.				6	10.		11.	11.	11. 12. 13.	11. 13. 14.	11. 13. 13. 14. 15.	11. 13. 13. 15. 16.	11. 12. 13. 14. 16. 16. 17.

SI. No.	Sampling Location	Physica etc	Physical parameters	Or	ganic polli	Organic pollution Indicators	ators	Bacteriological parameter			Min	Mineral constituents	ituents			
							Annual	Annual Average values (Range of values)	s (Range	of values)						
		TSS	Total alkal -inity	СОО	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	THI.	C	SO_4	Ŧ
		m)	(mg/l)		r)	(mg/l)		(MP- N/100ml)	(ms/ cm)				(mg/l)	(1/3		
19.	Kabat- abandha	40 (1-86)	63 (46- 120)	6.5 (3.9- 10.7)	0.607 (0.280- 1.400)	0.023 (0- 0.105)	2.96 (1.68- 5.04)	205 (1.8-790)	171 (119- 270)	0.52 (0.17- 1.81)	0.071 (<0.003- 0.158)	104 (76- 156)	62 (48- 112)	12.4 (5.8- 45.2)	13.75 (8.08- 20.39)	0.261 (0.144- 0.441)
20.	Dharmasa- la U/s	(2-124)	70 (40- 132)	7.9 95.2- 11.6)	0.653 (0.280- 1.400)	0.021 (0-0.070)	2.80 (0.56- 8.96)	900 (20-3500)	182 (132- 295)	0.46 (0.20- 0.69)	0.299 (<0.003- 2.769)	109 (80- 172)	68 (48 124)	12.1 (5.8- 19.1)	12.49 (7.46- 19.15)	0.227 (0.178- 0.316)
21.	Dharmasa- la D/s	28 (1-99)	70 (40- 124)	9.5 (5.4- 16.4)	0.817 (0.280- 2.800)	0.024 (0.003- 0.084)	3.34 (1.40- 5.60)	1170 (20-3500)	189 (123- 286)	0.47 (0.17- 0.67)	0.240 (0.006- 2.349)	113 (84- 168)	71 (48 120)	12.4 (5.8- 20.2)	13.01 (7.03- 20.77)	0.222 (0.169- 0.347)
22.	Pottamun- dai	13 (1-49)	83 (56- 146)	6.9 (3.4- 9.6)	0.863 (0.280- 2.240)	0.044 (0.003- 0.146)	3.03 (0.84- 6.72)	928 (1.8-2800)	218 (154- 367)	0.53 (0.36- 0.75)	0.066 (0.006- 0.175)	130 (96- 204)	80 (60- 136)	16.1 (7.7- 24.9)	12.38 (6.31- 17.66)	0.315 (0.178- 0.576)
Nand	Nandira River															
23.	Nandira U/s	6 (1-21)	164 (120- 208)	9.0 (4.7- 15.2)	1.050 (0.280- 1.960)	0.027 (0-0.045)	4.13 (1.12- 8.96)	335 (20-1300)	554 (468- 688)	1.01 (0.20- 1.62)	0.108 (0.014- 0.485)	323 (272- 394)	180 (146- 200)	46.1 (7.7- 70.2)	56.08 (15.67- 89.80)	1.287 (0.837- 2.480)
24.	Nandira D/s	(1-43)	170 (112- 224)	12.9 (9.1- 19.0)	0.863 (0.280- 2.800)	0.033 (0.003- 0.098)	5.25 (1.12- 12.88)	662 (20-1700)	585 (486- 667)	1.11 (0.56- 1.74)	0.120 (0.019- 0.354)	341 (284- 418)	183 (152- 208)	47.4 (26.9- 71.2)	64.96 (28.36- 105.90)	1.4593 (1.190- 2.430)
Kisin	Kisinda Jhor															
25.	Kisinda- jhor	(1-34)	152 (80- 224)	11.1 (6.3- 15.5)	0.910 (0.280- 2.240)	0.034 (0.003- 0.078)	3.78 (0.84- 10.36)	764 (45-2200)	502 (183- 810)	0.94 (0.39- 1.79)	0.088 (0.010- 0.301)	299 (116- 444)	163 (72- (72- 218) (6	39.5 (10.6- 69.2)	51.47 (15.71- 86.32)	1.778 (0.314- 5.050)
Khar	Kharasrota River															
26.	Khandi- tara	40 (1-137)	67 (52- 134)	6.4 (3.4- 9.7)	0.793 (0.280- 2.240)	0.037 (0.001- 0.146)	3.03 (0.84- 7.00)	351 (40-1300)	172 (111- 290)	0.37 (0.12- 0.62)	0.074 (0.003- 0.350)	103 (72- 164)	65 (40- (132)	9.8 (5.8- 19.2)	13.52 (6.54- 21.64)	0.291 (0.206- 0.497)
27.	Binjharpur	(1-63)	67 (50- 114)	7.0 (3.4- 11.2)	0.607 (0.280- 1.120)	0.015 (0 -0.045)	2.87 (0.84- 8.40)	1362 (110-2400)	166 (128- 231)	0.35 (0.16- 0.62)	0.046 (0.003- 0.223)	99 (76- 144)	66 (48 (48 108)	8.7 (5.8- 11.5)	11.81 (7.21- 15.79)	0.245 (0.172- 0.375)

SI. No.	Sampling Location	Physica et	Physical parameters	010	ganic poll	Organic pollution Indicators	ators	Bacteriological ical param-			Min	Mineral constituents	ituents			
								eter								
							Annual	Annual Average values (Range of values)	s (Range	of values)						
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	Ш	CI	SO_4	Ŧ
		îm)	(mg/l)		1)	(mg/l)		(MP- N/100ml)	(mS/ cm)				(mg/l)	(1/)		
28.	Aul	27 (2-69)	62 (52- 92)	8.0 (5.4- 10.7)	0.840 (0.280- 2.240)	0.045 (0 -0.179)	2.52 (0.84- 6.72)	858 (110-2400)	212 (139- 301)	0.57 (0.33- 0.99)	0.127 (0.003- 0.127)	126 (80- 168)	71 (48 120)	17.3 (7.7- 29.8)	21.38 (7.02- 48.26)	0.327 (0.166- 0.497)
Gurac	Guradih nallah															
29.	Guradih nallah	(1-62)	71 (42- 120)	32.4 (22.2- 48.4)	1.960 (0.560- 3.360)	0.059 (0-0.429)	6.62 (2.52- 12.04)	42633 (1100- 160000)	401 (186- 531)	0.90 (0.19- 1.27)	0.084 (0.003- 0.350)	232 (108- 320)	125 (84- 156)	34.6 (5.8- 46.2)	62.96 (19.90- 84.05)	1.529 (0.271- 1.990)
Badjh	Badjhor nallah															
30.	Badjhor nallah	17 (1-35)	112 (70- 144)	9.7 (5.2- 17.4)	0.770 (0.280- 2.800)	0.031 (0.004- 0.140)	2.57 (0.84- 5.04)	773 (110-1700)	301 (211- 380)	0.79 (0.45- 1.18)	0.067 (0.006- 0.192)	179 (128- 232)	100 (72-120)	25.3 (11.5- 42.3)	18.44 (9.29- 42.16)	0.360 (0.227- 0.598)
Dams	Damsala River															
31.	Dayanabil	35 (3-107)	69 (48- 94)	6.7 (5.2- 9.8)	0.793 (0.280- 1.680)	0.022 (0-0.070)	3.13 (0.56- 6.16)	686 (20-2400)	163 (119- 214)	0.27 (0.13- 0.57)	0.052 (0.007- 0.154)	99 (72- 124)	70 (48 100)	7.8 (3.8- 11.5)	9.71 (3.33- 17.40)	0.151 (0.093- 0.236)
Gand	Ganda nallah															
32.	Marthapur	34 (6-122)	90 (62- 120)	12.5 (6.1- 19.0)	0.583 (0.280- 1.120)	0.014 (0-0.036)	3.17 (0.84- 11.20)	382 (45-1300)	349 (153- 598)	0.82 (0.17- 1.42)	0.076 (0.003- 0.175)	209 (96- 348)	(42- (122)	28.2 (6.6- 58.5)	42.46 (6.54- 106.50)	1.289 (0.443- 5.790)
Lingin	Lingira River															
33.	Angul U/s	6 (2-11)	169 (116- 224)	8.4 (3.8- 13.0)	0.415 (0.112- 0.840)	0.019 (0-0.070)	2.10 (0.56- 3.92)	434 (68-1400)	391 (305- 512)	0.71 (0.35- 1.09)	0.063 (0.010- 0.242)	228 (168- 296)	144 (88- 196)	25.4 (16.3- 44.2)	16.14 (10.69- 23.51)	0.577 (0.349- 1.360)
34.	Angul D/s	5 (1-10)	194 (132- 238)	10.5 (3.8- 19.3)	0.737 (0.168- 2.240)	0.045 (0.007- 0.146)	3,41 (0.56- 12.32)	676 (130-1700)	464 (359- 630)	0.90 (0.53- 1.46)	0.074 (0.006- 0.224)	277 (212- 348)	162 (126- 214)	35,4 (18.3- 65.4)	20.58 (12.31- 40.17)	0.615 (0.281- 1.390)
Ramia	Ramiala River															
35.	Kam- akhyana- gar	21 (3-70)	63 (40- 90)	6.5 (4.7- 11.6)	0.915 (0.280- 3.360)	0.023 (0-0.067)	3.69 (0.84- 10.36)	491 (20-1700)	154 (121- 196)	0.40 (0.22- 0.77)	0.044 (0.003- 0.178)	91 (68- 116)	58 (44- 92)	9.1 (5.8- 13.4)	7.97 (4.72- 16.67)	0.217 (0.153- 0.325)

SI. No.	Sampling Location		Physical parameters	0	rganic poll	Organic pollution Indicators	cators	Bacteriological parameter			Min	Mineral constituents	tituents			
							Annual	Annual Average values (Range of values)	s (Range	of values)						
		TSS	Total alkal -inity	СОО	NH ₄ -N	Free NH ₃ -N	TIKN	FC	EC	SAR	В	TDS	Ш	CI	SO_4	Ţ
		m)	(mg/l)		T)	(mg/l)		(MP- N/100ml)	(mS/cm)				(mg/l)	(1/3		
Bang	Banguru nallah															
36.	Banguru nallah	(2-37)	117 (40- 212)	8.0 (3.9- 15.2)	1.073 (0.280- 3.080)	(0-0.046)	3.52 (0.84- 7.84)	329 (20-1300)	759 (479- 1408)	0.080 (0.29- 1.59)	0.058 (0.003- 0.161)	459 (296- 844)	257 (116- 350)	36.8 (19.2- 57.7)	177.35 (62.68- 278.57)	0.622 (0.454- 1.040)
Singe	Singada jhor															
37.	Singada jhor	(3-138)	136 (76- 248)	8.3 (3.1- 17.4)	0.857 (0.168- 2.560)	0.044 (0-0.166)	3.10 (1.12- 6.16)	473 (20-1300)	417 (228- 635)	0.061 (0.33- 1.03)	0.040 (0.005- 0.119)	257 (148- 428)	156 (80- 288)	23.5 (12.5- 32.6)	50.23 (20.83- 114.68)	0.532 (0.389- 0.782)
Tikir	Tikira River															
38.	Kaniha U/s	67 (3-285)	86 (40- 124)	7.1 (4.7- 11.4)	0.845 (0.056- 3.360)	0.052 (0.002- 0.218)	4.57 (0.84- 17.92)	396 (2-1300)	209 (162- 314)	0.47 (0.34- 0.60)	0.047 (0.013- 0.221)	127 (92- 184	78 (50- 116)	12.2 (7.7- 21.5)	13.97 (7.96- 24.75)	0.420 (0.232- 1.150)
39.	Kaniha D/s	62 (2-220)	89 (44- 130)	9.1 (5.7- 17.4)	1.008 (0.056- 5.320)	0.059 (0-0.426)	4.28 (1.12- 18.48)	(20-2400)	275 (169- 418)	0.57 (0.33- 0.81)	0.066 (0.013- 0.347)	169 (112- 236)	101 (64- 130)	17.2 (10.6- 27.9)	31.73 (12.56- 52.98)	1.104 (0.266- 1.460)
Bang	Bangurusingada jhor	jhor														
40.	Bangu- rusingada jhor	11 (1-61)	136 (88- 208)	7.4 (3.4- 11.6)	1.227 (0.168- 5.320)	0.033 (0-0.120)	4.32 (1.68- 10.64)	491 (20-1300)	357 (193- 541)	0.74 (0.20- 1.48)	0.046 (0.005- 0.105)	219 128- 320)	131 (88- 202)	27.5 (5.8- 58.5)	28.28 (7.38- 42.90)	0.641 (0.353- 1.190)
Karo	Karo River															
41.	Barbil	58 (1-529)	77 (44- 132)	5.6 (3.4- 8.9)	0.793 (0.280)	0.019 (0-0.070)	2.54 (1.12- 5.32)	191 (14-1100)	178 (126- 346)	0.28 (0.07- 0.68)	0.052 (0.017- 0.119)	111 (84- 204)	77 (52- 120)	7.6 (5.3- 11.5)	11.81 (2.62- 61.81)	0.205 (0.094- 0.314)
Class 'C'	ى, ر.					1	ı		ı	ı		1500	1	009	400	1.5
Class 'E'	E,				1	ı			2250	56	2.0	2100	_	009	1000	

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C' :Drinking water source with conventional treatment followed by disinfection

Class 'E': Irrigation water quality

(B) Contd..

S.	Sampling Loca-	Nu	Nutrients				He	Heavy metals				
No.	tion				Annual A	Average valu	Annual Average values (Range of values)	f values)				
		Nitrate as NO ₃ .	PO ₄ ^{3.} -P	Cr(VI) ##	T. Cr##	Fe#	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
			(mg/l)					(mg/l)				
Sankh	Sankha River											
ri .	Sankha U/s	1.80 (0.65-5.55)	0.054 (0.006-0.257)	<0.002	0.020	0.206	0.001	0.001	0.001	0.0014	1	0.001
Koel River	River											
67	Koel U/s	1.61 (0.52-3.81)	0.057 (0.009-0.251)	<0.002	0.013	0.523	0.002	0.003	0.004	0.0018	1	0.003
Brahn	Brahmani river											
છ	Panposh U/s	2.17 (0.71-5.07)	0.075 (0.003-0.409)	<0.002	0.013	0.295	0.003	0.004	0.005	0.0014	-	0.003
4.	Panposh D/s	34.73 (0.70-84.48)	0.056 (0.007-0.153)	<0.002	0.018	0.620	0.004	0.004	0.029	0.0023	-	0.008
5.	Rourkela D/s	9.64 (0.90-31.48)	0.065 (0.011-0.251)	<0.002	0.018	0.321	0.003	0.003	0.016	0.0018	ı	0.007
9.	Rourkela FD/s (Attaghat)	5.22 (0.91-15.26)	0.043 (0.007-0.146)	<0.002	0.020	0.262	0.003	0.005	0.013	0.0016	ı	0.007
7.	Rourkela FD/s (Biritola)	3.04 (0.75-10.48)	0.076 (0.005-0.442)	<0.002	0.018	0.158	0.003	0.004	900.0	0.0018	ı	0.003
8.	Bonai	4.09 (1.03-15.26)	0.228 (0.007-1.836)	<0.002	0.013	0.334	0.002	0.004	0.020	0.0014		0.004
6	Rengali	1.09 (0.58-2.46)	0.059 (0.010-0.182)	<0.002	0.013	0.104	0.003	0.004	0.001	0.0016	ı	0.006
10.	Samal	1.63 (0.63-8.45)	0.079 (0.014-0.347)	<0.002	0.012	960.0	0.002	0.002	0.003	0.0015	ı	0.003
11.	Talcher FU/s	1.50 (0.63-6.96)	0.054 (0.005-0.199)	<0.002	0.012	0.122	0.002	0.003	0.001	0.0020	I	0.006
12.	Talcher U/s	1.29 (0.42-4.83)	0.114 (0.010-0.567)	<0.002	0.013	0.027	0.011	0.004	0.003	0.0021	1	0.006
13.	Mandapal	2.05 (0.56-6.93)	0.082 (0.011-0.444)	<0.002	0.012	0.176	0.003	0.005	0.008	0.0024	ı	0.007
14.	Talcher D/s	1.68 (0.55-5.47)	0.063 (0.005-0.298)	<0.002	0.024	0.160	0.002	0.005	0.005	0.0024	I	0.007

Sampling Loca-	Nu	Nutrients				He	Heavy metals				
tion				Annual A	Average valu	Annual Average values (Range of values)	f values)				
	Nitrate as NO ₃ .	PO ₄ P	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Нд##	Pb##
	1)	(mg/l)					(mg/l)				
Talcher FD/s	1.93 (0.48-7.93)	0.040 (0.007-0.166)	<0.002	0.020	0.080	0.003	0.004	0.004	0.0021	I	0.007
Dhenkanal U/s	1.83 (0.72-6.17)	0.050 (0.009-0.282)	<0.002	0.018	0.032	0.001	0.003	0.023	0.0019	ı	0.005
Dhenkanal D/s	2.24 (0.73-6.50)	0.066 (0.015-0.336)	<0.002	0.020	0.155	0.002	0.004	0.015	0.0020	I	0.009
	2.91 (0.64-8.78)	0.130 (0.010-1.178)	<0.002	0.029	0.520	0.002	0.005	0.122	0.0015	ı	0.008
Kabatabandha	2.67 (0.54-17.79)	0.063 (0.014-0.202)	<0.002	0.027	0.521	0.003	0.002	0.012	0.0014	I	0.003
Dharmasala U/s	1.29 (0.58-2.68)	0.045 (0.008-0.113)	<0.002	0.024	0.107	0.002	0.005	0.025	0.0016	1	0.005
Dharmasala D/s	1.82 (0.54-5.76)	0.055 $(0.015-0.190)$	<0.002	0.020	0.097	0.002	0.007	0.010	0.0018	I	0.008
Pottamundai	0.91 (0.40-1.78)	0.147 (0.013-0.670)	<0.002	0.024	2.249	0.002	0.005	0.005	0.0020	I	0.007
Nandira River											
Nandira U/s	3.37 (0.63-15.10)	0.126 (0.007-0.729)	<0.002	0.020	0.164	0.010	0.007	0.023	0.0023	ı	0.013
Nandira D/s	2.30 (0.48-7.84)	0.139 (0.006-0.764)	<0.002	0.027	0.203	0.007	0.005	0.018	0.0026	ı	0.016
Kisindajhor	8.34 (0.58-25.90)	0.007-3.644)	<0.002	0.027	0.131	0.006	900.0	0.062	0.0026	I	0.014
Kharasrota River											
Khanditara	1.74 (0.74-4.04)	0.045 (0.008-0.204)	<0.002	0.020	0.134	0.004	0.005	0.009	0.0015	ı	0.009
Binjharpur	2.13 (0.72-11.82)	0.070 (0.012-0.339)	0.007	0.020	0.477	0.005	0.007	0.009	0.0018	ı	0.004
	1.19 (0.32-2.72)	0.154 $(0.011-0.529)$	<0.002	0.013	0.446	0.003	0.004	0.006	0.0016	I	0.002

S	Sampling Loca-	nN	Nutrients				He	Heavy metals				
No.	tion				Annual A	Annual Average values (Range of values)	es (Range o	f values)				
		Nitrate as NO ₃ .	$\mathbf{P0}_{4}^{3}$ - \mathbf{P}	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
			(mg/l)					(mg/l)				
Gurac	Guradih nallah											
29.	Guradih nallah	28.07 (1.57-62.84)	0.096 (0.010- 0.249)	<0.002	0.032	1.139	900.0	0.008	0.022	0.0023	I	0.008
Badjh	Badjhor nallah											
30.	Badjhor nallah	1.76 (0.52-4.57)	0.118 (0.010- 0.595)	<0.002	0.024	0.260	0.004	0.002	0.002	0.0019	ı	0.003
Dams	Damsala River											
31.	Dayanabil	3.39 (0.855- 24.98)	0.029 (0.007- 0.066)	0.003	0.032	0.362	0.005	0.005	0.029	0.0018	ı	9000
Ganda	Ganda nallah											
32.	Marthapur	7.97 (0.52-34.19)	0.088 (0.012- 0.380)	<0.002	0.020	0.187	0.010	0.009	0.007	0.0015	ı	0.006
Lingra	Lingra River											
33.	Angul U/s	3.90 (0.52-33.65)	0.104 (0.009- 0.647)	<0.002	0.013	960.0	0.006	0.006	0.007	0.0018	I	0.011
34.	Angul D/s	1.16 (0.57-2.22)	0.130 (0.010- 0.764)	<0.002	0.015	0.055	0.003	0.002	0.002	0.0019	I	0.004
Rami	Ramiala River											
35.	Kamakhyanagar	1.08 (0.45-2.22)	0.073 (0.010- 0.422)	<0.002	0.018	0.236	0.003	0.004	0.007	0.0023	I	0.005
Bangı	Banguru nallah											
36.	Banguru nallah	1.70 (0.69-5.49)	0.053 (0.010- 0.177)	<0.002	0.015	0.230	0.011	0.004	0.013	0.0026	I	0.014
Singa	Singada jhor				·							
37.	Singada jhor	0.96 (0.49-2.01)	0.053 (0.008- 0.128)	<0.002	0.013	0.183	0.005	0.003	0.005	0.0023	I	0.008
Tikira	Tikira River											
38.	Kaniha U/s	1.88 (0.65-7.78)	0.063 (0.010- 0.178)	<0.002	0.018	0.443	0.004	0.003	0.005	0.0022	I	0.003
39.	Kaniha D/s	1.49 (0.64-6.14)	0.086 (0.012- 0.162)	<0.002	0.018	0.414	9000	9000	0.008	0.0024	1	0.007

Annual Report 2019-20 — 73

SI.	Samp	Nu	Nutrients				He	Heavy metals				
No.	tion				Annual 4	Annual Average values (Range of values)	es (Range o	f values)				
		Nitrate as NO ₃ -	PO ₄ ³ -P	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cq##	н8##	$\mathrm{Pb}^{\#\#}$
		1)	(mg/l)					(mg/l)				
Bangu	Bangurusingada jhor											
40.	40. Bangurusingada jhor	1.31 (0.46-3.66)	0.088 (0.006- 0.450)	<0.002	0.018	0.103	0.003	0.003	0.011	0.0023		0.003
Karo River	River											
41.	41. Barbil	2.39 (0.43-14.20)	0.055 (0.001- 0.235)	<0.002	0.015	0.131	0.00	0.001	0.001	0.0013	-	0.002
Class 'C'	ည,	20		0.02	-	20		1.5	15.0	0.01	-	0.10
Class 'E'	E,		-	-	-							,

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E': Irrigation water quality

Data for the period April, 2019

(C) Baitarani river system (2019)

Organic pollution Indicators Bacteri- ological parameter parameter	Annual Average values (Range of values)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mg/l) (MPN/ (μ S/ (mg/l) (mg/l)		61 8.4 (4.8-	(0.250) (0.52400) (0.52400) (0.525) (0.51) (0.527) (0.52) (0.527) (0.527) (0.527) (0.527) (0.527) (0.527) (0.527) (0.527) (0.527) (0.527) (0.527)			0.020 (0 3.7 (0.8- 1815 195 0.38 0.044 117 (64- 75 10.4 8.52	8.7 0.840 0.020 (0- 3.7 (0.8- 1815 195 0.38 0.044 (3.9-15.4) (0.280- 0.090) 17.1) (226.7000) (105- (0.25- (0.005-
parameter	Annual Average valu	Free TKN NH ₃ -N			0.008 (0- 3.3 (0.6-	(6.6)			0.020 (0- 3.7 (0.8-	0.020 (0- 3.7 (0.8- 0.090) 17.1)
Organic						(0.01-0.0)			H	8.7 (3.9-15.4)
SI. Sampling Physical param- No. Location eters		TSS Table 1 in the control of the co	(mg/l)	Kundra Nallah	44		River		Deogaon 129	129 (7-762)
SI. No.				Kundra	1. Joda		Kusei River	THE	2. I	2. I

SI. No.	Sampling Location		Physical parameters	Org	anic pollut	Organic pollution Indicators	ors	Bacteri- ological parameter			Mi	Mineral constituents	stituent	ν _ο		
							Annual A	Annual Average values (Range of values)	s (Range	of values						
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TIKN	FC	EC	SAR	В	TDS	ТН	CI	SO_4	T
		lm)	(mg/l)		(mg/l)	(1/)		(MPN/ 100ml)	(µS/ cm)				(mg/l)	(V)		
Baita	Baitarani River															
ಣ	Naigarh	102 (1-592)	44 (20-92)	7.5 (3.6-15.6)	0.849 (0.112- 2.240)	0.013	3.5 (1.1- 14.6)	311 (20-2200)	109 (78 183)	0.27 (0.15- 0.51)	0.034 (0.003- 0.118)	67 (48- 112)	45 (28 88)	6.3 (2.9- 9.6)	8.08 (1.19- 17.41)	0.14 (0.07- 0.26)
4.	Unchabali	7 (4-13)	43 (16-88)	6.7 (3.6-12.9)	0.774 (0.112- 1.960)	0.008 (0-	2.1 (0.8-3.4)	398 (20-2400)	110 (73- 183)	0.26 (0.05- 0.57)	0.032 (0.003- 0.135)	67 (48- 116)	45 (28- 88)	6.4 (3.8- 9.7)	7.82 (1.19- 15.29)	0.12 (0.05- 0.19)
5.	Champua	30 (1-84)	62 (48-104)	6.9 (4.8-12.2)	0.714 (0.168- 1.400)	0.013 (0- 0.034)	3.4 (0.6-7.8)	273 (20-1100)	142 (108- 239)	0.29 (0.16- 0.53)	0.028 (0.003- 0.090)	89 (68- 144)	60 (36- 108)	7.8 (4.8-11.5)	8.63 (2.20- 23.0)	0.15 (0.09- 0.25)
6.	Tribindha	50 (1-324)	67 (48-102)	5.8 (3.5-7.8)	0.770 (0.280- 2.520)	0.014 (0-0.070)	2.6 (0.6-10.1)	314 (20-1700)	150 (100- 241)	0.27 (0.12- 0.41)	0.020 (0.005- 0.038)	89 (68- 144)	60 (36- 108)	7.8 (4.8-11.5)	8.63 (2.20- 23.0)	0.15 (0.09- 0.25)
7.	Joda	105 (1-519)	58 (40-98)	8.5 (3.5- 16.6)	0.910 (0.280- 2.520)	0.015 (0-0.050)	3.8 (1.1- 9.5)	783 (110-2200)	146 (101- 249)	0.28 (0.12- 0.68)	0.034 (0.003- 0.112)	87 (68- 136)	59 (36- 112)	8.3 (5.8- 16.3)	8.31 (2.24- 20.64)	0.14 (0.08- 0.21)
8.	Anandpur	75 (5-228)	69 (38-150)	9.5 (3.6-18.5)	1.003 (0.280- 2.800)	0.022 (0-0.057)	3.0 (1.7-4.8)	1282 (78-3300)	164 (96- 330)	0.30 (0.13- 0.49)	0.030 (0.003- 0.086)	98 (56- 184)	65 (36- 126)	8.3 (3.8- 14.4)	9.12 (1.78- 12.26)	0.18 (0.11- 0.27)
9.	Jajpur	21 (2-57)	71 (44-96)	10.0 (5.2-17.4)	1.423 (0.280- 6.160)	0.042 (0.001- 0.216)	6.2 (0.6- 23.8)	802 (68-17000)	183 (113- 262)	0.56 (0.15- 1.35)	0.069 (0.005- 0.228)	111 (76- 160)	63 (44- 96)	14.2 (3.8- 38.5)	11.73 (7.58- 17.85)	0.23 (0.11- 0.42)
10.	Chandbali U/s	149 (13- 518)	79 (50-96)	12.5 (3.9-24.0)	0.621 (0.056- 0.420)	0.027 (0-0.130)	2.3 (0.6-3.4)	1091 (170-3500)	6329 (130- 19480)	15.37 (0.20- 47.08)	0.726 (0.005- 1.516)	4485 (76- 13920)	764 (50- 2480)	2359.7 (3.8- 7595.9)	246.5 (10.2-777.4)	0.38 (0.14- 0.78)
11.	Chandbali D/s	180 (18- 646)	83 (52-112)	18.9 (8.1-38.5)	0.807 (0.168- 1.960)	0.024 (0-0.109)	2.6 (1.1-6.2)	1383 (330-3500)	8318 (151- 24419)	23.71 (0.38- 111.72)	0.629 (0.005- 1.389)	6007 (88- 16880)	803 (50- 2560)	3285.6 (11.5- 9615.0)	260.8 (7.5- 842.7)	0.36 (0.14- 0.82)
Salan	Salandi River															
12.	Bhadrak U/s	21 (1-77)	67 (44-96)	8.8 (5.2-12.9)	0.546 (0.112- 1.400)	0.024 (0-0.090)	1.9 (0.6-3.4)	724 (45-3500)	164 (89- 260)	0.38 (0.14- 0.70)	0.042 (0.011- 0.070)	101 (56- 152)	66 (36- 116)	11.3 (2.9- 25.9)	10.90 (5.49- 24.37)	0.20 (0.12- 0.31)

	Sl. Sampling Physical param-	Physica	l param-	Orga	nic polluti	Organic pollution Indicators	ors	Bacteri-			M	Mineral constituents	nstituent	Ø		
	Location	en	eters					ological								
							Annual A	Annual Average values (Range of values)	s (Range	of values	9					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	Ш	CI	SO_4	F
		(m)	(mg/l)		(mg/l)	(1)		(MPN/ 100ml)	(µS/ cm)				(mg/l)	3/1)		
13.	Bhadrak D/s	25 (1-110)	72 (44-124)	12.1 (5.2- 20.3)	0.630 (0.280- 1.120)	0.017 (0-0.039)	2.1 (1.1-4.2)	1533 (78-3500)	189 (129- 284)	0.47 (0.29- 1.15)	0.033 (0.005- 0.091)	114 (76-172)	72 (48- 132)	14.0 (6.7- 38.4)	13.21 (5.59- 26.61)	0.19 (0.11- 0.28)
т 8	Dhamra River															
14.	Dhamra	167 (2- 492)	167 (2- 114 (76- 492) 180)	35.5 (9.7- 60.3)	0.439 (0.112- 1.120)	0.013 (0-0.056)	2.4 (0.8-5.3)	416 (1.8-1600)	24069 (259- 44340)	48.87 (1.33- 98.53)	1.510 (0.010- 3.022)	17409 (168- 30188)	2336 (68- 5200)	9459 (37- 13707)	724.5 (18.7- 1806.6)	0.50 (0.12- 0.67)
1 10	Class 'C'		1	,			,			,	-	1500		009	400	1.5
TO	Class 'E'		ı					ı	2250	26	2.0	2100		009	1000	

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' :Irrigation water quality

Contd..

SI. No.		Nutrients	nts				E E	Heavy metals	als			
	Location			Ann	Annual Average values (Range of values)	ge values	(Range	of values)				
		Nitrate as NO ₃ .	PO_4^{3} -P	Cr(VI)##	Cr(VI)## T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
		(I/gm)	1)					(mg/l)				
Kundra nallah	ıallah											
1.	Joda	1.407 (0.462-2.694))	0.125 (0.007-0.523)	<0.002	0.018	0.458	0.005	0.004	0.007	0.0017	1	0.003
Kusei River	ver											
2.	Deogaon	1.186 (0.432-3.394)	0.068 (0.010-0.202)	<0.002	0.018	1.328	0.007	0.004	0.008	0.0021	1	900.0
Baitarani river	river											
3.	Naigarh	1.196 (0.395-2.388)	0.052 (0.007-0.139)	<0.002	0.024	2.810	0.008	0.008	0.012	0.0023	I	0.003

CI NO	Course Line	Natural Canton	2					U com model	70			
31. NO.	Sampinig	Innu						eavy mer	als			
	Location			Ann	Annual Average values (Range of values)	ge values	(Range c	f values)				
		Nitrate as NO ₃ .	PO_4^{3} -P	Cr(VI)##	T. Cr##	Fe##	Ni##	Cu##	Zu##	Cd##	Hg##	Pb##
		(mg/l)						(mg/1)				
4.	Unchabali	1.032 (0.523-2.134)	0.052 (0.007-0.171)	<0.002	0.024	4.358	600.0	0.008	0.012	0.0017	-	0.005
5.	Champua	1.156 (0.450-2.825)	0.071 (0.001-0.159)	<0.002	0.020	1.531	0.005	0.003	900.0	0.0018	I	0.003
.9	Tribindha	1.043 (0.480-1.784)	0.074 (0.007-0.203)	<0.002	0.024	1.365	0.005	0.004	0.007	0.0023	1	0.003
7.	Joda	1.290 (0.334-2.501)	0.077 (0.007-0.296)	<0.002	0.013	1.126	0.003	0.003	900.0	0.0018	I	0.002
8.	Anandpur	1.720 (0.401-4.898)	0.084	<0.002	0.002	1.858	0.005	0.005	0.009	0.0018	1	0.005
.6	Jajpur	1.432 (0.565-4.102)	0.101 $(0.010 \cdot 0.589)$	<0.002	0.022	0.194	0.002	0.005	0.007	0.0022	-	0.002
10.	Chandbali U/s	1.313 (0.499-3.289)	0.085 (0.008-0.293)	<0.002	0.024	0.217	0.007	600.0	0.012	0.0017	Ι	0.003
11.	Chandbali D/s	1.304 (0.553-3.446)	0.062 (0.010-0.234)	<0.002	0.029	0.283	0.009	0.012	0.013	0.0020	ı	0.004
Salandi river	iver											
12.	Bhadrak U/s	1.077 (0.499-2.536)	0.052 (0.002- 0.202)	<0.002	0.018	0.559	0.003	0.003	0.021	0.0018	1	0.002
13.	Bhadrak D/s	1,227 (0.656-2.694)	0.064 (0.003- 0.211)	<0.002	0.018	0.474	0.004	0.005	0.016	0.0024	ı	0.002
Dhamra River	River											
14.	Dhamra	0.972 (0.455-1.994)	0.052 (0.002-0.177)	<0.002	0:030	0.230	0.011	0.017	0.017	0.0023	I	0.003
Class 'C'		50	•	0.05	ı	50		1.5	15.0	0.01		0.10
Class 'E'			-	-		-	-	-		-	-	
	1 1 0 70 01	000	(1000)	(000								

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

Data for the period April, 2019

(D)Rushikulya river System (2019)

$\begin{array}{c} \text{SI.} \\ \text{No.} \\ \hline \text{Locz} \end{array}$	Sam-	Dhysian		(-											
	pling Location	i nysica ete	rnysicai param- eters	Orga	Organic pollut	tion Indicators	ators	Bacteri- ological parameter			W	Mineral constituents	stituents			
							Ann	Annual Average values (Range of values)	values (Ra	nge of value	(Se					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	ТН	CI	SO_4	F
		ŝw)	(mg/l)		m)	(mg/l)		(MPN/ 100 ml)	(µS/cm)					(mg/l)		
Russelkunda Reservoir	ında R	eservoir														
1. Rus- selku	Rus- selkunda	23 (5-89)	96 (70-140)	11.4 (5.5- 17.1)	0.933 (0.280- 2.520)	0.035 (0-0.164)	3.52 (0.84- 10.36)	586 (1.8-2200)	208 (144-288)	0.44 (0.23-0.78)	0.064 (0.003- 0.154)	124 (88-168)	94 (64-112)	13.4 (7.7-22.1)	6.23 (2.14- 12.81)	0.289 (0.112- 0.626)
Bada Nadi	di															
2 Aska		79 (4-326)	118 (72-154)	9.7 (4.0-16.2)	0.700 (0.280- 1.120)	0.027 (0.003- 0.082)	3.31 (0.56- 8.96)	1365 (45-3500)	268 (199-368)	0.45 (0.15-0.66)	0.069 (0.007- 0.140)	153 (112- 102 (64- 222) 130)	102 (64- 130)	15.0 (5.8-20.2)	8.32 (3.48- 18.90)	0.288 (0.219- 0.394)
Rushikulya river	lya rive	j.														
3. Aska		143 (5-650)	123 (64-164)	11.4 (5.7- 19.1)	0.863 (0.280- 2.240)	0.037 (0-0.109)	3.22 (0.84- 6.72)	1714 (490-3500)	267 (202-366)	0.51 (0.28-0.79)	0.062 (0.003- 0.129)	161 (116- 212)	104 (60- 124)	18.3 (7.7-35.3)	8.17 (2.73- 17.85)	0.269 (0.192- 0.350)
4. Nala ta	Nalaban- ta	45 (6-209)	125 (76-146)	12.2 (4.0- 22.1)	0.602 (0.224- 1.400)	0.033 (0.003- 0.070)	5.65 (0.84- 29.12)	2428 (1.8-16000)	298 (209-444)	0.60 (0.28-1.21)	0.078 (0.021- 0165)	172 (120- 238)	109 (64- 136)	19.7 (11.5- 49.9)	9.65 (1.62- 16.79)	0.304 (0.201- 0.422)
5. Mad ur	Madhop- ur	85 (9-350)	120 (72-152)	9.0 (4.0-15.2)	0.943 (0.112- 3.360)	0.067 (0.003- 0.420)	3.34 (0.84- 10.08)	1054 (45-3500)	679 (184- 4878)	2.34 (0.31- 20.66)	0.110 (0.010- 0.306)	402 (108- 2932)	118 (56- 280)	139.8 (7.7- 1442.3)	24.81 (4.52- 171.20)	0.320 (0.203- 0.428)
6. Pota	Potagarh	(8-273)	121 (76-144)	27.1 (10.5- 52.2)	0.803 (0.112- 1.680)	0.038 (0.004- 0.175)	3.10 (0.56- 6.44)	633 (1.8-2800)	10521 (248- 41410)	18.74 (0.64- 71.09)	0.828 (0.041- 2.405)	7442 (148- 35140)	1448 (64- 4800)	4096.5 (11.5- 20191.5)	403.12 (7.14- 1411.70)	0.374 (0.110- 0.678)
Class 'C'		,		'	-		٠					1500	'	009	400	1.5
Class 'E'			ı						2250	26	2.0	2100		009	1000	1

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality

(D) Contd..

Sl. No.	Sampling	Nutr	Nutrients				He	Heavy metals	ıls			
	Location			A	Annual Average values (Range of values)	rage value	s (Range	of values)			
		Nitrate as NO ₃ -	PO ₄ ^{3.} -P	Cr(VI)##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cq##	Hg##	Pb##
			(mg/l)					(mg/l)				
Russelku	Russelkunda Reservoir											
1.	Russelkunda	5.67 (0.64-47.62)	0.063 (0.003-0.223)	<0.002	0.015	0.623	0.004	0.004	0.009	0.0017	ı	0.003
Bada Nadi	idi											
2.	Aska	1.84 (0.59-7.90)	0.100 (0.002-0.433)	<0.002	0.013	0.955	0.005	0.004	0.007	0.0016	ı	0.005
Rushikulya river	lya river											
.3	Aska	2.46 (0.53-8.14)	0.083 (0.009-0.277)	<0.002	0.015	1.065	0.005	0.005	0.009	0.0018	ı	0.005
4.	Nalabanta	1.78 (0.67-7.35)	0.093 (0.010-0.375)	0.002	0.012	0.881	0.004	0.004	0.006	0.0014	ı	0.003
5.	Madhopur	2.14 (0.60-6.62)	0.063 (0.002-0.154)	<0.002	0.018	2.059	9000	0.005	0.012	0.0016	ı	0.005
6.	Potagarh	2.46 (0.55-11.67)	0.062 (0.002-0.261)	<0.002	0.015	0.268	0.009	0.008	0.009	0.0018	ı	0.004
Class 'C'		50	-	0.05		20	-	1.5	15.0	0.01		0.10
Class 'E'							,	-		1		

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' :Irrigation water quality

Data for the period April, 2019

(E) Nagavali river System (2019)

SI.	Sampling		Physical pa-	Orga	Organic pollution Indicators	ion Indic	ators	Bac-			Minera	Mineral constituents	ituents			
o Z	Location	ram	rameters					terio- logical param- eter								
						I	Annual Av	erage valu	Annual Average values (Range of values)	of values)						
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	ТН	Cl	\mathbf{SO}_4	Ţ
		m)	(mg/l)		(mg/l)	g/1)		(MPN/ 100 ml)	(µS/cm)				m)	(mg/l)		
Nagar	Nagavali river															
1.	Penta	92 (2-286)	86 (601- 24)	8.8 (3.4-13.3)	0.821 (0.056- 2.240)	0.028 (0- 0.105)	2.38 (0.56- 7.56)	566 (20- 1700)	232 (148-428)	0.59 (0.19- 1.55)	0.086 (0.007- 0.206)	131 (84- 184)	79 (56- 96)	16.9 (8.6- 36.5)	10.18 (2.86- 23.00)	0.274 (0.180- 0.350)
2.	Jaykaypur D/s	99 (16- 437)	90 (60-	12.6 (7.6-18.5)	1.129 (0.112- 3.640)	0.037 (0- 0.210)	3.90 (1.12- 11.48)	1016 (45- 2400)	220 (85-329)	0.53 (0.22- 1.18)	0.054 (0.010- 0.099)	144 (96- 192)	88 (56- 116)	16.0 (7.4- 38.4)	19.20 (5.00- 30.59)	0.229 (0.073- 0.291)
33	Rayagada D/s	10 (3-470)	90 (48-	12.0 (5.2-19.3)	1.027 (0.560- 2.240)	0.032 (0- 0.112)	3.31 (1.40- 10.92)	520 (20- 1300)	244 (174-315)	0.48 (0.21- 0.70)	0.058 (0.003- 0.155)	146 (108- 196)	95 (68- 116)	15.8 (7.7- 26.9)	20.38 (7.84- 29.47)	0.245 (0.176- 0.289)
C	CIASS 'C'		,				,	1		-		1500	'	009	400	1.5
ပ ပ	CIASS E		-	-			,	,	2250	56	2.0	2100	•	009	1000	,

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E': Irrigation water quality

		Pb##			0.003	0.004	0.009	0.10	,
		Hg##			I	ı	1	-	
		## P O			0.0018	0.0020	0.0021	0.01	
als		Zn##			0.007	0.019	0.064	15.0	-
Heavy metals	ge of values)	Cu##	(l/gm)		900.0	0.006	0.009	1.5	-
	Annual Average values (Range of values)	N ##			0.003	0.009	900.0		-
	al Average v	Fe##			0.198	0.214	3.102	20	1
	Annus	T. Cr##			0.015	0.020	0.018		
		Cr(VI)##			<0.002	<0.002	<0.002	0.05	-
Nutrients		PO ₄ 3-P	(mg/l)		0.102 (0.006-0.277)	0.469 (0.022-3.527)	0.354 (0.013-2.099)	-	ı
Nutr		Nitrate as NO ₃ -	m)		2.06 (0.70-6.44)	3.26 (0.57-17.18)	2.78 (0.91-5.59)	20	ı
Sampling	Locanon			Nagavali river	Penta	Jaykaypur D/s	Rayagada D/s	Class 'C'	Class 'E'
is is	No.			Nagava	ij	23	છ	3	

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E': Irrigation water quality

Data for the period April, 2019

(F) Subarnarekha river system (2019)

z. So.	Sampling Physical param- Location eters	Physica eta	I param- ers	Orga	Organic pollution Indicators	ion Indic	ators	Bacteri- ological parameter			Mi	Mineral constituents	ituents			
							An	Annual Average values (Range of values)	values (R	ange of va	lues)					
		TSS	Total alkal -inity	COD	COD NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	HI	CI	SO_4	T
		lm)	(mg/l)		gm)	(mg/l)		(MPN/ 100 ml)	(µS/ cm)				(mg/l)	(1)		
Subar	Subarnarekha river	ver														
1	Rajghat	25	84 (68-	9.2	0.705	0.037	3.56	375	327	1.95	0.093	197 (96-	86	37.6	34.76	0.49
		(3-66)	100)	(5.2-	(0.056-	-0)	(0.84-	(20-1700)	(142-539)	(0.33-	(0.014-	328)	(68-	(7.7-	(7.09-	(0.23-
				(0.07	1:150)	0.000)	0:15)		(000)	(6::3)	0.102)		100)	100:0)	(07:00	0.00)
Class 'C'	رد,					-		-	•		-	1500		009	400	1.5
Class 'E'	E,		-	'	-	-	-	ı	2250	26		2100	-	009	1000	

(E) Contd..

(F) Contd..

SI.	Sl. Sampling Location	Nutrients	S				H	Heavy metals	als			
No.			Ann	Annual Average values (Range of values)	e values	(Range	of values	(
		Nitrate as NO ₃	$\mathbf{d} \cdot \mathbf{\hat{t}}^{\dagger} 0 \mathbf{d}$		T. Cr##	,e#	Ni##	Cu##	Zn##	Cq##	Hg##	Pb##
		(mg/l)						(mg/l)				
Subarı	Subarnarekha river											
1.	Rajghat	1.211 (0.450-2.003)	0.050 (0.010-0.197)	<0.002	0.018	1.259	900.0	<0.002 0.018 1.259 0.006 0.007	0.017	0.0018	I	0.010
	Class 'C'	50	-	0.05	ı	50	ı	1.5	15.0	0.01	-	0.10
	Class 'E'		-	,				-	-	1	-	,

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality

Data for the period April, 2019

(G) Budhabalanga River System (2019)

		F			0.279 (0.125- 0.545)	0.196 (0.116- 0.321)
		SO_4			12.74 (3.73- 2.65)	12.30 (3.98- 22.88)
		C	(1		19.4 (3.8- 48.1)	13,7 (3.8- 22.4)
ituents		ТН	(mg/l)		84 (40- 116)	76 (48- 152)
Mineral constituents		SQL			137 (84- 208)	119 (76-
Min	lues)	В			0.054 (0.007- 0.153)	0.033 (0.003- 0.126)
	Range of va	SAR			0.517 (0.083- 1.263)	0.47 (0.18 0.68)
	values (I	EC	(mS/cm)		226 (138- 346)	195 (119- 321)
Bacteri- ological parameter	Annual Average values (Range of values)	FC	(MP- N/100ml)		1698 (490-3500)	1189 (700-2400)
itors	An	TKN			2.52 (4.12- 4.20)	2.82 (0.84- 8.68)
Organic pollution Indicators		Free NH ₃ -N	(mg/l)		0.023 (0-0.090)	0.026 (0.003- 0.109)
anic pollu		NH ₄ -N	u)		0.873 (0.112- 2.240)	1.003 (0.280- 3.640)
Org		COD NH ₄ -N			10.3 (5.8- 15.5)	9.6 (5.2- 14.8)
al pa- ters		Total alkal -ini-	(1)		87 (52- 128)	81 (48- 152)
Physical parameters		ISS	(mg/l)	er	64 (4-209)	94 (5-626)
Sampling Location				Budhabalanga river	Baripada D/s	Balasore U/s
SI. No.				hpn	1.	25

SI. No.	Sampling Location	Physical parameters	al pa-	Org	anic pollu	Organic pollution Indicators	ators	Bacteri- ological			Min	Mineral constituents	ituents			
							An	Annual Average values (Range of values)	values (Range of va	lues)					
		TSS	Total alkal ini- ty	000	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	B	TDS	TH	C	SO_4	Ţ
		(mg/l)	(1)		m)	(mg/l)		(MP- N/100ml)	(µS/cm)				(mg/l)			
3.	Balasore	52	93	11.9	1.097	0.024	3.73	2521	315	1.11	0.051	191 (76-	-92) 98	34.6	21.56	0.195
	D/s	(1-131)	(50- 144)	(7.0 . 16.6)	(0.280-3.640)	(0-0.109)	(1.40- 10.92)	(450-7900)	(118- 509)	(0.19- 2.96)	(0.003- 0.143)	288)	132)	(5.8- 92.2)	(7.97- 33.95)	(0.113- 0.342)
ne	Sone River															
4.	Hatigond	95	98	10.0	0.887	0.017	2.50	777	245	0.78	0.047	145 (80-	76 (52-	21.1	16.23	0.209
		(992-6)	(58- 126)	(5.7- 19.3)	(0.280-	(0-0.034)	(1.40-7.00)	(68-2200)	(128 343)	(0.22- 1.87)	(0.003- 0.153)	196)	116)	(5.8- 46.2)	(3.36- 36.56)	(0.134- 0.361)
C	CLASS 'C'	-			-	-	-		-	-		1500		009	400	1.5
ا ت	CLASS E		٠	,	-	-			2250	56	2.0	2100	-	009	1000	-

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' :Irrigation water quality

(G) Contd..

		Pb##			0.011	0.006
		Hg##			1	1
		Cd##			0.0023	0.0016
netals	alues)	Zn##	T)		0.020	0.008
Heavy metals	lange of v	Cu##	(mg/l)		0.007	0.003
	Annual Average values (Range of values)	Ni##			0.009	0.005
	nual Avera	Fe##			2.507	0.117
	Am	T. Cr##			0.027	0.024
		Cr(VI)## T. Cr## Fe#			<0.002	<0.002
ts		PO ₄ ³ -P			0.050 (0.002- 0.143)	0.040 (0.003- 0.167)
Nutrients		Nitrate as NO_3	(I/gm)	L.	1.470 (0.474-5.143)	0.921 (0.420-1.889)
Sam-	pling	Location		Budhabalanga river	Baripada D/s	Balasore U/s
SI.	No.			Budha	1.	2.

		Pb##		0.017		0.008	0.10	,
		#8Н		I		I	-	-
		Cq##		0.0018		0.0018	0.01	
netals	alues)	Z u##	(1)	0.021		0.117	15.0	-
Heavy metals	lange of v	Cu##	(mg/l)	0.008		0.005	1.5	-
	Annual Average values (Range of values)	Ni##		0.014		0.009	-	-
	nual Aver	Fe##		3.429		3.371	20	-
	Am	T. Cr##		0.027		0.018	-	-
		I)##		<0.002		<0.002	0.05	-
ts		PO ₄ ³-P Cr(V		0.099 (0.014- 0.380)		0.068 (0.013- 0.316)		
Nutrients		Nitrate as NO_3 .	(mg/l)	2.009 (0.481-8.567)		2.291 (0.499-6.044)	50	-
Sam-	pling	Location		Balasore D/s	iver	Hatigond	ر ن	₽,
SI.	No.			3.	Sone River	4.	Class 'C'	Class 'E'

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

Data for the period April, 2019

(H) Kolab river system (2019)

SI. No.	Sam- pling	Physica	Physical parameters	Org	Organic pollution Indicators	ion Indica	itors	Bacteriological parameter			Mine	Mineral constituents	ituents			
							Annı	Annual Average values (Range of values)	lues (Ran	ge of valu	(es)					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	B	TDS	HH	ت ت	SO_4	T
		m)	(mg/l)		(mg/l)	(1/3		(MP- N/100ml)	(µS/cm)				(mg/l)	(1		
Keran	Kerandi river															
1	1. Sunabeda	113	46	10.2	0.658	0.036	2.82	251	132	0.46	0.063	81	47	10.4	90.6	0.163
		(4-711)	(30-86)	(5.4-	(0.056-	0-0	(0.84-	(1.8-1100)	(70-222)	(0.14-	-2000)	(48-	(24-	(5.7-	(2.74-	-680.0)
				14.8)	2.520)	0.315)	7.84)			0.97)	0.128)	136)	74)	24.9)	20.27)	0.222)
Class 'C'	رد,		,								•	1500		009	400	1.5
Class 'E'	E,	-		ı	1				2250	97	2.0	2100		009	1000	

(H) Contd..

SI.	Sampling Location	Nutrients	S					Heavy metals	tals			
No.					Annu	Annual Average values (Range of values)	values (Rar	nge of valu	es)			
		Nitrate as NO ₃ .		O ₄ P Cr(VI)** T. Cr**	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	##8H	Pb##
		(I/gm)						(mg/l)				
Kerandi river	i river											
1.	1. Sunabeda	2.296 (0.499-6.507)	0.142 (0.003- 0.499)	<0.002	0.018	0.931	0.002	0.004	0.025	0.0018	I	0.002
Class 'C'	13	50	ı	0.05		20	•	1.5	15.0	0.01	ı	0.10
Class 'E'	33	-		-	-	-	-			ı	-	

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

Data for the period April, 2019 #

Vansadhara river system (2019)

SI. No.	Sampling Location	Physical parameters	param-	Orga	Organic polluti	llution Indicators	itors	Bacteri- ological				Mineral constituents	nstituent	vo.		
								parameter								
							Anr	Annual Average values (Range of values)	values (Ra	nge of va	lues)					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	FC	EC	SAR	В	TDS	ТН	Cl	SO_4	F
		lm)	(mg/l)		(mg/l)	(1/		(MP- N/100ml)	(µS/cm)				m)	(mg/l)		
Vans	Vansadhara river	L														
ij	Muniguda	22	84	9.5	0.705	0.014	3.56	375	327	1.95	0.093	197 (96-	-89) 86	37.6 (7.7-	34.76	0.49
		(3-66)	(68-100)	(5.2-	(0.056-	(0- 0.056)	(0.84-	(20-1700)	(142-539)	(0.33-	(0.014-	328)	136)	105.8)	(7.09-	(0.23-
	(L		i c	LOLL	(2000)	(1)	L	07.77	6 ,	9000	000	00,00	0 0 0	62.00	
7	Gunupur	22	84	9.5	0.705	0.019	3.56	375	327 (142-	1.95	0.093	197 (96-	-89) 86	37.6 (7.7-	34.76	0.49
		(3-66)	(68-100)	(5.2-	(0.056-	9	(0.84-	(20-1700)	239)	(0.33-	(0.014-	328)	136)	105.8)	(7.09-	(0.23-
				20.3)	1.120)	0.070)	8.12)			2.75)	0.182)				80.10)	0.85)
Clas	Class 'C'			1	-		-	-		-	1	1500	1	600	400	1.5
Clas	Class E'	1	1	ı		ı			2250	26	2.0	2100	1	009	1000	,

(I) Contd..

SI.	Sampling	Nutrients	nts				Hea	Heavy metals				
No.	Location			1	Annual Ave	Annual Average values (Range of values)	ange of valu	les)				
		Nitrate as NO ₃ .	PO ₄ 3-P	Cr(VI)## T. Cr##	T. Cr##	Fe##	Ni##	Cn##	Zn##	Cd##	Hg##	Pb##
		(mg/l)	1))	(mg/l)				
Vansadl	Vansadhara river											
1.	Munigu- da	1.562 (0.456-3.534)	0.187 (0.007-0.756)	<0.002	0.013	0.415	0.003	0.003	0.022	0.0019	ŀ	0.002
2.	Gunupur	1.998 (0.638-9.044)	0.147	0.002	0.015	0.816	0.003	0.004	0.008	0.0023	ı	0.003
Class 'C'	6	50	-	0.05		50		1.5	15.0	0.01	ı	0.10
Class 'E'	£		-			-	-	-		-		-

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality

Data for the period April, 2019

(J) Indravati river system (2019)

(J) Contd..

SI.	Sampling	Nutrients	nts						Heavy metals	netals		
No.	Location				Ann	ual Ave	rage val	lues (Ra	Annual Average values (Range of values)	alues)		
		Nitrate as NO ₃ -	PO ₄ ³ -P	Cr (VI)##	C	Fe##	Ni##	Cu##	Zn##	Cq##	Hg##	Pb##
		(mg/l)	(I)						(mg/l)	(1)		
Indravati river	river											
1.	Nawarangpur	1.485 (0.542-3.402)	0.220 (0.014- 0.756)	<0.002	<0.002 0.013	1.315	0.005	1.315 0.005 0.006 0.012	0.012	0.0014	ı	0.002
Class 'C'		50	-	0.02	-	50		1.5	15.0	0.01		0.10
Class 'E'		•	-	-						1		ı

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

Data for the period April, 2019 #

Bahuda river system (2019)

		1			0.473	(0.252- 0.673)	1.5	
		SO_4			$20.66 \mid 0$	(2.50- (0 57.96) 0.	400	1000
								600 10
ıts		CI	(mg/l)		44	(14.4- 163.5)	009)9
stituen		THI	(m)		133	(80-	ı	
Mineral constituents		TDS			248	(132-396)	1500	2100
Mi	values)	B			0.106	(0.038-0.168)		2.0
	Range of	SAR			1.21	(0.43- 3.56)		56
	values (I	EC	(µS/cm)		411	(219- 607)	-	2250
Bacteri- ological parame- ter	Annual Average values (Range of values)	FC	(MPN/ 100ml)		694	(1.8-3500)	-	,
ators	Annu	TKN			3.71	(0.84-10.92)		1
Organic pollution Indicators		Free NH ₃ -N	(mg/l)		0.054	(0-0.140)		1
nic pollu		COD NH ₄ -N	m)		1.095	(0.280- 3.920)	-	-
Orga		COD			13.9	(6.1- 33.8)		
Physical pa- rameters		Total alkal -inity	(mg/l)		140	(68-208)		
Physi		TSS	m)		66 (12-	205)	-	,
Sam- pling Loca- tion				Bahuda river	Damodar-	pally	, C,	, E,
Si. No.				Bahu	1.		Class 'C'	Class 'E'

(K) Contd..

SI.		Nutrients	ents				Hea	Heavy metals				
No.	Location				Annı	Annual Average values (Range of values)	ues (Range	of values)				
		Nitrate as NO_3 NO_3 .	PO ₄ ³ -P	Cr(VI)## T. Cr##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cq##	Hg##	Pb##
		(I/gm)	(1/3					(mg/l)				
Bahud	Bahuda river											
1.	Damodarpally	1.920 (0.577-5.558)	0.051 (0.002- 0.135)	<0.002	0.015	0.453	0.004	0.004 0.007 0.0020	0.007	0.0020	I	0.003
Class 'C'	C,	20	-	0.05	-	50	-	1.5	15.0	0.01	-	0.10
Class 'E'	E'					1			-		ı	

*

Class 'C' : Drinking water source with conventional treatment followed by disinfection Class 'E' : Irrigation water quality

(A) Canal Water Quality Monitoring

Board regularly monitors the water quality of Taladanda canal at six stations and of Puri canal at three stations.

Taladanda canal originates from Mahanadi barrage at Jobra of Cuttack, passes through the city and finally culminates at Paradeep after covering a distance of 82 Km. The canal was constructed for the purpose of navigation and/or irrigation of a part of Mahanadi delta of Cuttack and Jagatsinghpur districts. Besides this, the canal is also a source of fresh water for industries and the port at Paradeep. The canal water is also used for bathing and other domestic activities all along its stretch.

Board monitors the water quality of Taladanda canal within Cuttack city at five locations viz. Jobra, Ranihat, Chhatrabazar, Nuabazar, Biribati and one station at Atharabanki of Paradeep. The water quality data at these five stations with respect to critical parameters such as pH, DO, BOD, TC, FC, EC, SAR and B during 2019 are given in Table-5.20 and compared with the tolerance limits for Bathing Water Quality prescribed under E (P) Rule, 1986 and Class B (Outdoor bathing) and Class E (Irrigation) Inland surface water quality prescribed by Bureau of Indian Standards (IS: 2296-1982). The water quality of Taladanda canal at these locations remained well within the tolerance limit prescribed for Class-E inland surface water bodies. So far the bathing water quality is concerned, total coliform organisms and fecal coliform organisms remain above the prescribed limit for Class-B at all the monitoring stations most of the time during the period of study in 2019, whereas BOD values exceeded the tolerance limit only once at Jobra, Ranihat, Chhatrabazar, Nuabazar and Atharabanki.

Puri canal originates from Munduli barrage on Mahanadi near Cuttack. The 42 Km long canal was constructed for the purpose of irrigation of Puri district and a part of Khordha district. The canal water is also used for bathing and other domestic activities all along its stretch. Board monitors the water quality of Puri canal at three locations viz. Hansapal, Jagannathpur and Chandanpur. The water quality of Puri canal at these locations remained well within the tolerance limit prescribed for Class-E inland surface water bodies. So far the bathing water quality is concerned, total coliform organisms remain above the prescribed limit for Class-B at all the monitoring stations most of the time during the period of study in 2019.

Water quality for other parameters in Taladanda canal and Puri canal, given in Table-5.21 (a) and (b), remain well within the tolerance limit for Class - C water quality.

Table-5.20 Water Quality of Canals with respect to Criteria parameters during 2019 (January-December)

	No.		Am (Annual average values (Range of values)	values les)		Frequent cent	uency of	Frequency of violation (Percent of violation) from desig-	n (Per-	Existing Class	Parameters responsible	Possi- ble Rea-
Location Obs.	Obs.			Parameters			1	nated cr	nated criteria value	ue		for down- orading the	son
Hď	Hd	Hd	DO (mg/l)	BOD (mg/l)	TC (MPN/100 ml)	FC (MPN/100 ml)	DO	BOD	TC	FC		water quality	
Taladanda canal													
Jobra* 4 7.2 (7.1-7.3)		7.2 (7.1-7.3)	7.3 (6.8-7.7)	1.9 (0.8-3.8)	13500 (3500-25000)	2900 (700-4900)	0	1 (25)	$2^{\$}$ (50) $4^{\$\$}$ (100)	2 (50)	Does not conform to Class B,C	BOD, TC,FC	Human activities
Ranihat* 4 7.4 (7.2-7.5)		7.4	7.3 (7.0-7.6)	2.1 (1.2-3.7)	19300 (4300-54000)	7125 (1700-22000)	0	1 (25)	3 ^{\$} (75) 4 ^{\$\$} (100)	1 (25)	Does not conform to Class B & C	BOD, TC,FC	Human activities and waste
Chatra- 4 7.3 bazar* (6.8-7.7)		7.3	6.7 (5.4-7.8)	2.3 (1.3-4.7)	39075 (4900-92000)	14300 (1700-35000)	0	1 (25)	3\$ (75) 4 ^{\$\$} (100)	3 (75)		BOD, TC,FC	water of Cuttack town
Nuaba- 4 7.3 zar* (6.7-7.7)		7.3	7.0 (6.4-7.4)	1.8 (0.6-3.4)	56550 (2800-160000)	30950 (1700-92000)	0	1 (25)	3 ^{\$} (75) 4 ^{\$\$} (100)	2 (50)	Does not conform to Class B & C	BOD, TC,FC	
Biribati* 4 7.6 (7.4-7.8)		7.6	7.0	1.8 (1.0-2.3)	18125 (1100-35000)	7745 (490-17000)	0	0	$2^{\$}$ (50) $4^{\$\$}$ (100)	2 (50)		TC,FC	
Athara- 12 7.6 banki (7.0-8.2)		7.6	6.3 (0.4-8.4)	1.5 (0.3-5.6)	4610 (330-17000)	1925 (140-7900)	1 (8)	(8)	10 ^{\$} (82) 11 ^{\$\$} (92)	2 (17)	Does not conform to Class B & C	DO, BOD, TC,FC	Human activities
**Class 'C' 6.5-8.5	6.5-8.5	6.5-8.5	4 and above	3 or less	5000 or less		Drink	cing wat	er source	with cor	nventional treat fection	Drinking water source with conventional treatment followed by disin- fection	y disin-
**Class 'B' 6.5-8.5	6.5-8.5	6.5-8.5	5 and above	3 or less	500 or less					Outo	Outdoor bathing		
Water quality criteria 6.5-8.5 for bathing water		6.5-8.5	5 and above	3 or less		2500 (Maximum Permissible)		(МОЕІ	Water u	ise for or tion G.S.	Water use for organised outdoor bathing Notification G.S.R. No. 742(E) Dt. 25.09	Water use for organised outdoor bathing (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)	(6)

bata for the period August, September, October and November, 2019

^{**} Tolerance limits for Inland Surface water bodies (IS-2296-1982) $^{\circ}$ for Class C and $^{\circ}$ for Class B

Contd..

	Sampling Location	No.		An	Annual average values (Range of values)	values ues)		Freq (Per	Frequency of violation (Percent of violation)	of viola	tion on)	Existing Class	Param- eters re-	Possible Reason
		0bs. [Parameters	Ø		from	from designated criteria value	ated cri ue	teria		sponsible for down-	
			Hd	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	FC (MPN/ 100 ml)	DO	BOD	TC	FC		grading the water quality	
(b) Puri canal	-													
Hansapal)al	12	7.8 (6.9-8.4)	8.1 (6.2-11.8)	1.0 (0.5-1.8)	2508 (220-3900)	1063 (78-2200)	0	0	0\$ 10\$\$ (83)	0	Does not conform to Class B	TC	Human activities
Jagannath- pur	ath-	12	7.7 (6.9-8.3)	7.1 (5.5-9.3)	1.4 (0.6-2.4)	3005 (460-5400)	1237 (170-2400)	0	0	1\$ (8) 73\$ (58)	0	Does not conform to Class B	TC	Human activities
Chandan- pur	an-	12	7.4 (6.5-8.3)	6.5 (3.1-7.8)	1.2 (0.6-2.8)	1797 (230-4700)	612 (45-1700)	1\$ (8) 1\$\$ (8)	0	0\$ 88\$ (73)	0	Does not conform to Class B, C	DO, TC	
Clas	**Class 'C'		6.5-8.5	4 and above	3 or less	5000 or less		Drink	ing wate	er sourc	e with e	h conventional disinfection	Drinking water source with conventional treatment followed by disinfection	lowed by
Clas	**Class 'B'		6.5-8.5	5 and above	3 or less	500 or less					Outd	Outdoor bathing		
qual	Water quality criteria for bathing water	teria	6.5-8.5	5 and above	3 or less		2500 (Maximum Permissible)	(<u>N</u>	W. IOEF No	ater use	for org	Water use for organised outdoor bathing Notification G.S.R. No. 742(E) Dt. 25.09	Water use for organised outdoor bathing (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)	5000)

For Class B: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml. For Class C: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. NB: The criteria of non-compliance with respect to TC has been calculated on the following basis: (Ref: IS 2296-1982 foot note)

SI. No	Sampling Location	No. of Obs.		Annual (Rang	nnual average value (Range of values)		Freque (Perce	Frequency of violation (Percent of violation)	iolation lation)	Existing Class	Parameters responsible	Pos-sible
				Pa	Parameters		from de	from designated criteria value	d crite-		for downgrad- ing the water	Rea-son
			Hd	EC (micro-Siemens /cm)	SAR	B (mg/l)	EC	SAR	В		quality	
(a)]	(a) Taladanda canal	lal										
⊢ i	Jobra*	4	7.2 (7.1-7.3)	172 (151-192)	0.30 (0.13-0.47)	0.205 (<0.003-0.061)	0	0	0	Conform to Class E		
23	Ranihat*	4	7.4 (7.2-7.5)	163(131- 193)	0.23 (0.12-0.34)	0.014 (0.005-0.027)	0	0	0			
65	Chatraba- zar*	4	7.3 (6.8-7.7)	164 (142- 193)	0.21 (0.13-0.34)	0.027 (<0.003-0.079)	0	0	0			
4.	Nuabazar*	4	7.3 (6.7-7.7)	163 (131- 192)	0.32 (0.19-0.41)	0.023 (0.007-0.037)	0	0	0			
5.	Biribati*	4	7.6 (7.4-7.8)	158(134- 176)	0.20 (0.12-0.32)	0.016 (0.008-0.027)	0	0	0			
9.	Atharaban- ki	12	7.6 (7.0-8.2)	215 (147- 297)	0.50 (0.24-0.60)	0.060 (0.005-0.175)	0	0	0			
Puri	Puri Canal											
ij	Hansapal	12	7.8 (6.9-8.4)	204 (172- 296)	0.44 (0.10-0.74)	0.045 (0.003-0.240)	0	0	0	Conform to Class E		
23	Jagannath- pur	12	7.7 (6.9-8.3)	194 (137- 280)	0.40 (0.19-0.57)	0.044 (0.003-0.168)	0	0	0			
3.	Chandan- pur	12	7.4 (6.5-8.3)	225 (142-448)	0.56 (0.13-1.46)	0.069 (0.005-0.354)	0	0	0			
	**Class 'E'	•	6.0-8.5	2250 or less	26 or less	2.0 or less		Irrigatio	n, industr	Irrigation, industrial cooling, controlled waste disposal	led waste disposal	
* D8	* Data for the period August, September, October and November, 2019	d August	, September, O	ctober and No	ovember, 2019							

Table- 5.21(a) Water Quality of Taladanda Canal with respect to other parameters during 2019 (January-December)

Sl. No.	Sam- pling	Physic rame	•	Or	ganic pollut	ion Indicate	ors		Mine	eral cons	stituents	
	Loca- tion				Annual	average va	lues (Rar	nge of val	lues)			
	tion	TSS	Total alka- linity	COD	NH ₄ -N	Free NH ₃ -N	TKN	TDS	TH	C1	SO ₄	F
		(mg	g/1)		(mg	g/l)				(mg/l)	
1.	Jobra*	91 (15- 164)	73 (64- 92)	15.7 (9.1- 27.9)	0.49 (0.28- 0.56)	0.004 (0.003- 0.007)	7.21 (1.96- 14.84)	104 (84- 120)	70 (60- 84)	7.0 (3.8- 9.6)	14.87 (10.95- 24.37)	0.251 (0.176- 0.295)
2.	Rani- hat*	112 (20- 188)	70 (64-84)	18.0 (12.6- 24.2)	1.19 (0.28- 3.36)	0.023 (0.003- 0.067)	8.19 (1.96- 22.68)	98 (80- 112)	67 (56- 80)	7.0 (3.8- 9.6)	13.32 (9.88- 22.63)	0.249 (0.184- 0.284)
3.	Chhatra- bazar*	98 (14- 162)	72 (62-92)	16.1 (11.6- 24.2)	1.40 (0.84- 3.08)	0.024 (0-0.062)	10.92 (2.52- 24.36)	99 (84- 112)	68 (56- 84)	5.3 (3.8- 7.7)	14.49 (10.00- 23.25)	0.271 (0.253- 0.287)
4.	Nuaba- zar*	96 (28- 149)	71 (64-88)	16.6 (10.9- 24.2)	1.40 (0.28-3.92)	0.019 (0-0.049)	5.83 (1.20- 15.96)	102 (88- 116)	68 (60- 82)	7.7 (5.8- 9.6)	13.49 (10.35- 21.14)	0.284 (0.232- 0.328)
5.	Biribati*	70 (23-98)	74 (68-84)	16.7 (7.2- 23.2)	0.84 (0.28-1.68)	0.018 (0.004- 0.029)	4.97 (1.68- 8.68)	100 (92- 112)	72 (64- 84)	6.5 (5.8- 7.7)	13.97 (9.70- 22.02)	0.291 (0.232- 0.379)
6.	Athara- banki	21 (1-99)	83 (64- 108)	16.0 (9.1- 40.4)	0.98 (0.28- 2.24)	0.031 (0 -0.056)	4.29 (1.12- 17.92)	130 (96- 178)	78 (60- 100)	14.5 (8.7- 19.2)	15.0 (6.0- 34.2)	0.358 (0.199- 0.598)
**(Class 'C'	-	-	-	-	-	-	1500	-	600	400	1.5
**(Class 'E'	-	-	-	-	-	-	2100	-	600	1000	-

^{*} Data for the period August, September, October and November, 2019

Contd...

S1.	Sam-	Nutrien	ts				H	eavy m	etals			
No.	pling Location		A	nnual a	verage	value	s (Ran	ge of va	alues)			
	Location	NO ₃ -	PO ₄ ³ -P	Cr (VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
		(mg/l))					(mg/	1)			
1.	Jobra*	1.106 (0.840-1.684)	0.185 (0.024- 0.455)					Not anal	ysed			
2.	Ranihat*	1.219 (1.006- 1.599)	0.084 (0.015- 0.222)					Not anal	ysed			
3.	Chhatra- bazar*	1.809 (0.980-3.940)	0.068 (0.012- 0.192)					Not anal	ysed			
4.	Nuabazar*	1.716 (0.784-3.466)	0.126 (0.021- 0.241)				-	Not anal	ysed			-

^{**} Tolerance limits for Inland Surface water bodies (IS-2296-1982)

S1.	Sam-	Nutrien	ts				Н	eavy m	etals			
No.	pling		A	nnual a	verage	value	s (Rang	ge of va	alues)			
	Location	NO ₃ -	PO ₄ ³⁻ -P	Cr (VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
		(mg/l)						(mg/	1)			
5.	Biribati*	1.640 (0.997-2.311)	0.221 (0.062- 0.343)]	Not anal	ysed			
6.	Athara- banki	1.136 (0.429-3.971)	0.190 (0.024- 0.659)	<0.002	0.024	0.691	0.005	0.005	0.010	0.0021	-	0.003
**(Class 'C'	50	-	0.05	-	50	-	1.5	15.0	0.01	-	0.10
**(Class 'E'	-	-	-	-	-	-	-	-	-	-	-

^{*} Data for the period August, September, October and November, 2019

 $DO: Dissolved\ Oxygen,\ BOD: Biochemical\ Oxygen\ Demand,\ TC: Total\ Coliform,\ TSS: Total\ Suspended\ Solids;\ COD: Chemical\ Oxygen\ Demand,\ NH_4-N: Ammonical\ nitrogen,\ TKN: Total\ Kjeldahl\ Nitrogen;\ FC: Fecal\ Coliform,\ EC: Electrical\ Conductivity,\ TDS: Total\ Dissolved\ Solids,\ B: Boron;\ SAR: Sodium\ Absorption\ Ratio,\ TH: Total\ hardness;\ Cl: chloride,\ SO_4: sulphate;\ F: Fluoride;\ PO_4^3: phosphate,:\ Cr(VI): Hexavalent\ Chromium;\ T.Cr: toal\ Chromium,\ Fe: Iron,\ Ni: Nickel,\ Cu: Copper,\ Zn: Zinc;\ Cd: cadmium;\ Hg: Mercury;\ Pb: Lead$

Table -5.21(b) Water Quality of Puri Canal with respect to other parameters during 2019 (January-December)

Sl. No.	Sam- pling	Physic rame	_	Orga	anic pollu	tion Indic	ators		Mine	ral cons	stituents	
	Location				Annual a	average va	alues (R	ange of	values)			
		TSS	Total alka- linity	COD	NH ₄ -N	Free NH ₃ -N	TKN	TDS	ТН	Cl	SO ₄	F
		(mg	<u>i/1)</u>		(m	g/l)				(mg/	l)	
1.	Hansapal	30 (1-161)	83 (68- 132)	8.9 (5.2- 16.1)	1.097 (0.280- 3.080)	0.059 (0-0.385)	4.36 (0.56- 12.32)	124 (104- 168)	79 (64- 124)	12.5 (5.5- 20.1)	12.25 (4.80- 23.25)	0.305 (0.234- 0.407)
2.	Jagannath- pur	33 (2-168)	84 (68- 126)	11.9 (5.5- 28.0)	1.210 (0.240- 3.360)	0.058 (0-0.328)	4.36 (1.12- 9.80)	118 (92- 174)	76 (56- 112)	10.7 (5.8- 17.3)	10.88 (4.85- 16.54)	0.328 (0.251- 0.420)
3.	Chandan- pur	85 (4-570)	84 (62- 120)	10.2 (5.4- 21.2)	0.775 (0.112- 1.400)	0.018 (0-0.109)	2.75 (1.12- 4.76)	136 (84- 260)	80 (56- 126)	19.9 (2.9- 62.7)	12.67 (5.95- 26.12)	0.296 (0.147- 0.486)
**	Class 'C'	-	-	-	-	-	-	1500	-	600	400	1.5
**	Class 'E'	-	-	-	-	-	-	2100	-	600	1000	-

^{##} Data for the period April, 2019 ** Tolerance limits for Inland Surface water bodies (IS-2296-1982)

S1.	Sampling	Nutri	ents				H	eavy met	als			
No.	Location			Ann	ual avera	age valu	ies (Ran	ge of val	ues)			
		NO ₃ ·	PO ₄ 3- -P	Cr(VI)	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
		(mg	<u>i/</u> 1)					(mg/l)				
1.	Hansapal	2.037 (0.536- 9.962)	0.158 (0.010- 0.642)	<0.002	0.020	0.130	0.002	0.004	0.010	0.0013	-	0.003
2.	Jagannathpur	0.791 (0.438- 1.163)	0.110 (0.011- 0.416)	<0.002	0.027	0.308	0.002	0.004	0.011	0.0018	-	0.004
3.	Chandanpur	3.327 (0.704- 26.505)	0.069 (0.001- 0.448)	<0.002	0.035	0.154	0.003	0.003	0.010	0.0020	-	0.002
*	*Class 'C'	50	-	0.05	<0.002	50	-	1.5	15.0	0.01	-	0.10
*	'*Class 'E'	-	-	-	-	-	-	-	-	-	-	-

^{##} Data for the period April, 2019

(B) Ponds Water Quality Monitoring

Board is regularly monitoring the water quality of eight ponds such as Bindusagar pond in Bhubaneswar, five religious ponds (Narendra, Markanda, Indradyumna, Swetaganga and Parvati Sagar) in Puri town, Jagannathsagar pond in Jeypore town and Raniguda pond in Angul town. The annual average and range values of the criteria parameters such as pH, DO, BOD, TC and FC during 2019 in these eight ponds are given in Table-5.22. As these ponds are mostly used for bathing purposes, water quality data are compared with the bathing water quality. Comparison of the data with the tolerance limits for Class-B (Bathing water quality), specified by CPCB and water quality criteria for bathing water (MoEF Notification G.S.R. No. 742(E) Dt. 25.09.2000) reveals non-compliance at these monitoring stations with respect to DO, BOD, TC and FC for most time of the observation period during 2019. Frequent deviations in pH values in the ponds in Puri town and Raniguda pond in Angul have been observed to be not within the tolerance limit of 6.5-8.5. Water quality with respect to other parameters are given in Table-5.23 which remained within the tolerance limits for Class 'C'.

(C) Lake Water Quality Monitoring

The Board is regularly monitoring the water quality of Chilika lake at two stations (Rambha and Satapada), four stations on Anshupa lake (Kadalibari, Bishnupur Subarnapur and Sarandagarh) and one station on Tampara lake (Tampara). Annual average and range values of the water quality parameters of these lakes during the year 2019 are given in Table-5.24 and Table-5.25. Assessment of the water quality status of the lakes have been done based on the best use of water body made by the society as well as the type of water body.

As Chilika is a brackish water lake and the predominant activities at the monitoring stations such as Rambha and Satapada are contact water sports and commercial fishing, the water quality criteria parameters are compared with Class SW-II. Comparison of the water quality data of Chilika lake with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) (Table-5.24(a)) reveals non-compliance with respect to fecal coliform values at both Rambha and Satapada. The probable cause of downgrading the water quality of lake may be due to human activities in the lake.

^{**} Tolerance limits for Inland Surface water bodies (IS-2296-1982)

Anshupa and Tamprara lakes are sweet water lakes and the predominant activity in these lake are fish propagation. Comparison of the water quality data of Anshupa lake and Tampara lake (Table 5.24(b)) with the water quality criteria for Class-D surface water bodies (Fish culture and wild life propagation) reveals compliance with respect to all the criteria parameters. However, frequent deviation in Biochemical Oxygen Demand (BOD) and Total coliform (TC) values (Table 5.25 (b)) from the tolerance limits (3.0 mg/l and 5000 MPN/100 ml respectively) laid down for Class-C (drinking water source with conventional treatment followed by disinfection) are observed at all the monitored locations of Anshupa and Tampara lake. The probable cause of downgrading the water quality of lake may be due to eutrophic condition of the lakes, human activities etc in the lake.

(D) Coastal Water Quality Monitoring

Coastal water quality at three locations near Puri town (Swargadwara, Baliapanda and Bankimuhan), one location at Gopalpur and one location at Paradeep are being regularly monitored by the Board. Annual average and range values of the water quality parameters of the sea at these five locations during the year 2019 are given in Tables -5.26 and Table-5.27. Assessment of the coastal water quality status have been done based on the best use and type of activities in the coastal segment.

Comparison of the coastal water quality data at Puri with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) reveals frequent non-compliance with respect to fecal coliform values at all monitored locations. This may be attributed to the human activities and discharge of domestic wastewater into the sea.

Comparison of the coastal water quality at Gopalpur and Paradeep with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) and SW-IV (for Harbour water) reveals compliance with the desired class.

Table -5.22 (a) Water Quality of Ponds with respect to Criteria parameters during 2019 (January- December)

Si.	Sampling Location	No.		An	Annual average values (Range of values)	values res)		Frequ violat	uency of ion) fror	Frequency of violation (Percent of violation) from designated criteria	(Perce	nt of teria	Existing Class	Parameters responsible for	Possible Reason
		Ops.			Parameters	vo.				value				downgrading the	
			Hd	DO (mg/l)	BOD (mg/l)	TC (MPN/ 100 ml)	FC (MPN/ 100 ml)	Hd	D0	BOD	TC	FC		water quanty	
(a)	(a) Bindusagar Pond		n Bhub	in Bhubaneswar City	City										
ij	Lingaraj Temple side	12	7.5 (6.7- 8.3)	7.8 (5.4- 10.4)	2.1 (1.0-2.9)	16856 (170- 92000)	7927 (45- 54000)	0	0	0	(92)	(58)	Does not conform to Class B	TC,FC	Human
2.	Ananta Vasudev	12	7.7 (7.1-8.4)	8.1 (5.1- 11.4)	1.9 (0.8-3.3)	10715 (110- 35000)	5498 (20- 35000)	0	0	1 (8)	10 (83)	4 (33)		BOD, TC,FC	
ಣ	Gyanana- gar	12	7.7 (7.2- 8.2)	7.3 (5.5- 10.2)	2.4 (0.8-4.2)	43841 (110- 160000)	26383 (20- 160000)	0	0	3 (25)	(92)	(58)		BOD, TC,FC	
4	Near Kedarnath Research Centre	12	7.7 (7.1-8.4)	8.2 (4.7- 11.8)	2.0 (0.6-3.7)	20759 (20- 54000)	7303 (20- 22000)	0	0	(8)	(92)	(58)		BOD, TC,FC	
	*Class 'B'		6.5-	5 and above	3 or less	500 or less						Outdo	Outdoor bathing		
rië G.S	Water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)	crite- water ation (E) Dt.	8.5	5 and above	3 or less		2500 (Maximum Permis- sible)			Wa	ter use	for orga	Water use for organised outdoor bathing	or bathing	

Note: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref: IS 2296-1982 foot note)

Pos-sible	Rea-	uos		Human activi- ties						
		<u></u>	-				•	Г		
F	for down-	grading the water quality		pH, DO, BOD, TC,FC	pH, DO, BOD, TC,FC	DO, BOD, TC,FC	pH, DO, BOD, TC	DO, BOD, TC,FC		athing
Ex- isting	Class			Does not con-	form to Class B	9			ing	utdoor l
Frequency of violation (Percent of violation) from designated criteria value		FC		2 (17)	3 (25)	2 (17)	0	2 (17)	Outdoor bathing	Water use for organised outdoor bathing
(Perce		TC		(50)	8 (67)	11 (92)	10 (83)	11 (92)	n _O	use for c
violatior lesignat		BOD		11 (92)	10 (83)	11 (92)	10 (83)	11 (92)		Water
ency of the from c		DO		3 (25)	3 (25)	3 (25)	3 (25)	3 (25)		
Freque lation		Hd		(33)	2 (17)	0	4 (33)	0		
		FC (MPN/ 100 ml)		2300 (1.8-16000)	3365 (1.8-17000)	2130 (20-16000)	599 (20-2400)	2602 (130- 16000)		2500 (Maximum Permissible)
ge values alues)	ters	TC (MPN/ 100 ml)		3448 (20-16000)	7763 (1.8-54000)	4615 (78-17000)	3105 (45-16000)	5477 (220- 22000)	500 or less	
Annual average values (Range of values)	Parameters	BOD (mg/l)		5.3 (1.6-8.7)	6.1 (2.1-10.1)	4.6 (2.5-6.8)	8.3 (1.9-21.6)	11.2 (2.4- 29.9)	3 or less	3 or less
An		DO (mg/l)		7.2 (2.4-11.8)	8.7 (3.9- 17.5)	7.2 (2.2-10.6)	8.5 (2.0-17.1)	7.3 (2.4-15.2)	5 and above	5 and above
		Hd		8.2 (7.2- 8.8)	8.1 (7.2- 9.0)	8.1 (7.2- 8.5)	8.2 (6.9- 9.2)	8.0 (7.0- 8.5)	6.5- 8.5	6.5- 8.5
No. of	Obs.			12	12	12	12	12		rite- vater ution E) Dt.
Sampling Location			(b) Ponds (Puri)	Narendra	Markanda	Indradyum- na	Swetagan- ga	Parvati sagar	*Class 'B'	Water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)
SI.			(b) I	1.	2.	3.	4.	5.		Waria (M)

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

				1				
Possible Reason				Human activities		Human activities		
Param- eters	respon-	down-grading the water quality		BOD, TC, FC		pH, DO, BOD, TC		athing
Existing Class				Does not conform to Class B		Does not conform to Class B	athing	Water use for organised outdoor bathing
ercent		FC		(8)		0	Outdoor bathing	organise
Frequency of violation (Percent of violation) from designated	alue	TC		9 (75)		10 (82)	ō	use for
of viola	criteria value	DO BOD		1 (8)		(58)		Water
luency violatic	C]	DO		0		1 (8)		
Freq of		Hq		0		1 (8)		
		FC (MPN/ 100 ml)		1954 (20-16000)		421 (20-1100)		2500 (Maximum Permissible)
ge values alues)	ers	TC (MPN/ 100 ml)		2967 (68-160000)		1458 (78-3500)	500 or less	
Annual average values (Range of values)	Parameters	BOD (mg/l)		2.1 (1.4-5.5)		4.5 (1.3-9.8)	3 or less	3 or less
Anı (DO (mg/l)		7.0 (6.0-9.4)		7.5 (3.2- 10.8)	5 and above	5 and above
		Hď	u	7.6 (7.2-8.4)		7.5 (7.0- 8.7)	6.5-8.5	6.5-8.5
No.	Ops.		ore tow	12	ul Town	12		rrite- water ation E) Dt.
Sampling Location			(c) Pond in Jeypore town	Jagannath- sagar	(d) Pond in Angul Town	Raniguda Pond	*Class 'B'	Water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)
SI. No			(c)	1	(p)	1.		Wiria ria (M G.S.

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

Table- 5.23 Water quality of Ponds with respect to other parameters during 2019 (January- December)

Si. No.	Sampling Location	Physica et	Physical parameters	Org	anic pollu	Organic pollution Indicators	ators			Mine	eral cons	Mineral constituents			
							Annual ave	Annual averagevalues (Range of values)	Range of va	lues)					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	EC	SAR	В	TDS	TH	CI	SO_4	T
		(m)	(mg/l)		m)	(mg/l)		(µS/cm)				(n	(mg/l)		
(a)	(a) Bindusagar Pond in Bhubaneswar City	and in E	Shubanesv	war City											
ij	Lingaraj Temple side	14 (3-51)	108 (88- 124)	108 (88- 17.8 (9.5- 124) 32.1)	1.003	0.030 (0-0.137)	4.48 (1.68- 9.24)	397 (334-560)	1.70 (1.35-	0.071 (0.025-	239 (192-	84 (70- 106)	54.3 (42.7-	15.13 (9.82-	0.257 (0.155-
					1.680)				2.25)	0.201)	364)		75.9)	22.26)	0.365)
2.	Ananta Vasudev	12 (3-25)	105 (86- 120)	15.7 (10.3-	0.770	0.033	3.64 (1.68-11.48)	366 (318-410)	1.61 (0.92-	0.067	216 (188-	85 (72- 112)	51.8 (34.5-	15.82 (10.94-	0.289 (0.151-
			`	23.2)	1.960)	0.157)			2.33)	0.278)	262)	Ì	(65.4)	23.12)	0.413)
3.	Gyananagar	16	109 (86-	109 (86- 19.1 (9.4-	1.027	0.039	4.55 (1.12-	392	1.70	0.043	228	87 (70-	55.2	18.31	0.300
		(2-42)	128)	27.8)	(0.280-	(0,006- 0.179)	14.56)	(340-426)	(1.06- 2.34)	(<0.003- 0.101)	(196- 268)	108)	(43.3- 73.1)	(11.19-36.19)	(0.179- 0.491)
4.	Near Kedar-	24	107 (82-	107 (82- 18.6 (8.6-	0.887	0.035	4.46 (1.68-	383	1.69	0.040	226	85 (64-	56.6	16.93	0.326
	nath research	(06-9)	136)	32.0)	(0.280-	(0.001-	10.08)	(338-406)	(0.98-	(0.010-	(192-	102)	(44.2-	(10.57-	(0.150-
	Centre				2.240)	0.109)			2.24)	0.077)	526)		65.4)	27.10)	0.987)
	*Class 'C'	,							ı		1500		009	400	1.5

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Contd..

SI.		Nut	Nutrients					Heavy metals	etals			
No.	Location				7	Annual averagevalues (Range of values)	agevalues (Range of val	lues)			
		NO_3	PO ₄ ³ -P	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	CQ##	Hg##	Pb##
		m)	(mg/l)					(mg/l)	(
(a)	(a) Bindusagar Pond in Bhubaneswar City	nd in Bhul	vaneswar City									
1.	Lingaraj Tem- ple side		0.203 (0.027-0.612)	<0.002	0.018	0.295	0.005	900.0	0.012	0.0020	1	0.003
		43.374)										
2.	Ananta Vasudev	3.841	0.186 (0.010-	<0.002	0.024	0.358	0.005	0.003	0.008	0.0018	ı	0.007
		30.298)										

		Pb##		0.003	600.0	0.10		
		Hg##		I	ı			
		CQ##		0.0017	0.0013	0.01		
etals	lues)	Zn##	(1	0.018	0.007	15.0		
Heavy metals	Annual averagevalues (Range of values)	Cu##	(mg/l)	0.007	0.003	1.5		
	agevalues (Ni##		0.002	0.004	-		
	Annual aver	Fe##		0.375	0.309	50		
	7	T. Cr##		0.013	0.018			
		<pre><0.002</pre>						
Nutrients		PO ₄ ³ -P	(mg/l)	0.185 (0.014- 0.740)	0.148 (0.012-0.775)	-		
Nut		NO ₃ -	m)	1.530 (0.480- 4.335)	1.273 (0.541- 4.093)	50		
Sampling				Gyananagar	Near Kedarnath Research Centre	*Class 'C'		
SI.	No.			₆ .	4	*		

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Data for the period April, 2019

Class 'C': Drinking water source with conventional treatment followed by disinfection

Si. No.	Sampling Location	Physic rame	Physical parameters	Org	Organic pollution Indicators	tion Indic	ators			Miner	Mineral constituents	ituents			
						7	Annual avera	Annual average values (Range of values)	ange of val	(sen					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	EC (µS/cm)	SAR	В	TDS	ТН	CI	SO_4	T
		m)	(mg/l)		m)	(mg/l)						(m)	(mg/l)		
Pon	Ponds in Puri town														
ij	Narendra	11 (3-25)	199 (164- 228)	34.1 (21.4- 54.1	0.924 (0.056- 2.240)	0.035 (0- 0.157)	3.20 (1.12- 6.44)	895 (707-1317)	3.44 (2.69- 5.57)	0.463 (0.088- 2.955)	549 (420- 828)	178 (136- 220)	176.0 (120.1- 346.1)	38.83 (17.04- 58.21)	0.162 (0.070- 0.283)
લં	Markanda	22 (6-83)	189 (150- 224)	33.1 (13.1- 67.9)	0.667 (0.056- 1.400)	0.074 (0.004- 0.286)	2.80 (0.56- 6.16)	702 (604-796)	1.56 (0.89- 2.02)	0.170 (0.062- 0.374)	412 (348- 480)	198 (144- 256)	90.5 (69.2- 149.9)	45.02 (30.84- 61.43)	0.136 (0.043- 0.569)
က်	Indradyumna	10 (2-19)	111 (88-	24.3 (16.8- 33.9)	0.653 (0.112- 1.400)	0.052 (0.009- 0.217)	2.82 (0.56- 6.16)	500 (278-653)	2.36 (0.80- 3.31)	0.320 (0.041- 2.479)	298 (184- 412)	99 (64- 184)	81.4 (25.0- 116.2)	26.70 (10.05- 69.90)	0.130 (0.059- 0.198)

SI. No.	Sampling Location	Physical parameters	hysical pa- rameters	Org	Organic pollution Indicators	tion Indic	ators			Miner	Mineral constituents	ituents			
						7	Annual avera	Annual average values (Range of values)	unge of val	lues)					
		TSS	Total alkal -inity	сор	NH ₄ -N	Free NH ₃ -N	TKN	EC (µS/cm)	SAR	В	TDS	ТН	CI	SO_4	T
		dm)	(mg/l)		m)	(mg/l)						m)	(mg/l)		
4.	Swetaganga	19 (4-38)	178 (108- 256)	43.8 (15.5- 104.8)	0.859 (0.224- 3.360)	0.108 (0- 0.378)	3.29 (0.84- 7.28)	889 (246-1368)	3.47 (1.29- 5.71)	0.173 (0.056- 0.358)	522 (136- 788)	168 (76- 266)	168.9 (72.1- 288.5)	36.76 (10.05- 51.99)	0.137 (0.044- 0.569)
5.	Parvati sagar	34 (5-92)	,111 (70- 224)	57.3 (26.8- 133.4)	1.307 (0.560- 3.360)	0.104 (0- 0.260)	4.11 (0.84-8.40)	474 (260-1330)	2.02 (1.12- 4.60)	0.091 (0.024- 0.223)	286 (168- 760)	102 (68- 208)	80.6 (31.7- 274.9(22.17 (6.66- 48.01)	0.121 (0.037- 0.217)
	*Class 'C'	ı	ı		ı		ı	ı	ı		1500		009	400	1.5

 * Tolerance limit for Inland Surface water bodies (IS-2296-1982) Class 'C' :Drinking water source with conventional treatment followed by disinfection

Contd..

		Pb##			0.009	0.008	0.003
		Hg##			1	ı	I
		Cq##			0.0029	0.0022	0.0018
ıls	(se	Zn##			0.010	0.012	0.018
Heavy metals	ange of value	Cu##	(mg/l)		0.007	900.0	0.004
	Annual averagevalues (Range of values)	Ni##			0.009	0.008	0.006
	ınual avera	Fe##			0.223	0.213	1.299
	Ar	T. Cr##			0.020	0.013	0.015
		Cr(VI) ##			<0.002	<0.002	<0.002
ents		PO ₄ ³ P	(1)		0.573 (0.120- 2.344)	1.027 (0.098- 3.352)	0.534 (0.003- 3.690)
Nutrients		NO ₃ -	(mg/l)		3.233 (0.493- 12.672)	13.171 (0.888- 46.114)	2.152 (0.411-7.868)
Sampling Location				Ponds in Puri town	Narendra	Markanda	Indradyumna
SI.	No.			Pond	1.	2.	છ

SI.	Sampling Location	Nutrients	ents					Heavy metals	Is			
No.					An	nual avera	Annual averagevalues (Range of values)	inge of value	(s:			
		NO ₃ -	PO ₄ 3P	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	##PO	Hg##	Pb##
		(mg/l)	(1)					(mg/l)				
4.	4. Swetaganga	8.460 (0.578- 38.665)	0.454 (0.033- 0.956)	<0.002	0.024	0.262	0.005	0.005	0.025	0.0024	ı	0.004
5.	Parvati sagar	3.129 (0.542-7.503)	0.128 (0.009- 0.298)	<0.002	0.015	0.121	0.004	0.003	0.010	0.0017	1	0.003
	*Class 'C'	20	ı	0.05	ı	50	-	1.5	15.0	0.01	-	0.10

Tolerance limit for Inland Surface water bodies (IS-2296-1982) Data for the period April, 2019

Class 'C': Drinking water source with conventional treatment followed by disinfection

Si. No.	Sl. Sampling Location No.	Ь	hysical pa- rameters	Org	Organic pollution Indicators	tion Indic	ators			Mine	ral cons	Mineral constituents	10		
							Annual aver	Annual average values (Range of values)	Range of v	alues)					
		SSL	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TIKN	EC (µS/cm)	SAR	В	TDS	ТН	Cl	SO_4	F
		(m)	(mg/l)		m)	(mg/l)						(r	(mg/l)		
Pon	Pond in Jeypore town														
1	1. Jagannathsagar	20	124	19.8	0.840	0.023	3.17	362	1.03	0.085	211	110	41.5	12.44	0.221
		(3-46)	-08)	(10.7-	(0.280-	(0.003-	(1.40-4.76)	(166-789)	(0.15-	(<0.003-	(104-	-92)	(4.8-	(3.60-	(0.109-
			198)	40.4)	2.800)	0.073)			1.86)	0.310)	502)	206)	95.1)	59.58)	0.645)
Pon	Pond in Angul town														
1.	1. Raniguda	20	808	31.9	1.167	0.020	5.69	069	1.68	0.063	407	189	87.7	36.76	0.573
		(4-56)	(138-	(16.4-	(0.280-	0)	(1.12-	(372-1049)	(0.58-	(0.003-	(224-	(110-	(27.7-	(13.81-	(0.129-
			254)	57.7)	3.360)	0.076)	22.68)		3.84)	0.202)	(269	(982	284.6)	48.75)	0.793)
	*Class 'C'	•	,				ı	1	-	•	1500		009	400	1.5

Contd..

S.	Sampling Loca-	Nutrients	ents					Heavy metals	ls s			
No.	tion				Annual av	eragevalı	ues (Rang	Annual averagevalues (Range of values)				
		NO ₃ .	PO ₄ 3P	Cr(VI)	T. Cr##	Fe##	Ni##	Cu##	Zu##	Cq##	Hg##	Pb##
		(mg/l)	(1)					(mg/l)				
Pond i	Pond in Jeypore town											
1.	Jagannathsagar	1.899 (0.651- 6.201)	0.1147 (0.001- 0.562)	<0.002	0.018	0.227	900.0	0.006	0.038	0.0016	ı	0.006
Pond i	Pond in Angul town											
1-1	Raniguda	4.749 (0.645- 20.720)	0.255 (0.001- 0.589)	<0.002	0.027	0.150	0.004	0.005	600.0	0.0019	ı	0.004
	*Class 'C'	20	-	0.05	-	20	-	1.5	15.0	0.01	-	0.10

 ^{*} Tolerance limit for Inland Surface water bodies (IS-2296-1982)
 ## Data for the period April, 2019

Class 'C': Drinking water source with conventional treatment followed by disinfection

Table-5.24 Water Quality of Lakes with respect to Criteria parameters during 2019 (January-December)

(a) Brackish Water Lake

SI.	Sampling No. of Location Obs.	No. of Obs.		Ann	Annual averagevalues (Range of values)	evalues ues)		F ₁ (Per	requen	Frequency of violation (Percent of violation) from	lation in) from	Existing Class	Parameters responsible	Possible Reason
					Parameters	SJ		des	signate	designated criteria value	a value		for downgrad-	
			Hq	DO (mg/l)	BOD (mg/l)	Turbidity,	FC (MPN/100 ml)	Hd	DO BOD	BOD	FC		quality	
Chili	Chilika lake													
ij	Rambha	12	8.1 (7.4-8.4)	7.1 (6.2-8.5)	1.7 (1.2-2.5)	4.9 (1.2-11.0)	179 (1.8-1100)	0	0	0	5 (42)	Does not conform to	FC	Human activities
2.	Satpada	12	7.7 (6.6-8.2)	7.2 (6.4-8.4)	1.5 (0.8-2.2)	24.7 (1.8-95.0)	363 (20-1700)	0	0	0	(50)	Class-SW-II	FC	
Wa for (N) G.S	Water quality criteria for Class SW-II Waters (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)	iteria Vaters ation E) Dt.	6.5-8.5	4.0 or more	3.0 or less	30 or less	100 or less		For Ba	thing, C	ontact Wal	er Sports an	For Bathing, Contact Water Sports and Commercial Fishing	shing

(b) Fresh Water Lake

SI.	Sampling Location	No. of Obs.		Annual (Rang	Annual average values (Range of values)		Freq	uency o	Frequency of violation from designated criteria value	r from	Existing Class	Parameters responsible for	Possible Reason
				Pa	Parameters							downgrading the water quality	
			Hd	DO (mg/l)	Free ammonia nia (mg/l)	EC (micro Siemens /cm)	Hd	DO	Free ammo- nia	EC			
(a) A	(a) Anshupa Lake												
ij	Kadalibari	12	7.3 (6.6-8.4)	6.5 (4.9-8.1)	0.013 (0.0.070)	135 (80-234)	0	0	0	0	D		
2.	Bishnupur	12	7.1 (6.5-7.8)	7.2 (5.2-8.6)	0.007 (0.0.049)	133 (108-203)	0	0	0	0	D		
લ	Subarnapur	12	7.2 (6.6-8.0)	7.0 (5.6-7.9)	0.007 (0.0.025)	141 (104-213)	0	0	0	0	D		
4.	Sarandagarh	12	7.2 (6.6-7.8)	7.3 (5.6-9.2)	0.008 (0-0.049)	136 (102-215)	0	0	0	0	D		
(b) 1	(b) Tampara Lake												
5.	Tampara	12	8.0 (6.7-8.4)	6.5 (3.5-10.0)	0.095	677 (364-1385)	0	1	0	0	D	-	
	*Class 'D'		6.5-8.5	4 and above	1.2 or less	1000 or less			Fish (Julture a	and Wild I	Fish Culture and Wild life propagation	

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Table-5.25 Water Quality of Lakes with respect to other parameters during 2019 (January-December) (a) Brackish Water Lake

SI. No.	Sam- pling Loca-	Physical parameters	param-	Org	anic pollu	Organic pollution Indicators	cators	Bacteriological Parameter			Mi	Mineral constituents	nstitueni	S		
	tion						Ann	Annual averagevalues (Range of values)	lues (Range	of value	(s)					
		TSS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	TC	EC	SAR	TDS	В	E	D D	\mathbf{SO}_4	E
		(mg/l)	(1)		u)	(mg/l)		(MPN/ 100 ml)	(µS/cm)				u)	(mg/l)		
hil	Chilika lake															
1.	Rambha	56 (16-91)	147 (120- 196)	32.2 (18.6- 48.1)	0.723 (0.280- 1.960)	0.060 (0.008- 0.210)	2.68 (0.56- 5.88)	773 (1.8-4900)	17755 (9842- 32150)	39.82 (18.30- 76.55)	13067 (6508- 26172)	1.137 (0.657- 1.616)	1934 (660- 3200)	7008.4 (3785.8 -14903.3)	643.6 (207.7- 1075.9)	0.466 (0.271- 0.689)
2.	Satapada	104 (2-370)	122 (94- 180)	30.9 (5.4- 57.7)	0.658 (0.056- 1.400)	0.025 (0- 0.067)	2.89 (0.56- 6.16)	1047 (78-3500)	25341 (1606- 44390)	53.10 (8.57- 100.57)	20781 (960- 38660)	1.763 (0.017- 3.678)	2750 (162- 6480)	11375.4 (432.7- 20738.3)	968.7 (52.1- 2512.4)	0.447 (0.202- 0.710)

Contd...

Sl. Sampling	Nutrients	ents					Heavy metals	tals			
				Annu	ıal averagev	alues (Rang	Annual averagevalues (Range of values)				
_	NO_3	PO ₄ ³ -P	Cr(VI) ** T. Cr** Fe**	T. Cr##	Fe#	Ni##	Cu##	Zn##	Cq##	Hg##	Pb##
	(mg/l)	(1)					(mg/l)				
	3.547 (0.551-16.653)	0.074 (0.003-0.264)	<0.002	0.013	0.288	0.009	0.011	0.009	0.0016	I	0.005
	1.606 (0.827-3.308)	0.147	<0.002	0.018	0.230	0.010	0.009	0.012	0.0017	I	0.006

Data for the period April, 2019

(b) Fresh Water Lake

SI. No.	Sampling Location	Physi ram	Physical parameters	Or	Organic pollution Indicators	tion Indic	ators	Bacter	Bacteriological parameters			Mine	Mineral constituents	ituents		
							Annt	ıal averag	Annual averagevalues (Range of values)	inge of va	dues)					
		TSS	Total alkal -inity	BOD	COD	NH ₄ -N	TKN	TC	FC	TDS	В	SAR	HIL	Cl	SO_4	F
		m)	(mg/l)		m)	(mg/l)		(MPN/	(MPN/ 100 ml)	(m)	(mg/l)			(I/gm)	3/1)	
(a) 1	(a) Anshupa Lake	ke														
ij	Kadalibari	20 (3-70)	54 (32-98)	1.5 (0.8- 2.1)	14.1 (7.6-23.1)	0.817 (0.200- 2.240)	3.40 (1.12- 12.60)	1532 (170- 5400)	644 (20-3500)	81 (48- 128)	0.074 (<0.003- 0.143)	0.38 (0.16- 0.61)	52 (36- 92)	9.2 (4.8- 13.8)	6.72 (2.74- 14.80)	0.276 (0.116- 0.361)
2	Bishnupur	15 (3-69)	55 (44-102)	1.2 (0.3- 2.6)	13.3 (6.9- 24.8)	0.705 (0.056- 1.400)	3.38 (1.12- 8.40)	3393 (210- 7000)	1573 (40-4600)	79 (64- 116)	0.066 (0.003- 0.168)	0.34 (0.23- 0.48)	55 (46- 94)	8.2 (5.8- 11.5)	5.00 (1.62- 11.07)	0.264 (0.122- 0.369)
.;	Subar- napur	19 (3-72)	57 (44-106)	1.2 (0.7- 1.9)	12.0 (9.0- 15.0)	0.840 (0.280- 1.960)	3.48 (1.68- 7.00)	2131 (490- 4300)	684 (20-1400)	86 (64- 128)	0.077 (<0.003- 0.271)	0.40 (0.19- 0.60)	56 (44- 102)	10.3 (4.8- 16.3)	6.97 (2.14- 16.29)	0.272 (0.110- 0.380)
4.	Sa- randagarh	15 (5-31)	58 (32-102)	1.4 (0.6- 1.9)	14.4 (7.7- 20.7)	0.789 (0.280- 2.240)	4.74 (0.56- 21.56)	2017 (130- 4600)	828 (20-4600)	83 (64- 124)	0.089 (0.003- 0.407)	0.40 (0.13- 0.59)	52 (40- 94)	9.0 (1.9-13.5)	6.72 (1.86- 13.31)	0.276 (0.109- 0.366)
(b)	Tampara Lake	ke														
5.	Tampara	25 (3-63)	156 (104- 192)	4.6 (1.8- 6.6)	38.9 (17.1- 80.6)	0.980 (0.280- 2.240)	3.20 (0.84- 8.12)	1588 (1.8- 5400)	630 (1.8-3500)	418 (224- 844)	0.135 (0.059- 0.227)	2.80 (0.49- 7.67)	139 (92- 208)	153.8 (29.8- 573.1)	17.50 (3.93- 42.91)	0.515 (0.240- 0.684)
*	* Class 'C'		-	3.0			ı	2000		1500	ı	'	ı	009	400	1.5

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Contd..

Š -	Sampling	Nutrients	ients				H	Heavy metals				
Locanon					Ann	Annual averagevalues (Range of values)	alues (Range	of values)				
		NO ₃ -	PO ₄ ³ -P	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
		(mg/l)	3/1)					(mg/l)				
(a) Anshupa Lake	ıke											
Kadalibari	i.	1.123 (0.462-4.303)	0.061 (0.008-0.167)	<0.002	0.018	1.621	0.0018	0.003	0.005	0.010	ı	0.002
Bishnupur	ır	1.525 (0.438-6.287)	0.089 (0.010-0.208)	<0.002	0.013	0.751	0.0014	0.002	0.002	0.005	1	0.002
Subarnapur	our	1.532 (0.517-5.108)	0.136 (0.010-0.526)	<0.002	0.015	0.821	0.0016	0.006	0.003	0.004	ı	0.002
Sarandagarh	garh	1.814 (0.525- 13.504)	0.072 (0.008-0.183)	<0.002	0.018	1.098	0.0015	900.0	0.007	0.005	1	0.003
(b) Tampara Lake	Lake											
Tampara	1	1.846 (0.468-5.649)	0.052 (0.002-0.127)	<0.002	0.029	0.228	0.0019	0.007	0.003	0.018	1	0.007
* Class 'C'	C'	20		0.05	-	20		1.5	15.0	0.01	-	0.10

 * Class 'C' : Drinking water source with conventional treatment followed by disinfection ## Data for the period April, 2019

Table-5.26 Coastal Water Quality with respect to Criteria parameters during 2019 (January-December)

SI. No	Sampling Location	No. of Obs.		Am	Annual average value (Range of values)	value res)		Freque	Frequency of violation (Percent	Existing Class	Parameters responsible for	Possible Reason
					Parameters	SO		of viola designa ria	of violation) from designated crite- ria value		downgrading the	
			Hd	DO (mg/l)	BOD (mg/l)	Turbidity, NTU	FC (MPN/100 ml)	BOD	FC			
1.	Puri											
(a)	Swargad- wara	12	7.9 (7.3-8.2)	6.8 (6.0-8.1)	0.8 (0.2-1.6)	14.9 (1.4-59.0)	54 (1.8-350)	0	2 (17)	II-MS		
(p)	Bankimuhan	12	7.7 (6.5-8.3)	6.5 (5.5-7.5)	1.4 (0.3-2.3)	12 (2-29)	3167 (1.8-16000)	0	(20)	Does not confirm to Class-SW-II	FC	Human activities
(c)	Baliapanda	12	7.9 (6.7-8.2)	6.5 (5.8-7.6)	0.9 (0.3-1.6)	10 (2-55)	174 (1.8-1600)	0	2 (17)	SW-II		
2.	Gopalpur	12	8.0 (7.5-8.2)	7.3 (6.5-8.8)	0.9 (0.2-2.5)	8.5 (1.0-23.0)	41 (1.8-330)	0	2 (17)	SW-II		
3.	Paradeep	12	7.9 (7.1-8.2)	6.9 (5.8-8.4)	0.9 (0.3-1.4)	8.9 (1.2-22.0)	1.8 (1.8-1.8)	0	0	SW-II		
for (A) (G.S.	Water quality criteria for Class SW-II Waters (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)	iteria Vaters ation E) Dt.	6.5-8.5	4.0 or more	3.0 or less	30 or less	100 or less*			For Bathin C	For Bathing, Contact Water Sports and Commercial Fishing	oorts and

The average value not exceeding 200/100 ml in 20 percent of samples in the year and in 3 consecutive samples in monsoon months.

Possible Reason			
Parameters responsible for	downgrading the water quality		
Ex- isting	Class		AI-MS 0
iola- viola-	nated le	FC	0
Frequency of viola- tion (Percent of viola-	ion) from designated criteria value	BOD 0&G FC	0
Freque	tion) fro crit	BOD	0
		FC (MPN/100 ml)	41 (1.8-330)
value les)	S	0&G, mg/1	1.5 (1.2-2.8)
Annual averagevalue (Range of values)	Parameters	BOD (mg/l)	0.9 (0.2-2.5)
An		DO (mg/l)	7.3 (6.5-8.8)
		Hd	8.0 (7.5-8.2)
No. of Obs.			12
Sampling No. of Location Obs.			1. Gopalpur
SI.			ij

Possible Reason				Š.
Parameters responsible for	downgrading the water quality			For Harbour Waters
Ex- isting	Class		VI-WS	
iola- viola-	nated le	FC	0	
Frequency of viola- tion (Percent of viola-	tion) from designated criteria value	O&G FC	0	
Freque	tion) fre crit	BOD	0	
		FC (MPN/100 ml)	1.8 (1.8-1.8)	500 or less
value (es)		0&G, mg/l	0.9 (0.3-1.5)	10 or less
Annual averagevalue (Range of values)	Parameters	BOD (mg/l)	0.9 (0.3-1.4)	5.0 mg/l or less
An		DO (mg/l)	6.9 (5.8-8.4)	3.0 or more
		Hď	7.9 (7.1-8.2)	6.5-9.0
No. of Obs.			12	teria Vaters tion
Sampling No. of Location Obs.			Paradeep	Water quality criteria for Class SW-IV Waters (MOEF Notification G.S.R. No. 742(E) Dt. 25.09,2000)
SI.			2.	for (A)

Table-5.27 Coastal Water Quality with respect to other parameters during 2019 (January- December)

SI. No.	Sampling Location	Physical pa- rameters	al pa- ters	Organ	Organic pollution Indicators	n Indicat	tors	Bacteriolo -gical pa- rameter			Z	Mineral constituents	nstituen	ıts		
							Annus	Annual average values (Range of values)	lues (Ran	ige of valu	(se)					
		ISS	Total alkal -inity	COD	NH ₄ -N	Free NH ₃ -N	TKN	TC	EC	SAR	В	TDS	ТН	CI	\mathbf{SO}_4	F
		(mg/l)	(1)		(mg/l)	(1		(MPN/ 100 ml)	(mS/cm)				u)	(mg/l)		
1.	Puri															
(a)	Swargadwara	143 (9-254)	125 (88- 196)	43.7 (29.3- 58.0)	0.593 (0.056- 1.120)	0.031 (0.002- 0.090)	2.54 (0.56- 5.88)	1432 (1.8-16000)	40957 (31390- 49630)	61.36 (52.39- 77.79)	3.174 (2.057- 4.138)	32817 (26172- 40100)	4900 (3100- 6200)	17316 (13461- 20738)	2380.6 (1803.4- 3181.0)	0.615 (0.366- 0.767)
(p)	Bankimuhan	132 (12- 242)	133 (104- 180)	47.2 (38.6- 56.6)	0.72 (0.28- 1.40)	0.034 (0- 0.137)	2.43 (1.12- 5.60)	4554 (45-16000)	40353 (28680- 47860)	62.92 (51.04- 80.56)	2.81 (1.61- 4.23)	32235 (23520- 40500)	4708 (3100- 6160)	17207 (12496- 21153)	2060 (1294- 3103)	0.542 (0.319- 0.715)
(c)	Baliapanda	166 (11-414)	128 (88- 196)	44.3 (38.1- 58.0)	0.83 (0.17- 1.96)	0.019 (0.001- 0.067)	2.64 (0.56- 6.16)	494 (1.8-3500)	41522 (29420- 49740)	64.05 (51.58- 82.16)	3.15 (1.97- 3.95)	33670 (24340- 40500)	4833 (3050- 6120)	17705 (13461- 23076)	2278 (1269- 3138)	0.611 (0.351- 0.798)

SI. No.	Sampling Location	Physical parameters	al pa- ters	Orgar	Organic pollution Indicators	on Indicat	tors	Bacteriolo-gical parrameter			Z	Mineral constituents	nstituen	ts		
							Annus	Annual average values (Range of values)	lues (Ran	ige of valu	les)					
		TSS	Total alkal inity	cop	NH ₄ -N	Free NH ₃ -N	TKN	TC	EC	SAR	В	TDS	HI	CI	SO_4	ম
		(mg/l)	(1)		(mg/l)	(1)		(MPN/ 100 ml)	(µS/ cm)				u)	(mg/l)		
2.	Gopalpur	166 (18-387)	127 (108- 168)	45.7 (34.5- 57.2)	0.756 (0.112- 1.960)	0.048 (0.004- 0.157)	2.82 (1.40- 6.72)	98 (1.8-790)	40668 (32470- 48264)	59.80 (51.86- 71.96)	2.706 (0.925- 3.390)	32425 (25992- 35780)	5107 (2700- 6080)	17334 (13942- 20672)	2176.6 (1069.6- 2885.5)	0.641 (0.362- 0.809)
3.	Paradeep	203 (23-328)	122 (100- 184)	47.7 (28.8- 58.3)	0.700 (0.280- 1.120)	0.033 (0,003- 0.073)	2.17 (0.84- 4.76)	17 (1.8-140)	41011 (32160- 48750)	59.30 (52.82- 71.67)	2.599 (0.052- 4.018)	32387 (25492- 38640)	5066 (2650- 6200)	17286 (13942- 20191)	2158.8 (1268.6- 2804.8)	0.714 (0.506- 0.833)

Contd..

SI.		Nutrients	nts				He	Heavy metals				
No.	Location			7	Annual average values (Range of values)	age values	(Range of v	alues)				
		NO ³ ·	PO ₄ ^{3.} -P	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
		(I/gm)	((mg/l)				
⊢ ;	Puri											
(a)	Swargadwara	0.936 (0.529-1.514)	0.067 (0.011-0.138)	<0.002	0.013	0.282	0.010	0.007	0.018	0.0011	I	<0.001
(p)	Bankimuhan	5.217 (0.565-20.819)	0.086 (0.002-0.188)	<0.002	0.015	0.260	200.0	0.008	0.013	0.0013	ı	<0.001
(c)	Baliapanda	1.013 (0.464-2.882)	0.092 (0.006-0.276)	<0.002	0.015	0.320	0.011	0.007	0.014	0.0016	1	<0.001
2.	Gopalpur	1.834 (0.802-4.408)	0.051 (0.002-0.199)	<0.002	0.024	0.351	600.0	0.011	0.015	0.0012	1	<0.001
3.	Paradeep	1.441 (0.565-4.093)	0.314 (0.013-2.755)	<0.002	0.018	0.384	0.005	0.005	0.012	0.0015	I	<0.001

Data for the period April, 2019

(E) Creek Water Quality Monitoring

Board monitors the water quality of Atharabanki creek in Paradeep on regular basis. The creek flows along the boundary wall of M/s Paradeep Phosphate Ltd. (PPL) and joins river Mahanadi near its confluence with Bay of Bengal. Atharabanki river also acts as a receiving water body for treated effluent and surface runoff from M/s Paradeep Phosphates Limited and M/s IFFCO operating at Paradeep.

Annual average and range values of the water quality parameters of the creek during the year 2019 is given in Table-5.28. Assessment of the creek water quality status have been done based on the best use and type of activities in the water segment.

Comparison of the Atharabanki creek water quality data with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) reveals non-compliance with respect to DO, BOD and FC. This may be attributed to the discharge of domestic wastewater into the creek and other human activities. Fluoride concentration in the creek water varied with the range 1.12-3.35 mg/l with an annual average value of 2.26 mg/l.

Table-5.28 Water Quality of Atharabanki Creek during 2019 (January-December)

Sl. No	Sam- pling Loca-	No. of Obs.			ual averag	alues)		(Perc	ent of v	of viola violation) criteria) from	Ex- isting Class	Param- eters respon-	Pos- sible Rea-
	tion		pН	DO (mg/l)	BOD (mg/l)	Tur- bidity, NTU	FC (MPN/ 100 ml)	рН	DO	BOD	FC		sible for down- grading the water quality	son
1.	Athar- abanki Creek	12	7.5 (6.9- 8.1)	6.0 (4.4-7.8)	2.8 (1.3- 4.4)	11.0 (2.8- 33.0)	1670 (330-5400)	0	0	3 (25)	12 (100)	Does not confirm to Class- SW-II	BOD, FC	Human activi- ties
SW- No	Water qua riteria for (II Waters otification (No. 742(E) 25.09.20	Class (MOEF G.S.R.) Dt.	6.5- 8.5	4.0 or more	3.0 or less	30 or less	100 or less					Water 9	athing, Co Sports and rcial Fishi	l Com-

Contd...

Sl. No.	Sampling Location	para	sical ame- ers	Organ	ic pollut	ion Indi		Bacteri- olo -gical param- eter			M	ineral c	onstitue	ents		
							Anı	nual avera	ge value	s (Ran	ge of valu	ies)				
			Total alkal -inity		NH ₄ -N	Free NH ₃ -N	TKN	TC	EC	SAR	В	TDS	TH	C1	SO ₄	F
		(m	g/l)		(mg	g/1)		(MPN/ 100 ml)	(μS/ cm)				(m	ng/l)		
1.	Atharaban- ki Creek	88 (22- 194)	161 (70- 268)	35.4 (27.8- 39.5)	0.880 (0.208- 2.800)	0.028 (0- 0.112)	5.69 (1.96- 18.20)	4263 (940- 9200)	11761 (896- 25710)	27.32 (5.71- 49.74)	0.878 (0.173- 2.056)	5943 (104- 13196)	1289 (84- 2360)	4069.1 (308.0- 7111.4)	803.2 (65.5- 1890.5)	2.26 (1.12- 3.35)

Contd...

S1.	Sampling	Nutri	ents				Hea	vy metals				
No.	Location			A	nnual av	erage va	lues (Ra	nge of valu	ıes)			
		NO ₃ ·	PO ₄ ³⁻	Cr(VI) ##	T. Cr##	Fe##	Ni##	Cu##	Zn##	Cd##	Hg##	Pb##
			-P									
		(mg	/1)					(mg/l)				
1.	Atharabanki Creek	9.607 (0.551 -49.277)	1.18 (0.29- 3.53)	<0.002	0.027	0.283	0.008	0.006	0.012	0.0021	ı	0.007

Data for the period April, 2019

(F) Biomonitoring of Water Bodies

Biomonitoring of water quality is useful for assessing the over-all biological health of the water bodies. This indicates any disruption in ecological balance of the water bodies caused by the changes in its physical and chemical environment. Thus, measurement of the level of the ecological degradation would indicate the extent of pollution. Benthos are regarded as the best indicator of pollution as they are sedentary, sessile, long-lived and easily collectable.

To assess the actual health of water bodies, Central Pollution Control Board (CPCB) has derived a Biological Water Quality Criteria (BWQC) for water quality evaluation. This system is based on the range of saprobic values and diversity of the benthic macroinvertebrate families with respect to water quality. The entire taxonomic groups, with their range of saprobic score from 1 to 10, in combination with the range of diversity score from 0 to 1 has been classified into five groups as stated in Table-5.29.

Table- 5.29 Biological Water Quality Class

S1. No.	Taxonomic Group	Range of Sap- robic score	Range of Diversity score	Water Quality Characteristic	Water Quality Class
1	Ephemeroptera, Plecoptera, Trichoptera, Hemiptera, Diptera	7 and more	0.2-1.0	Clean	A
2	Ephemeroptera, Plecoptera, Trichoptera, Hemiptera, Odonata, Diptera	6-7	0.5-1.0	Slight Pollution	В
3	Ephemeroptera, Plecoptera, Trichoptera, Hemiptera, Odonata, Diptera, Crustacea, Mollusca, Polychaeta, Coleoptera, Hirudinea, Oligochaeta	3-6	0.3-0.9	Moderate Pollution	С
4	Mollusca, Hemiptera, Coleoptera, Diptera, Oligochaeta	2-5	0.4 & less	Heavy Pollution	D
5	Diptera, Oligochaeta No animals	0-2	0-0.2	Severe Pollution	Е

Biomonitoring studies were carried out at 25 selected stations during 2019. Biological data generated from these stations were analysed for computing the saprobity indices (SI) and diversity indices (DI), which are presented in Table-5.30. From the Table, it is evident that the biological water quality class at nine stations conform to the Class 'B-C' (slight to moderate pollution), at two stations conform to Class B (slight pollution) and at fourteen stations conform to Class C (moderate pollution) water quality.

Table-5.30 - Biomonitoring of River Bodies (2019)

	Station		rerage value of values)	Existing Biological Water
		Saprobity Index	Diversity Index	Quality Class
(A) Ma	hanadi			
1.	Brajarajnagar D/s	6.05 (5.80-6.20)	0.66 (0.60-0.70)	B-C
2.	Sambalpur D/s	4.96 (5.60-5.57)	0.66 (0.50-0.79)	С
3.	Cuttack U/s	5.60 (5.50-5.70)	0.60 (0.50-0.70)	С
4.	Cuttack D/s	5.70 (5.50-5.80)	0.65 (0.60-0.70)	С
5.	Cuttack U/s (Kathajodi)	5.70 (5.60-5.80)	0.65 (0.55-0.75)	С
6.	Cuttack D/s (Kathajodi)	5.27 (5.00-5.50)	0.63 (0.60-0.70)	С
7.	Bhubaneswar U/s (Kuakhai)	4.80 (4.60-5.00)	0.58 (0.56-0.59)	С
8.	Bhubaneswar D/s (Daya)	5.19 (4.90-5.40)	0.65 (0.57-0.76)	С
9.	Choudwar D/s (Birupa)	5.77 (5.50-6.10)	0.72 (0.59-0.80)	B-C
(B) Bra	hmani			"
10.	Panposh D/s	5.18 (4.54-5.50)	0.56 (0.48-0.65)	С
11.	Rourkela D/s	5.60 (5.00-6.00)	0.56 (0.47-0.70)	С
12.	Talcher U/s	5.50 (5.25-5.80)	0.55 (0.50-0.64)	С
13.	Talcher D/s	5.47 (5.00-5.80)	0.64 (0.60-0.70)	С
(C) Rus	shikulya			
14.	Madhopur	5.78 (5.26-6.30)	0.53 (0.48-0.58)	B-C
15.	Potagarh	5.18 (5.10-5.25)	0.44 (0.40-0.47)	С
(D) Nag	gavali			
16.	Penta U/s	6.03 (5.29-6.60)	0.67 (0.61-0.71)	B-C
17.	J. K. Pur D/s	6.35 (5.86-6.70)	0.69 (0.57-0.80)	B-C
18.	Rayagada D/s	6.43 (6.28-6.70)	0.60 (0.59-0.60)	В
(E) Sub	parnarekha			
19.	Rajghat	5.25 (5.00-5.50)	0.65 (0.63-0.66)	С
(F) Buc	lhabalnga			
20.	Baripada D/s	5.40 (4.70-6.40)	0.69 (0.62-0.80)	B-C
21.	Balasore U/s	5.98 (5.43-6.40)	0.68 (0.54-0.80)	B-C
22.	Balasore D/s	5.75 (5.60-5.90)	0.72 (0.63-0.80)	С
(G) Ker	randi			
23.	Sunabeda	6.0	0.48	В
(H) Vans	sadhara			
24.	Muniguda	5.75 (5.40-6.10)	0.70 (0.69-0.70)	B-C
25.	Gunupur	5.70 (5.40-6.00)	0.69 (0.68-0.70)	B-C

G) Ground water quality status

The Board monitors ground water quality at 48 locations in eleven major towns of the state, such as, Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Paradeep, Jajpur (Sukinda), Jharsuguda, Puri, Sambalpur and Talcher. Ground water quality status during the year 2019 at these locations alongwith the acceptable and Permissible limit for drinking water under IS: 10500-2012 are given in Table-5.31.

pH of ground water in Khandagiri area (April), Kalpana-Laxmisagar area (Oct), Capital Hospital Area (April) and Secretariate Governor House-Old Bus Stand area (April) in Bhubaneswar, Jagatpur (Oct) in

Cuttack and Budhipadar (April) in Jharsuguda found to be beyond the permissible range of 6.5-8.5. pH at all other places remained well within the permissible range.

Fluoride in Kuanrpur (April) and Chakulia (October) of Balasore exceeds the Permissible limit for drinking water i.e. 1.5 mg/l.

Frequent occurrence of total coliform and fecal coliform bacteria above the permissible limit (should be absent in 100 ml sample) are observed in the ground water at some of the monitored locations.

Table-5.31 Ground water Quality Status (Tube well) (2019)

Monitoring Station	Month of Monitoring	hH	Cond., µS/ cm	BOD, mg/1	COD, mg/1	Turbidity, NTU	TDS, mg/l	TFS	Total Alkalinity, mg/1	Total Hardness CaCO ₃ , mg/l	Calcium as Ca, mg/1	Magnesium as Mg, mg/l	Chloride, mg/1	Sulphate, mg/l	Nitrate, mg/l	NH ₄ -N, mg/l
1. ANGUL	(2 stat	ions)														
1. Angul	April	7.2	1184	0.2	1.6	1.7	592	564	242	208	60.92	2.67	153.8	70.52	4.282	<0.28
Township	Oct	7.9	776	0.4	3.7	1.9	484	428	292	308	70.54	3.29	57.7	80.24	36.004	0.84
2. NALCO	April	7.6	608	0.3	3.1	0.8	316	300	192	184	46.49	2.80	59.6	26.49	0.784	<0.28
township	Oct	7.6	551	0.1	1.8	1.2	348	308	212	200	36.87	3.13	65.4	28.92	8.901	0.28
2. BALASO	ORE (3	stations	s)													
3. Naigo-	April	6.6	198	0.2	5.2	2.9	116	100	56	62	16.83	2.08	21.2	14.4	1.798	<0.28
palpur	Oct	7.1	93	0.3	5.5	5.6	56	44	36	32	9.62	1.66	7.7	5.95	1.550	0.28
4. Kuanr-	April	7.8	308	0.7	1.7	1.5	168	148	74	56	16.03	1.97	41.3	12.19	0.053	0.28
pur	Oct	6.6	180	0.2	3.7	3.5	116	100	72	84	24.05	2.17	9.6	12.62	27.856	0.28
5. Chakulia	April	6.6	303	0.7	1.7	3	188	168	82	80	24.85	2.02	49	20.39	1.187	<0.28
	Oct	7.6	217	0.2	3.7	4	128	104	32	24	8.02	1.40	40.4	10.59	0.620	0.56
3. BERHA	MPUR	(4 static	ons)													
6. Near	Apr	7.6	988	0.3	5.2	4.8	546	516	196	174	48.10	2.64	192.3	13.93	25.686	<0.28
Railway station	Oct	7.8	1338	0.2	5.5	3	904	856	224	76	22.44	2.08	332.7	75.72	23.649	0.28
7. MKCG	Apr	7.8	1250	0.2	5.2	3.7	672	652	272	220	51.30	3.01	240.4	26.9	0.620	<0.28
Medical College	Oct	8.2	670	0.2	5.5	8	412	384	188	172	41.68	2.80	98.07	45.72	2.214	0.56
8. Bus	Apr	7.4	1283	0.3	5.2	2.3	692	624	252	184	46.49	2.80	240.4	27.36	0.926	<0.28
stand	Oct	8	1397	0.5	9.2	3.9	864	804	312	220	54.51	2.94	284.6	61.19	3.144	0.28
9. Badaba-	Apr	6.8	777	0.6	3.4	4.5	436	416	114	140	36.87	2.57	144.2	49.75	25.686	<0.28
zar	Oct	7.6	1291	0.6	3.7	2.8	764	724	260	172	51.30	2.51	226.9	84.29	23.649	0.56
				Dr	inking	water	speci	ficati	on (IS:	10500 (2012)					
Accept- able Limit		6.5-8.5	-	-	-	1	500	-	200	200	75	30	250	200	45	0.5
Permissi- ble limit		No relax	-	-	-	5	2000	-	600	600	200	100	1000	400	No relax	No relax
4. BHUBA	NESW	AR (6 s	tations	s)												
10. Khand-	April	6.2	652	0.3	3.8	4.2	448	428	126	114	33.67	2.29	153.8	41.6	0.500	<0.28
agiri Area	Oct	6.7	133	0.9	14.9	125	92	76	36	48	16.03	1.66	15.4	24.05	1.594	0.56

The number of the part of th	Monitoring Station	Month of Monitoring	Hd	Cond., µS/ cm	BOD, mg/1	COD, mg/1	Turbidity, NTU	TDS, mg/1	TFS	Total Alkalinity, mg/l	Total Hardness CaCO ₃ , mg/1	Calcium as Ca, mg/l	Magnesium as Mg, mg/l	Chloride, mg/1	Sulphate, mg/l	Nitrate, mg/l	NH ₄ -N, mg/1
Pur Area 12. Kalpa- April 6.3 261 0.3 1.7 2.9 172 148 82 76 20.84 2.17 27.9 28.6 0.492 c.		April	6.7	408	0.4	1.7	2.1	236	216	102	106	26.45	2.46	45.2	41.17	0.571	<0.28
Inal Lax misagar		Oct	7.8	530	1.0	14.9	15	304	276	228	218	46.49	3.09	51.9	9.52	3.986	0.56
misagar Oct 5.9 284 0.2 5.6 8.8 168 152 20 32 11.22 1.40 57.7 17.38 50.397 oct 13. Chandrase Cot		April	6.3	261	0.3	1.7	2.9	172	148	82	76	20.84	2.17	27.9	28.6	0.492	<0.28
Cote	misagar	Oct	5.9	284	0.2	5.6	8.8	168	152	20	32	11.22	1.40	57.7	17.38	50.397	0.28
Rharpur		April	7.1	216	0.3	1.7	2.6	148	128	84	80	24.05	2.08	26.9	9.95	0.549	<0.28
Hospital Area		Oct															
Area		April	6.0	351	0.6	1.7	47	192	160	46	68	19.24	2.08	59.6	29.85	0.589	<0.28
Secretariate-Governor House-Old bus stand Area		Oct															
Section Cote Figure Cote Figure Cote Figure Cote Figure Cote Cot		April	6.4	357	0.2	1.7	3.1	196	180	94	90	23.25	2.33	48.1	16.17	0.957	<0.28
16. Jagat-pur	iate-Gov- ernor House-Old bus stand	Oct	7.4	228	0.7	5.6	8.3	148	128	86	84	25.65	2.08	24.9	12.74	22.497	0.28
Dur Oct 6.1 504 0.2 3.7 1.3 292 264 112 144 41.68 2.46 59.6 51.54 32.284 17. Mangalabag April 8.2 263 0.4 3.4 4 148 128 110 104 28.86 2.33 15.4 7.96 3.149 18. Madhupatha-Kalyan Nagar Area Oct 6.5 370 0.2 1.9 3.4 216 196 124 104 33.67 2.08 46.1 14.28 0.797 4.8	5. CUTTA	CK (5	stations)													
Oct 6.1 504 0.2 3.7 1.3 292 264 112 144 41.68 2.46 59.6 51.54 32.284 17. Mangalabag April 8.2 263 0.4 3.4 4 148 128 110 104 28.86 2.33 15.4 7.96 3.149 18. Madhupathan-Kalyan Nagar Area Oct 6.5 370 0.2 1.9 3.4 216 196 124 104 33.67 2.08 46.1 14.28 0.797 19. Badhanadii Area April 8.4 216 0.9 3.4 4.8 132 112 80 64 18.44 2.02 19.23 3.48 3.795 19. Badhanasi-Tulsi-pur Area Oct 6.5 420 0.2 1.9 3.6 244 220 202 180 44.89 2.80 15.4 25.95 7.351 0.8 22. Badahanadii April 8.4 698 0.3 3.4 1.6 388 368 236 184 48.08 15.60 76.9 9.95 16.806 22. Badahanadii April 8.2 913 0.8 5.2 1.2 504 488 308 248 56.10 26.32 110.57 17.54 4.805 4.		April	7.5	539	0.1	1.7	1.4	268	248	160	176	48.10	2.67	40.4	33.95	9.694	0.56
Salabag Oct 6.5 418 0.1 9.3 8.4 248 228 178 184 48.10 2.76 11.5 38.09 42.027 0.4 18. Mad-hupat-na-Kalyan Nagar Area Oct 6.5 370 0.2 1.9 3.4 216 196 124 104 33.67 2.08 46.1 14.28 0.797 <	pui	Oct	6.1	504	0.2	3.7	1.3	292	264	112	144	41.68	2.46	59.6	51.54	32.284	<0.28
18. Mad-hupat-na-Kalyan Nagar Area April 8.4 216 0.9 3.4 4.8 132 112 80 64 18.44 2.02 19.23 3.48 3.795 <		April	8.2	263	0.4	3.4	4	148	128	110	104	28.86	2.33	15.4	7.96	3.149	<0.28
hupat-na-Kalyan Nagar Area Oct 6.5 370 0.2 1.9 3.4 216 196 124 104 33.67 2.08 46.1 14.28 0.797 <	gaianag	Oct	6.5	418	0.1	9.3	8.4	248	228	178	184	48.10	2.76	11.5	38.09	42.027	0.56
na-Kalyan Nagar Area Oct 6.5 370 0.2 1.9 3.4 216 196 124 104 33.67 2.08 46.1 14.28 0.797 19. Bad-ambadi Area April 8.4 216 0.9 3.4 4.8 132 112 80 64 18.44 2.02 19.23 3.48 3.795 20. Bidan-asi-Tulsi-pur Area April 8.0 160 0.2 3.4 0.9 92 76 70 60 17.64 1.97 11.5 3.98 1.085 6. PARADEEP (JAGATSINGHPUR) (2 3.4 0.9 92 76 70 60 17.64 1.97 11.5 3.98 1.085 6. PARADEEP (JAGATSINGHPUR) (2 stations) 5 42.0 2.2 1.9 3.6 244 220 202 180 44.89 15.60 76.9 9.95 16.806 6. PARADEEP (JAGATSINGHPUR) (2 3.4 1.6 38		April	7.9	297	0.4	3.4	1.9	156	128	120	102	30.46	2.21	16.3	7.09	0.926	<0.28
ambadi Area Oct 6.7 393 0.4 5.6 1.6 228 200 76 84 22.44 2.25 65.4 28.21 6.466 0 20. Bidan- asi-Tulsi- pur Area April 8.0 160 0.2 3.4 0.9 92 76 70 60 17.64 1.97 11.5 3.98 1.085 6. PARADEEP (JAGATSINGHPUR) (2 1.9 3.6 244 220 202 180 44.89 2.80 15.4 25.95 7.351 0 6. PARADEEP (JAGATSINGHPUR) (2 stations) 8.4 698 0.3 3.4 1.6 388 368 236 184 48.08 15.60 76.9 9.95 16.806 21. Musadiha Oct 7.6 2468 1.5 15.4 0.6 1512 1420 233 180 36.86 21.45 765.3 16.43 28.635 0 22. Bada- padia Apr 8.2 913	na-Kalyan Nagar	Oct	6.5	370	0.2	1.9	3.4	216	196	124	104	33.67	2.08	46.1	14.28	0.797	<0.28
Area Oct 6.7 393 0.4 5.6 1.6 228 200 76 84 22.44 2.25 65.4 28.21 6.466 0 20. Bidan-asi-Tulsi-pur Area Oct 6.5 420 0.2 1.9 3.6 244 220 202 180 44.89 2.80 15.4 25.95 7.351 0 6. PARADEEP (JAGATSINGHPUR) (2 stations) 21. Musa-diha Oct 7.6 2468 1.5 15.4 0.6 1512 1420 233 180 36.86 21.45 765.3 16.43 28.635 0 22. Bada-padia		April	8.4	216	0.9	3.4	4.8	132	112	80	64	18.44	2.02	19.23	3.48	3.795	<0.28
asi-Tulsi- pur Area Oct 6.5 420 0.2 1.9 3.6 244 220 202 180 44.89 2.80 15.4 25.95 7.351 0 6. PARADEEP (JAGATSINGHPUR) (2 stations) 21. Musa- diha Oct 7.6 2468 1.5 15.4 0.6 1512 1420 233 180 36.86 21.45 765.3 16.43 28.635 0 22. Bada- padia Apr 8.2 913 0.8 5.2 1.2 504 488 308 248 56.10 26.32 110.57 17.54 4.805 <		Oct	6.7	393	0.4	5.6	1.6	228	200	76	84	22.44	2.25	65.4	28.21	6.466	0.56
Dur Area Oct O.5 420 O.2 I.9 S.0 244 220 202 I80 44.69 2.60 I3.4 23.93 7.351 Oct Oct		April	8.0	160	0.2	3.4	0.9	92	76	70	60	17.64	1.97	11.5	3.98	1.085	<0.28
21. Musadiha		Oct	6.5	420	0.2	1.9	3.6	244	220	202	180	44.89	2.80	15.4	25.95	7.351	0.28
diha Oct 7.6 2468 1.5 15.4 0.6 1512 1420 233 180 36.86 21.45 765.3 16.43 28.635 (22. Bada- Apr 8.2 913 0.8 5.2 1.2 504 488 308 248 56.10 26.32 110.57 17.54 4.805 <		EEP (J	AGATSI		PUR)	(2 sta	tions)										
22. Bada- Apr 8.2 913 0.8 5.2 1.2 504 488 308 248 56.10 26.32 110.57 17.54 4.805 < padia						3.4					184						<0.28
padia												 					0.28
Oct 7.3 948 1.1 17.3 1.1 576 540 314 248 38.47 37.04 154 14.64 32.554 0		Apr	8.2	913	0.8		1.2	504	488	308	248	56.10		110.57	17.54		<0.28
						17.3	1.1	576	540	314	248	38.47	37.04	154	14.64	32.554	0.56
7. SUKINDA (JAJPUR)(4 stations)						0.1	0.0	4.00	4.0	100	0.2	04.07	0.00	100	4.00	0.550	0.00
	23. TISCO																<0.28
	24 Saru-																<0.28
1.1																	0.28

Monitoring Station	Month of Monitoring	Hd	Cond., µS/ cm	BOD, mg/1	COD, mg/1	Turbidity, NTU	TDS, mg/1	TFS	Total Alkalinity, mg/l	Total Hardness CaCO ₃ , mg/1	Calcium as Ca, mg/1	Magnesium as Mg, mg/l	Chloride, mg/l	Sulphate, mg/l	Nitrate, mg/1	NH ₄ -N, mg/l
25. Kalia-	April	7.8	343	0.2	1.7	4.8	192	172	166	138	41.67	8.29	13.5	3.6	0.540	<0.28
pani	Oct	6.7	500	0.1	3.7	5.7	288	276	204	188	49.69	15.60	32.7	28.69	6.599	0.56
26. Kamar-	April	7.4	387	0.3	1.7	2.5	220	204	208	168	51.29	9.75	10.6	0.75	0.744	<0.28
da	Oct	6.9	269	0.1	1.9	5.3	156	132	132	128	38.47	7.80	9.6	5.95	27.280	0.28
8. JHARSU	JGUDA	A (8 stat	ions)													
27. Thelkoi	April															
	Oct															
28. Bhur-	April	7.1	196	0.2	1.7	1.5	116	100	54	52	16.83	2.44	28.8	6.23	1.909	<0.28
khamunda	Oct	7.4	190	0.2	3.7	2	116	96	56	48	14.43	2.92	17.3	14.28	21.169	0.56
29. Badamal	April	6.8	215	0.9	5.2	1.1	128	108	56	56	17.63	2.92	22.1	11.06	2.839	<0.28
Industrial Estate	Oct	7.2	106	0.4	1.8	12	72	60	36	40	11.22	2.92	7.7	10.48	13.109	1.12
30. Budhi-	April	6.4	170	0.6	1.7	2.6	112	96	54	52	16.83	2.44	18.3	10.57	3.357	<0.28
padar	Oct	6.6	187	0.4	1.8	8	116	96	64	56	16.03	3.90	23.07	10.38	2.214	1.12
31. Braja-	April	5.8	150	0.9	1.7	2.5	92	72	24	36	11.22	1.95	18.3	18.6	1.873	<0.28
rajnagar Mining Belt	Oct	7.3	262	0.3	3.6	42	148	128	44	48	14.43	2.92	42.3	17.98	30.469	0.28
32. Ram-	April	6.8	286	0.5	1.7	2.2	188	160	120	104	30.45	6.82	29.2	12.31	0.828	<0.28
pur (water tank)	Oct	6.6	241	0.1	3.6	1.6	152	136	84	64	22.44	1.95	28.8	11.31	1.639	0.56
33. Ib	April	6.9	315	0.4	1.7	1.7	168	152	144	114	32.06	8.29	14.4	2.86	0.766	<0.28
thermal power station	Oct	6.6	219	0.4	1.8	3	140	124	116	96	24.04	8.77	13.5	3.45	2.126	0.56
34. Belpa-	April	6.8	199	0.3	1.7	4.9	128	108	64	58	16.03	4.39	27.9	7.96	0.704	<0.28
har Area	Oct	6.9	195	0.2	1.8	1.2	120	108	84	88	25.64	5.85	17.3	6.66	2.657	0.84
9. PURI (4	statio	ns)														
35. Hospital	April	8.1	504	0.2	1.7	7.8	288	268	110	114	28.05	10.72	88.4	25	1.182	<0.28
-Busstand - Mausima temple area	Oct	7.9	975	0.2	1.9	1.3	584	544	240	268	68.92	23.40	186.5	24.76	28.919	0.56
36. Near	April	7.8	701	0.3	3.4	3.6	388	372	202	150	40.87	11.70	103.8	18.65	3.742	<0.28
Jagannath Temple	Oct	8.1	808	0.4	1.9	4.1	524	488	224	160	38.47	15.60	173.1	17.74	1.151	0.84
37. Near	April	8.2	600	0.3	3.4	5.4	368	352	160	124	32.86	10.24	111.5	21.64	0.602	<0.28
Sea Beach,	Oct	8.2	1175	0.5	3.8	3.3	668	612	356	240	51.29	27.29	187.5	21.67	1.196	0.56
38. Balia-	April	7.9	442	0.6	1.7	8.5	284	252	132	118	28.05	11.70	88.4	7.21	0.492	<0.28
panda	Oct	8.1	350	0.1	1.9	4.5	216	188	96	44	12.82	2.92	61.5	7.38	1.373	0.56
10. SAMB	ALPUI	R(3 stati	ons)													
39. Near	April	8.1	366	0.8	1.6	1.2	224	208	92	86	26.45	4.87	43.3	29.73	18.875	<0.28
Panthani- vas	Oct	6.6	282	0.5	9.3	9	172	148	68	96	27.25	6.82	34.6	31.78	6.731	0.28

Monitoring Station	Month of Monitoring	Hq	Cond., µS/ cm	BOD, mg/1	COD, mg/1	Turbidity, NTU	TDS, mg/1	TFS	Total Alkalinity, mg/l	Total Hardness CaCO ₃ , mg/1	Calcium as Ca, mg/1	Magnesium as Mg, mg/l	Chloride, mg/l	Sulphate, mg/l	Nitrate, mg/1	NH ₄ -N, mg/1
40. Near	April	7.6	1738	0.6	3.1	0.5	1028	988	274	290	83.35	19.98	346.1	137.8	28.175	<0.28
Railway station	Oct	7	606	0.1	3.7	1.4	348	312	140	208	49.69	20.47	42.3	101.54	30.469	0.56
41. Near	April	8.1	602	0.9	1.6	1.3	320	292	248	214	54.50	19.01	37.5	21.39	1.072	<0.28
VSS Medical College, Burla	Oct	7.5	422	0.1	3.7	1.8	256	228	226	220	32.06	34.12	15.4	24.05	1.329	0.28
11. TALC	HER (7 statio	ns)													
42. Maha- nadi Coal	April	6.9	403	0.8	1.6	2.2	236	216	92	128	34.46	10.24	25	70.39	0.819	<0.28
Field Area	Oct	7.8	412	1.1	7.4	39	236	204	100	140	36.86	11.70	21.4	75.59	8.591	0.28
43. Kaniha	April	7.5	511	0.4	1.6	3.6	260	240	220	172	44.88	14.62	17.3	14.93	0.717	<0.28
	Oct	7.9	527	0.1	3.7	13	312	288	272	216	49.69	22.42	23.07	13.21	1.196	0.56
44. Talch-	April	7.6	704	0.4	3.1	4.1	372	364	170	196	48.08	18.52	67.3	69.03	11.284	<0.28
er town	Oct	7.7	614	0.5	1.8	12	372	352	308	304	67.32	33.14	11.5	59.76	1.329	0.84
45. Mer-	April	7.2	220	1.0	3.1	1.1	124	108	82	60	17.63	3.90	12.5	15.05	1.603	<0.28
amundali Area	Oct	8.0	878	0.2	5.5	1.8	488	476	320	340	73.73	38.02	38.5	99.05	3.941	0.56
46.	April	7.3	1404	0.6	1.6	4.6	852	820	376	280	75.33	22.42	202	99.64	0.877	<0.28
Talcher Thermal Area	Oct	7.9	922	0.5	3.7	80	528	488	296	256	57.70	27.29	84.6	75.12	1.506	0.28
47. Banar-	April	7.5	1078	0.4	6.3	0.6	704	672	344	240	62.51	20.47	134.6	92.41	2.201	<0.28
pal	Oct	7.6	1138	0.3	5.5	9.5	748	704	300	240	54.50	25.34	178.8	110	1.594	0.84
48. Kulad	April	7.7	1444	0.8	9.4	4.2	848	824	278	246	62.51	21.93	211.5	145.9	23.130	<0.28
	Oct	8.3	1008	0.4	1.8	8.2	612	584	244	160	49.69	8.77	140.4	86.19	2.347	0.28
				Dri	nking	water		fication	on (IS:	10500 (2012))					
Accept- able Limit		6.5-8.5	-	-	-	1	500	-	200	200	75	30	250	200	45	0.5
Permissi- ble limit		No relax	-	-	-	5	2000	1	600	600	200	100	1000	400	No relax	No relax

Contd..

Stn Name	Month of Monitoring	Total Kjeldahl N, mg/l	Fluoride, mg/l	PO ₄ ³ -P, mg/1	Sodium, mg/1	Potassium, mg/l	Boron, mg/1	Cr (VI), mg/1	Chromium Total, mg/1	Mercury,mg/1	Cadmium, mg/l	Copper, mg/1	Lead, mg/1	Nickel, mg/1	Zinc, mg/1	Iron Total, mg/l	TC, MPN/ 100 ml	FC, MPN/ 100 ml
1. ANGUL	. ANGUL (2 stations)																	
	April	3.08	0.363	0.22	111	35.8	0.028	< 0.002	0.027	-	0.0014	0.009	0.007	0.018	0.018	0.167	1.8	1.8
Township	Oct	5.88	0.35	0.01	39.41	13.11	0.05										17	1.8
	April	4.48	0.44	0.027	36.6	12.36	0.01	< 0.002	0.029	-	0.0015	0.008	0.007	0.009	0.114	0.098	17	1.8
township	Oct	3.64	0.46	0.02	41.62	12.75	0.18										1.8	1.8

Stn Name	Month of Monitoring	Total Kjeldahl N, mg/l	Fluoride, mg/l	PO ₄ ³ -P, mg/1	Sodium, mg/1	Potassium, mg/l	Boron, mg/l	Cr (VI), mg/1	Chromium Total, mg/l	Mercury,mg/1	Cadmium, mg/l	Copper, mg/1	Lead, mg/l	Nickel, mg/l	Zinc, mg/1	Iron Total, mg/l	TC, MPN/ 100 ml	FC, MPN/ 100 ml
2. BALAS	ORE(3 sta	tions))														
3. Naigo-	April	1.4	0.269	0.022	13.98	1.66	0.056	< 0.002	0.013		0.0014	0.005	0.008	0.014	0.013	1.996	8	1.8
palpur	Oct	1.68	0.12	0.03	5.93	1.1	0.03										70	17
4. Kuanr-	April	2.8	5.39	0.185	39.05	0.74	0.456	< 0.002	0.010	-	0.0008	0.003	0.003	0.004	0.009	0.816	1.8	1.8
pur	Oct	2.52	0.73	0.05	6.5	1.29	0.06										1.8	1.8
5. Chakulia	April	3.36	0.175	0.021	31.25	0.86	0.024	< 0.002	0.015		0.0013	0.003	0.003	0.014	0.012	0.904	1.8	1.8
	Oct	2.24	5.48	0.03	32.73	7.7	0.41										46	1.8
3. BERHA	MPU	R (4	statio	ns)														
6. Berham-	Apr	1.4	0.222	0.23	125.7	20.14	0.052	< 0.002	0.013		0.0009	0.011	0.007	0.013	0.062	2.012	23	1.8
pur near Railway station	Oct	1.68	0.24	0.08	271.6	51.8	0.21										13	1.8
7. MKCG	Apr	0.56	0.776	0.023	158.6	22.29	0.277	< 0.002	0.010	-	0.0012	0.006	0.008	0.009	0.105	3.324	1600	540
medical	Oct	3.08	0.74	0.02	60.61	31.39	0.24										23	1.8
College 8. Bus	Λο#	1.96	0.618	0.169	167.7	23.09	0.042	<0.002	0.013		0.0011	0.007	0.005	0.012	0.122	0.969	1.8	1.8
stand	Apr	0.84		0.109		50.55	0.042	<0.002	0.015		0.0011	0.007	0.005	0.012	0.122	0.909	79	13
0 Padaha	Oct		0.64		202.6 96.1		0.22	<0.002	0.015		0.0010	0.009	0.008	0.014	0.052	0.442	1.8	
9. Badaba- zar	Apr	1.4	0.658	0.186	183.6	14.56	0.056	<0.002	0.015		0.0010	0.009	0.008	0.014	0.052	0.443	1.8	1.8
Drinking w	Oct		0.64	0.05		44.49											1.8	1.8
Acceptable	aters	specii	1.0		: 1030	0 (20	0.5		0.05	0.001	0.003	0.05	0.01	0.02	5.0	1.0	Abs	ont
Limit		-	1.0	-	-	-	0.0	-	0.03	0.001	0.003	0.03	0.01	0.02	5.0	1.0	Ans	CIII
Permissi- ble limit		-	1.5	-	-	-	1.0	-	No relax	No relax	No relax	1.5	No relax	No relax	15.0	No relax	No re	elax
4. BHUBA	NESV	VAR	(6 sta	tions))													
10. Khand-	April	3.664	0.312	0.111	106	23.2	0.066	< 0.002	0.013	-	0.0015	0.005	0.004	0.004	0.008	0.100	1.8	1.8
agiri Area	Oct	2.52	0.06	0.02	9.1	2.72	0.09										1.8	1.8
11. Old	April	3.92	0.372	0.022	33.26	12.62	0.049	< 0.002	0.015	-	0.0017	0.007	0.007	0.012	0.116	0.094	23	1.8
town-Sa- mantara- pur Area	Oct	1.68	0.56	0.04	22.33	8.29	0.32										23	23
12. Kalpa-	April	2.8	0.146	0.27	22.16	10.63	0.056	< 0.002	0.024	1	0.0009	0.004	0.003	0.005	0.143	0.101	23	2
na-Laxmis- agar Area	Oct	2.24	0.08	0.02	39.59	10.16	0.15										1.8	1.8
13. Chan-	April	2.24	0.366	0.048	16.01	8.26	0.073	< 0.002	0.013	-	0.0016	0.005	0.007	0.009	0.004	0.050	1.8	1.8
drasekhar- pur	Oct																	
14. Capital	April	3.08	0.175	0.221	41.05	1.32	0.059	< 0.002	0.018		0.0016	0.012	0.003	0.004	0.007	0.638	1.8	1.8
Hospital Area	Oct																	
15.	April	2.8	0.149	0.022	29.21	13.03	0.028	< 0.002	0.018	-	0.0018	0.004	0.008	0.008	0.057	0.114	540	130
Secretaria teGovernor House-Old bus stand Area	Oct	1.68	0.10	-	16.97	5.29	0.11										130	33

Stn Name	Month of Monitoring	Total Kjeldahl N, mg/l	Fluoride, mg/1	PO ₄ ³ -P, mg/1	Sodium, mg/1	Potassium, mg/1	Boron, mg/1	Cr (VI), mg/1	Chromium Total, mg/l	Mercury,mg/1	Cadmium, mg/1	Copper, mg/1	Lead, mg/l	Nickel, mg/l	Zinc, mg/1	Iron Total, mg/l	TC, MPN/ 100 ml	FC, MPN/ 100 ml
5. CUTTA	CK (5 stat	ions)															
16. Jagat-	April	1.12	0.164	0.055	25.16	5.95	0.045	< 0.002	0.024		0.0015	0.004	0.009	0.008	0.011	0.345	2	1.8
pur	Oct	4.2	0.15	0.07	38.1	7.21	0.02										1.8	1.8
17. Man-	April	3.08	0.278	0.07	10.38	2.81	0.003	0.014	0.024		0.0013	0.006	0.006	0.005	0.057	2.368	1.8	1.8
galabag	Oct	2.8	0.11	0.08	10.59	4.02	0.01										1.8	1.8
18. Madhu-	April	2.8	0.232	0.047	10.91	4.38	0.024	< 0.002	0.015	-	0.0010	0.004	0.006	0.005	0.020	0.417	1.8	1.8
patna-Kaly- an Nagar Area	Oct	1.4	0.23	0.07	30.81	5.46	0.01										1.8	1.8
19. Badam-	April	3.36	0.528	0.066	15.61	15.26	0.035	< 0.002	0.013	-	0.0007	0.010	0.008	0.007	0.139	3.696	1.8	1.8
badi Area	Oct	4.2	0.22	0.14	43.5	9.52	0.08										1.8	1.8
20. Bidana-	April	0.28	0.2	0.057	5.75	1.68	0.033	< 0.002	0.015		0.0018	0.002	0.003	0.003	0.010	0.481	1.8	1.8
si-Tulsipur Area	Oct	2.8	0.09	0.05	10.4	3.24	<0.005										5	5
6. PARADI	EEP	(JAG	ATSIN	GHP	UR)	(2 sta	tions)											
21. Musadi-	Apr	5.32	0.606	0.127	54.3	25.5	0.947	< 0.002	0.020		0.0018	0.005	0.007	0.018	0.014	0.216	23	1.8
ha	Oct	4.76	0.41	0.04	500.4	15.86	0.79										1.8	1.8
22. Bada-	Apr	2.24	1.11	0.172	77.25	13.7	0.484	< 0.002	0.018		0.0014	0.005	0.008	0.008	0.018	0.842	1.8	1.8
padia	Oct	3.08	0.70	0.36	94.2	29.65	0.25										1.8	1.8
7. SUKINI	DA (J	AJPU	R) (4	statio	ns)													
23. TISCO	April	9.8	0.149	0.124	15.19	5.83	0.119	0.013	0.035	-	0.0013	0.004	0.008	0.005	0.010	0.120	1.8	1.8
	Oct	1.12	0.16	0.01	3.66	1.06	0.01										13	1.8
24. Saru-	April	4.76	0.132	0.019	22.26	6.79	0.094	0.024	0.049	-	0.0011	0.004	0.004	0.009	0.033	0.514	1.8	1.8
abil	Oct	0.56	0.15	0.01	14.47	4.23	0.09										1600	170
25. Kalia-	April	2.52	0.139	0.022	10.69	2.06	0.049	0.038	0.045	-	0.0010	0.005	0.006	0.009	0.007	0.271	33	1.8
pani	Oct	0.84	0.14	0.02	22.15	9.12	0.06										540	11
26. Kamar-	April				10.65	2.11	0.042	0.006	0.018	-	0.0012	0.002	0.003	0.013	0.066	0.232	2	1.8
da	Oct	1.96	0.14	0.02	4.34	1.11	0.04										130	49
8. JHARSU	r —	$\overline{}$	statio	ns)												1		
27. Thelkoi	April																	
	Oct																	
28. Bhu- rkhamunda	April		0.342			5.29	0.033	< 0.002	0.018		0.0018	0.006	0.009	0.005	0.083	0.060	1.8	1.8
		6.44	0.33		19.78	6.22	0.08										49	17
29. Badamal	April		0.205			5.09	0.026	<0.002	0.025		0.0015	0.004	0.009	0.008	0.113	0.775	1.8	1.8
Industrial Estate	Oct	9.8	0.22	0.04	8.23	3.33	0.01										1.8	1.8
30. Budhi-	April		0.203			5.16	0.049	< 0.002	0.015		0.0013	0.007	0.009	0.011	0.125	0.862	1.8	1.8
padar	Oct	9.52	0.21		15.29	8.16	<0.005										1.8	1.8
31. Braja-	April	1.96	0.216	0.065	14.19	6.12	0.042	< 0.002	0.018		0.0017	0.016	0.005	0.011	0.106	0.360	1.8	1.8
rajnagar Mining Belt	Oct	3.36	0.24	0.03	25.07	9.81	0.05										1.8	1.8

Stn Name	Month of Monitoring	Total Kjeldahl N, mg/l	Fluoride, mg/1	PO ₄ ³ -P, mg/1	Sodium, mg/1	Potassium, mg/1	Boron, mg/1	Cr (VI), mg/1	Chromium Total, mg/l	Mercury,mg/1	Cadmium, mg/1	Copper, mg/1	Lead, mg/1	Nickel, mg/1	Zinc, mg/1	Iron Total, mg/1	TC, MPN/ 100 ml	FC, MPN/ 100 ml
32. Rampur (water tank)	April Oct	3.08 1.96	0.389	0.169	20.63	8.36 8.69	0.038	<0.002	0.015	-	0.0014	0.005	0.009	0.007	0.079	0.406	23	1.8
33. Ib thermal power station	April Oct	3.64	0.249	0.159	12.12 12.09	3.78	0.031	<0.002	0.029		0.0014	0.003	0.009	0.005	0.008	0.071	1.8	1.8
34. Belpa-	April		0.23	0.01	17.81	6.69	0.10	<0.002	0.024		0.0017	0.004	0.006	0.003	0.056	0.479	1.8	1.8
har Area	Oct	3.08	0.18	0.02	6.53	1.46	0.05	10.002	0.021		0.0011	0.001	0.000	0.000	0.000	0.113	1.8	1.8
9. PURI(4			0.10	0.02	0,00	2,10	0.00										2.0	1.0
35. Hos-	April		1.25	0.314	58.6	5.78	0.579	< 0.002	0.030		0.0013	0.002	0.001	0.004	0.132	0.680	1.8	1.8
pital-Bus- stand-Mausi- ma temple area	Oct	4.76	1.19	1.78	81.5	42.44	0.15										240	13
36. Near	April	3.64	0.17	0.026	74.45	9.19	0.196	< 0.002	0.027		0.0016	0.007	0.007	0.013	0.049	2.048	1.8	1.8
Jagannath Temple	Oct	1.96	0.21	0.04	124.2	18.92	0.18										1.8	1.8
37. Near	April	1.68	0.3	0.121	76.9	12.76	0.393	< 0.002	0.018	-	0.0014	0.003	0.002	0.005	0.116	1.391	23	1.8
Sea Beach	Oct	3.36	0.32	0.01	139.2	22.18	0.27										79	8
38. Balia-	April	1.68	0.989	0.379	58.2	4.01	0.47	< 0.002	0.010		0.0010	0.010	0.005	0.005	0.042	1.558	1.8	1.8
panda	Oct	2.8	0.96	0.04	56.75	13.23	0.14										11	1.8
10. SAMB	r —	<u> </u>	statio															
39. Near Panthani- vas	April Oct	12.6 1.68	0.256	0.055	30.8	22.11 4.05	0.098	<0.002	0.015		0.0012	0.002	0.008	0.004	0.007	0.057	1.8	1.8 7
40. Near	April	16.8	0.369	0.034	256	11.63	0.112	<0.002	0.020		0.0015	0.004	0.008	0.013	0.002	0.057	1.8	1.8
Railway	Oct	2.24	0.19	0.02	35.21	1.29	0.50	10.002	0.020		0.0010	0.001	0.000	0.010	0.002	0.001	1.8	1.8
station 41. Near	April	17.64	0.509	0.05	19.91	10.92	0.021	<0.002	0.018	_	0.0016	0.004	0.009	0.009	0.024	0.056	1.8	1.8
VSS Medi- cal College	Oct	2.8	0.32	0.01	7.29	2.93	0.10										20	1.8
11. TALCH	ER (└── (7 sta	tions)															
42. Maha-			0.238		23.01	10.92	0.017	<0.002	0.024		0.0016	0.011	0.008	0.009	0.138	0.903	2	1.8
nadi Coal Field Area	Oct	1.68	0.25	0.01	19.02	4.49	0.05										1.8	1.8
43. Kaniha	April	2.24	0.335	0.124	17.12	9.16	0.031	<0.002	0.018	_	0.0011	0.003	0.005	0.003	0.019	0.065	5	1.8
	Oct	2.52	0.34	0.02	25.56	6.19	0.05										1.8	1.8
44. Talcher	April	3.08	0.35	0.173	36.6	22.26	0.024	<0.002	0.027		0.0009	0.017	0.008	0.011	0.116	0.785	1.8	1.8
town	Oct		0.37	0.03	8.82	3.13	0.22										1.8	1.8
45. Meramundali	April	2.52	0.353	0.087	12.21	5.41	0.028	<0.002	0.029		0.0011	0.011	0.007	0.004	0.082	0.595	1.8	1.8
Area	Oct	1.12	0.34	0.04	30.09	10.19	0.04										1.8	1.8
46. Talcher	April	1.12	0.509	0.103	159	63.1	0.101	<0.002	0.030		0.0016	0.006	0.008	0.012	0.142	1.037	1.8	1.8
Thermal Area	Oct		0.48	0.04	73.45	26.31	0.12										920	130
47. Banar- pal	April	-	0.808			57.15	0.112	<0.002	0.029	-	0.0013	0.006	0.009	0.013	0.124	0.979	1.8	1.8
Par	Oct	3.36	0.79	0.05	139.2	51.15	0.10										13	1.8

Stn Name	Month of Monitoring	Total Kjeldahl N, mg/l	Fluoride, mg/1	PO ₄ ³ -P, mg/1	Sodium, mg/1	Potassium, mg/1	Boron, mg/l	Cr (VI), mg/1	Chromium Total, mg/l	Mercury,mg/1	Cadmium, mg/1	Copper, mg/1	Lead, mg/l	Nickel, mg/l	Zinc, mg/1	Iron Total, mg/l	TC, MPN/ 100 ml	FC, MPN/ 100 ml
48. Kulad	April	1.4	0.531	0.167	166	65.45	0.073	< 0.002	0.032	-	0.0011	0.014	0.009	0.015	0.119	1.056	5	1.8
	Oct	1.4	0.52	0.06	128.6	49.36	0.10										1.8	1.8
Drinking w	ater s	specif	fication	n (IS	: 1050	00 (20	12)											
Acceptable Limit		-	1.0	-	-	-	0.5	-	0.05	0.001	0.003	0.05	0.01	0.02	5.0	1.0	Abs	ent
Permissi- ble limit		-	1.5	-	-	-	1.0	-	No relax	No relax	No relax	1.5	No relax	No relax	15.0	No relax	No re	elax

5.7.2 Air Quality Status

5.7.2.1 National Ambient Air Quality Monitoring Programme (NAMP) & State Air Quality Monitoring Programme (SAMP)

The Board monitors ambient air quality at 38 stations in seventeen areas of the State under the CPCB assisted National Ambient Air Quality Monitoring programme (NAMP) and State Ambient Air Quality Monitoring programme (SAMP) of the Board. Details of air quality monitoring stations, station type and parameters monitored are listed in Table-5.32. Parameters like Respirable Suspended Particulate Matter (RSPM or PM₁₀ (particulate matter having an aerodynamic diameter less than or equal to 10 μm), PM_{2.5} (particulate matter having an aerodynamic diameter less than or equal to 2.5 μm), Sulphur dioxide (SO₂) and Oxides of Nitrogen (NO₂) are being regularly monitored at all stations. Beside these, additional parameters like NH₃, O₃, CO, Pb & Ni are monitored at Bhubaneswar. At Konark & Puri parameters like NH₃, O₃, Pb & Ni are monitored, whereas at Angul, Balasore, Berhampur, Cuttack, & Sambalpur parameters like NH₃ & O₃ are monitored and in Kalinganagar & Keonjhar only NH₃ is measured. The monitoring is carried out for 24 hours (24-hourly sampling for PM_{2.5}, 8-hourly sampling for PM₁₀, Pb & Ni and 4-hourly sampling for gaseous pollutants like SO₂ & NO₂) and 1-hourly monitoring for NH₃ & O₃ with a frequency of twice in a week not in a consecutive day, to have a minimum of 104 observations in a year as per CPCB Guideline.

Table-5.32 Ambient Air Quality Monitoring Stations

Sl. No.	Name of the areas	Monitoring stations	Parameters monitored
1.	Angul	(i) RO, SPCB office building, Angul	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , NH ₃ , &O ₃
		(ii) NALCO Nagar, Angul	
2.	Balasore	(iii) R.O, SPCB, Ganeswarpur	
		(iv) DIC office, Angaragadia	
		(v) Rasalpur Industrial Estate	
3.	Berhampur	(vi) RO, SPCB office building, Brahmanagar	
4.	Bhubaneswar	(vii) SPCB office Building, Unit-VIII	PM ₁₀ , ,PM _{2.5} , SO ₂ , NO ₂ , NH ₃ , O ₃ , Pb, Ni&
		(viii) I.R.C. Village, Nayapalli	CO
		(ix) Capital Police Station, Unit-I	
		(x) Chandrasekharpur	
		(xi) Patrapada	
		(xii) Palasuni water works	
5	Bonaigarh	(xiii) Bonai Govt. Hospital	PM ₁₀ , PM _{2.5,} SO ₂ & NO ₂
6.	Cuttack	(xiv) Hotel Bishal Inn, Near Badambadi	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , NH ₃ &O ₃
		(xv) RO, SPCB office building, Surya Vihar	
		(xvi) PHED Office, Barabati	

Sl. No.	Name of the areas	Monitoring stations	Parameters monitored
7.	Jharsuguda	(xvii)RO, SPCB office building, Babubagicha,	PM ₁₀ , PM _{2.5} , SO ₂ & NO ₂
		(xviii) Inside TRL Colony Premises	
8	Kalinga Nagar	(xix) BRPL Guest House (Near TATA Guest House)	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ &NH ₃
		(xx) RO, SPCB Office building, Kalinganagar	
		(xxi) DET Hostel, Tata Steel (Previously at NINL)	
9	Keonjhar	(xxii) RO, SPCB Office building, Baniapat	PM_{10} , $PM_{2.5}$, SO_2 , NO_2 & NH_3
10	Konark	(xxiii) Konark Police Station	PM ₁₀ , PM _{2.5} , SO ₂ ,NO ₂ ,NH ₃ ,O ₃ ,Pb& Ni
11	Paradeep	(xxiv) PPL Guest House	PM ₁₀ , PM _{2.5} , SO ₂ & NO ₂
		(xxv) IFFCO STP	
		(xxvi) PPT Colony	
12	Puri	(xxvii)Sadar Police Station	PM ₁₀ ,PM _{2.5} SO ₂ , NO ₂ , NH ₃ ,O ₃ ,Pb& Ni
		(xxviii) Town Police Station	
13	Rayagada	(xxix) RO, SPCB Office building, Indiranagar	PM ₁₀ , PM _{2.5} , SO ₂ & NO ₂
		(xxx) Jakaypur	
14	Rajgangpur	(xxxi) DISR, Rajgangpur	
15	Rourkela	(xxxii) RO, SPCB Office building, Sector-5	
		(xxxiii) IDL Outpost, Sonaparbat	
		(xxxiv)IDCO Water Tank, IDC Kalunga	
		(xxxv)Kuanrmunda Out Post, Kuanrmunda	
16	Sambalpur	(xxxvi) PHED Office, Modipara	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , NH ₃ , &O ₃
17	Talcher	(xxxvii) TTPS, Talcher	PM ₁₀ , PM _{2.5,} SO ₂ , NO ₂
		(xxxviii) M.C.L., Talcher	

Ambient air quality status with respect to the four criteria parameters at these 38 stations and additional parameters like (NH₃, O₃ & Pb) at Bhubaneswar, Konark & Puri, (NH₃ & O₃) at Angul, Balasore, Berhampur, Cuttack, & Sambalpur and (NH₃) at Kalinganagar & Keonjhar during the year 2019 are reflected in Table-5.33. The air quality of different cities/ towns have been compared with the national ambient air quality standards to assess the existing air quality status.

The annual average concentration of Respirable Suspended Particulate Matter (RSPM or PM_{10}) at all monitoring locations remained above the prescribed limit i.e., 60 (μ g/m³). While, the annual average value of PM_{25} remained below the limit i.e., 40 μ g/m³ at 14 locations out of 31 monitoring locations monitored.

Comparing 24-hrly average data with the prescribed standard, the percentage (%) of violation of data were calculated. No violation was observed for gaseous pollutants.

The range of PM_{10} violation varied from 0.96% to 85.1%. Similarly for $PM_{2.5}$ no violation occured at 04 places i.e., Capital Police station, Unit-1, Patrapada and Palasuni water works in Bhubaneswar and Regional Office building in Keonjhar. The range of violation varies from 0.94% to 38.2%

Air Quality Index (AQI)

AQI value of 17 areas during the year 2019 with prominent pollutant and categorization are shown in Table-5.34. The range of AQI value, categorization and health impact are presented in Table-5.35. From the Table-5.34, it was observed that out of 17 areas, 09 areas are falling under Moderate category & 08 areas are under Satisfactory category. The prominent pollutant was PM_{10} in all 17 areas. The highest AQI value i.e., 133 w.r.t PM_{10} has been observed at Rajgangpur area and lowest in Berhampur i.e., 64.

Table-5.33 Ambient Air Quality Status of different cities & towns of Odisha during -2019

म्हिला	_s o			Yiotosiz	sits		oderate	W		Vio	Satisfact		A	Satisfactor
all AQI of	тэvО ф			98 (PM ₁₀)		102	(PM ₁₀)		98	(PM_{10})			64	(PM ₁₀)
To IQA yl garirotinot saotis	the m			105 (PM ₁₀)	91 (PM ₁₀)		93 (PM ₁₀)	$112 \\ (\text{PM}_{10})$		$84 \\ (\text{PM}_{10})$	84 (PM ₁₀)	89 (PM ₁₀)		64 (PM ₁₀)
olation from ourly lard	$PM_{2.5}$			38.2%	3.9%		23.0%	32.6%		%96.0	%96:0	4.8%		0.94%
% of violation of data from 24-hourly standard	\mathbf{PM}_{10}			57.8%	36.2%		32.6%	69.2%		%96.0	%96.0	1.9%		7.5%
3 1-hourly	Pb			Not Moni- tored	-		-			Not Mon- itored				Not Monitored
e) except 0	03	: meter)		25.0 (17.8-33.8)	Not Monitored		Not Monitored			26.5 (23.0- 34.9)	26.4 (22.0- 35.4)	28.1 (23.0- 39.8)		35.7 (22.2-48.5)
Annual Average Value (24-hourly range) except $\rm O_3$ 1-hourly range)	NH ₃	es expressed in Microgram per cubic meter)		27.1 (16.8-40.6)	Ž		Ž			30.4 (25.0-44.0)	30.7 (25.0-45.1)	32.4 (26.0-50.5)		39.3 (25.0-58.7)
ge Value (24 range)	NO_2	l in Microgra		26.6 (17.9-32.6)	26.3 (21.7-34.2)		28.5 (23.6-33.3)	27.9 (22.0-35.0)		10.8 (10.1-12.2)	10.7 (10.1-12.9)	11.4 (10.5-13.6)		19.1 (13.0-45.6)
nnual Avera	SO_2	es expresse		11.3 (5.9-19.4)	9.8 (8.4-15.5)	•	10.6 (5.8.14.0)	9.7 (7.6-13.8)		BDL (BDL-BDL	BDL (BDL- BDL)	7.4 (6.4-9.0)		BDL (BDL- 10.5)
V	$PM_{2.5}$	(valu		55 (21-87)	40 (15-64)		44 (12- 125)	49 (19-93)		45 (30-62)	43 (30-70)	50 (34-75)		26 (11-70)
	\mathbf{PM}_{10}			107 (48-189)	91 (34-223)		93 (35-209)	118 (54-207)		84 (69-103)	84 (69-113)	89 (76-115)		64 (34-151)
edO residence	No. o 42)			102	102		104	104		104	104	104		106
Area / Stations			Angul	1. RO SPCB, Angul	2. NALCO Nagar, Angul	Talcher	3. TTPS, Talcher	4.MCL, Talcher	Balasore	5. R.O, SPCB, Ganeswarpur	6. DIC office, Angaragadia	7.Rasalpur,Indus- trial Estate	Berhampur	8. R.O, SPCB, Brahamanagar
SI. No.			1			2			3				4	

मुस्हिलस्र	s)					Stactory	ùs2				Moderate
o IQA all Ajiy əi			26	(PM ₁₀)							112 (PM ₁₀)
to IQA yl gairotiaor saoùsa	Year m eht			$99 \\ (\mathrm{PM}_{10})$	103 (PM ₁₀)	$106 \\ (\text{PM}_{10})$	95 (PM ₁₀)	$95 \\ (\text{PM}_{10})$	86 (PM ₁₀)		112 (PM ₁₀)
olation from ourly lard	$PM_{2.5}$			1.9%	5.7%	Nil	1.01%	Nil	Nil		23.8%
% of violation of data from 24-hourly standard	PM_{10}			41.3%	40.3%	53.8%	28.2%	40.1%	25.2%		%0.09
3 1-hourly	Pb			0.027 (BDL- 0.095)	0.027 (BDL- 0.097)	0.018 (BDL- 0.047)	0.022 (BDL- 0.121)	0.015 (BDL-0.04)	0.026 (BDL- 0.124)		p
e) except (03	meter)		23.8 (20.5- 30.7)	24.5 (21.4- 33.4)	26.3 (21.5- 31.0)		Not Monitored			
Annual Average Value (24-hourly range) except O_3 1-hourly range)	\mathbf{NH}_3	es expressed in Microgram per cubic meter)		40.1 (29.3-65.9)	49.9 (37.7-85.9)		Ž				
ge Value (24 range)	NO_2	d in Microgra		15.6 (11.4-22.0)	16.5 (11.5-23.5)	19.3 (10.7-36.6)	15.0 (12.6-22.0)	14.5 (11.6-28.0)	15.6 (10.2-28.7)		15.6 (10.6-28.8)
ınual Avera	SO_2	es expresse		BDL (BDL- 4.3)	BDL (BDL- 4.9)	BDL (BDL- 7.1)	BDL (BDL- 5.7)	BDL (BDL- 4.3)	BDL (BDL- 6.9)		9.0 (5.3-17.0)
Ar	PM _{2.5}	(value		29 (14-110)	33 (10-129)	26 (16-37)	30 (12-83)	29 (14-56)	29 (10-59)		51 (24-89)
	\mathbf{PM}_{10}			99 (47-218)	104 (41-234)	109 (67-206)	95 (42-244)	95 (38-237)	86 (43-126)		118 (58-209)
of Obs				104	105	104	66	102	28		105
Area / Stations			Bhubaneswar	9. SPCB Office Building, Unit-VI- II	10. I.R.C. Village, Nayapalli	11. Capital Police Station, Unit-I	12.Chandrase- kharpur	13. Patrapada	14.Palasuni water works	Bonaigarh	15.Bonai Govt. Hospital
Si. No.		ro L								9	

Sory) JE)		Vio	Satisfact			oderate	W		•	Modera		əŋı	Modera
IDA Illa Gity	ers	Φ.	100	(\mathbf{PM}_{10})			102	(PM_{10})		102	(PM_{10})			103	(PM ₁₀)
to IQA - rotino - snoitsi	w a	ф		98 (PM ₁₀)	98 (PM ₁₀)	104 (PM ₁₀)		104 (PM ₁₀)	101 (PM ₁₀)		103 (PM ₁₀)	111 (PM ₁₀)	93 (PM ₁₀)		103 (PM ₁₀)
f data stand-	PM,	6.2		1.4%	20.3%	13.5%		19.0%	1.0%		Nil	Nii	Nil		Nil
% of violation of data from 24 hourly stand- ard	PM.	O.		30.0%	63.4%	32.0%		%0.69	27.0%		%6'2'9	63.4%	50%(1/2)		59.5%
range)	Pb			Not Moni- tored	Not Monitored	Not Monitored		ed			pə	Not Monitored	pə		Not Monitored
1-hourly	0,	meter)		25.7 (19.7- 32.5)	25.8 (20.6- 30.1)	22.0 (BDL- 28.8)		Not Monitored			Not Monitored	Not N	Not Monitored		Not N
Value (24hourly range) except O_3 1-hourly range)	NH	expressed in microgram per cubic meter)		29.9 (17.9-64.4)	29.4 (BDL-83.2)	23.9 (BDL-35.7)		N			No	48.7 (44.1-53.2)	No		61.1 (36.6-99.2)
thourly rang	NO.	l in microgr		19.4 (13.9-31.1)	21.4 (14.1-37.5)	17.8 (13.2-33.0)		12.7 (10.6-43.5)	17.3 (10.6-27.4)		16.3 (10.5-27.2)	17.6 (10.5-26.8)	16.6 (16.1-17.0)		14.3 (11.6-25.1)
	°OS			5.3 (BDL-8.1)	5.2 (BDL-9.2)	BDL (BDL- 8.9)		7.1 (5.6-30)	7.9 (4.8-22.8)		BDL (BDL-4.9)	BDL (BDL- 4.8)	BDL (BDL- BDL)		BDL (BDL- BDL)
Annual Average	PM,	(values		37 (18-97)	48 (24-106)	45 (25-113)		51 (35-93)	39 (29-71)		Not Moni- tored				29 (20-40)
Annu	PM,			98 (51-235)	98 (54-224)	106 (58-362)		106 (79-160)	102 (92-145)		105 (27-438)	117 (46-226)	93 (67-118)		104 (24-216)
edO los (sud				70	103	103		108`	105		81	63	05		66
Area / Stations			Cuttack	16. Hotel Bishal Inn, Near Bad- ambadi	17. R.O.SPCB Building, Surya Vihar	18.PHD office ,Barabati	Jharsuguda	19. RO Building, Cox Colony, Babubagicha,	20.Inside TRL Colony Premises	Kalinga Nagar	21. BRPL Guest House (Near TATA Guest House)	22. RO SPCB, building	23.DET Hostel Tata Steel (Previous at NINL)	Keonjhar	24. R.O.SPCB, Baniapat
SI.			7				8			6				10	

goty	Sate))	ſ.	Satisfactor		эрі	Moders			derate	οM		Stactory	siteS	e	Moderate
II AQI Sety	era]	vO	70	(\mathbf{PM}_{10})	128	(\mathbf{PM}_{10})			106	(\mathbf{PM}_{10})		64	(PM ₁₀)		133	(PM ₁₀)
lo IQA -votino snoite	nga nga	SeY Tes		70 (PM ₁₀)		131 (PM ₁₀)	125 (PM ₁₀)	129 (PM ₁₀)		107 (PM ₁₀)	105 (PM ₁₀)		63 (PM ₁₀)	66 (PM ₁₀)		133 (PM ₁₀)
f data stand-	PM	C:.2		Nii		Niil	Nil	13.8%		Nil	1.3%		1.9%	%96.0		38.0%
lation o hourly ard				%26.0		80.1%	74.6%	85.1%		76.0%	%5'09		2.8%	%96.0		77.1%
% of violation of data from 24 hourly stand- ard	PM.												,	-		p.
ange)	Pb			0.008 (BDL- 0.025)			p			0.007 (BDL- 0.021)	0.012 (BDL- 0.023)			Not Monitored		Not Monitored
1-hourly r	0,	c meter)		23.4 (21.7- 27.9)			Not Monitored			22.0 (21.4- 23.0)	22.2 (21.2- 26.5)		;	Ž		N
Annual Average Value (24 hourly range) except 0_3 1-hourly range)	NH	expressed in microgram per cubic meter)		39.6 (29.7-55.2)			No			56.3 (43.6-69.6)	60.1 (41.3-78.1)		16.7 (11.2-21.6)	16.9 (11.5-21.2)		19.2 (10.8-37.2)
Lhourly rang	NO	l in microgra		13.1 (10.9-18.6)		9.4 (BDL- 20.4)	9.1 (BDL- 12.2)	10.2 (BDL- 15.8)		15.3 (13.2-17.5)	15.2 (12.6-22.4)		BDL (BDL- 11.6)	BDL (BDL- 9.4		11.5 (5.6-22.6)
ge Value (24	SO			BDL (BDL- BDL)		18.0 (9.2-26.0)	19.2 (14.4- 26.9)	18.2 (9.6-30.1)		BDL (BDL- BDL)	BDL (BDL- 5.3)		32 (10-91)	35 (09-69)		59 (31-93)
ual Averag	PM	(values		Not Moni- tored		Not Moni- tored		54 (23-169)		Not Moni- tored	21 (12-91)		63 (18112)	66 (15-118)		149 (73-278)
Ann	PM.	OT		70 (50-102)		147 (76-342)	137 (69-316)	144 (72-343)		(87-141)	108 (87-163)		(18	(15		(73-
r Obs (sad	0° 0) N		103		101	83	101		46	92		104	104		105
Area / Stations			Konark	25. Konark Police station	Paradeep	26.PPL Guest House	27. IFFCO STP	28. Paradeep port trust	Puri	29. Sadar police Station	30. Town police Station	Rayagada	31.R.O.SPCB Building, In- diranagar	32. LPS High School, Jaykay- pur	Rajgangpur	33. DISIR, Raj- gangpur
SI. No			11		12				13			14			15	

egory	Cate				derate	oM			Satisfactory		
all AQI e City	Vers	0	113	(PM_{10})				92	(PM_{10})		
To IQA versions	કાતુ ક દા	ų ЭД		87 (PM ₁₀)	89 (PM ₁₀)	149 (PM ₁₀)	128 (PM ₁₀)		92 (PM ₁₀)		
f data stand-	PM _{2.5}			1.90%	9.4%	27.6%	36.1%		14.2%		
lation o hourly ard	01			5.71%	12.2%	84.7%	80.9%		41.9%		
% of violation of data from 24 hourly stand- ard	\mathbf{PM}_{10}				-	<u> </u>			Not Moni- 41.9% tored	0.5	1.0
range)	Pb				2	Not Monitored			15.6 (BDL- 37.1)	180 (1Hourly)	100 (8Hourly)
1-hourly	0_3	: meter)			į	Z			19.5 (BDL- 39.6)	400	100
ge) except 0_3	NH_3	expressed in microgram per cubic meter)		14.4 (BDL-21.9)	10.9	17.5 (9.5-26.3)	12.0 (9.5-21.9)		23.9 (18.0-46.2)	80	40
hourly rang	NO_2	l in microgr		7.6 (BDL- 15.9)	6.0 (5.4-14.5)	12.3 (6.3-15.8)	7.6 (4.4-13.6)		5.5 (BDL 35.6)	80	20
ge Value (24	SO_2			37 (20-88)	51 (40-93)	47 (17-79)	52 (24-93)		48 (19-165)	60	40
Annual Average Value (24hourly range) except O_3 1-hourly range)	$ \mathbf{PM}_{10} $ $ \mathbf{PM}_{2.5} $			87 (52-178)	89 (73-160)	174 (78-242)	142 (55-213)		92 (29-266) (19	100	09
of Obs		N		105	106	105	105		105	ard	l Avg.
Area / Stations			Rourkela	34. R.O.SPCB building, Sector-	35. IDL Outpost	36. IDCO Water Tank, IDC Kalunga	37. Kuarmunda Out Post, Kuar- munda	Sambalpur	38. PHD Office, Modipara	Prescribed Standard (24 hrly)	Standard for Annual Avg. Value
S. No			16					17			St

 $N.B:BDL.\ Below\ Detectable\ Limit,\ PM_{10}-Particulate\ Matter\le 10\ \mu\ size\ ,\ PM_{25}-Particulate\ Matter\le 2.5\ \mu\ size\ SO_2-Sulphur\ Dioxide,\ NO_2-Oxides\ of\ Matter\ SO_2-Sulphur\ Dioxide,\ NO_3-Oxides\ of\ NO_3-Sulphur\ Dioxide,\ NO_3-Oxides\ of\ NO_3-Sulphur\ Dioxide,\ NO_3-S$ Nitrogen, $NH_3 \rightarrow Ammonia$, O_3 – Ozone &Pb-Lead, NM-Not Monitored

 $\text{$\rangle$} \quad \text{BDL Value for SO}_2 \leq 4~\mu\text{g/m}^3, \text{NO}_2 \leq 9~\mu\text{g/m}^3, \text{NH}_3 \leq 10~\mu\text{g/m}^3, \text{O}_3 \leq 10~\mu\text{g/m}^3, \text{Pb} \leq 0.0022~\mu\text{g/m}^3, \text{PM}_{10} \leq 5~\mu\text{g/m}^3, \text{PM}_{2.5} \leq 2~\mu\text{g/m}^3$

NO percentage of violation of data from 24 hourly average for all monitored gaseous like SO2,NO2,NH3,O3&Pb **≈**

Table-5.34 Annual Air Quality Index of Different monitored Stations in Odisha during the year 2019

Monitoring Locations	5	Sub inde	ex valu	ue w.r.	t paran	neter		Overall AQI	Overall
	PM ₁₀	$PM_{2.5}$	SO ₂	NO ₂	NH ₃	O_3	Pb	With prominent parameter	Categorisation
1. Angul									
1.Industrial Estate	98	78	13	33	7	25	Nil	98.0 (PM ₁₀)	Satisfactory
2. NALCO Nagar	1								
2. Talcher		•	•						
3.TTPS, Talcher	102	77	13	35	-	-	-	102.0 (PM ₁₀)	Moderate
4.MCL, Talcher									
3. Balasore	•								
5. R.O, SPCB, Ganeswarpur	86	77	3	14	8	27	-	86.0 (PM ₁₀)	Satisfactory
6.DIC office, Angaragadia	1								
7.Rasalpur,I.E	1								
4. Berhampur	•								
8.R.O, SPCB Brahamanagar	64	43	3	24	10	36	-	64.0 (PM ₁₀)	Satisfactory
5. Bhubaneswar	•	•						, 10	
9.SPCB Office Building, Unit-VIII	97	48	3	20	11	24	2.0	97.0 (PM ₁₀)	Satisfactory
10.I.R.C. Village, Nayapalli	1								
11.Capital Police Station, Unit-I	1								
12.Chandrasekharpur	1								
13.Patrapada	1								
14.Palasuni water works	1								
6. Bonaigarh	112	85	11	20	-	-	-	112.0 (PM ₁₀)	Moderate
15.Bonai Govt. Hospital	1								
7. Cuttack									•
16.Traffic Tower Badambadi,	100	72	5	24	7	25	-	100.0 (PM ₁₀)	
17.R.O.Building, Surya Vihar]							10	Satisfactory
18.PHD office ,Barabati	1								
8. Jharsuguda									
19.RO Building,Cox Colony, Babubagicha,	102	75	9	18	-	-	-	102.0 (PM ₁₀)	Moderate
20. Inside TRL Colony Premises									
9. Kalinganagar	•	•							
21.Over the roof of BRPL Guest House (Near TATA Guest House)	102	NM	3.0	21	12	-	-	102.0 (PM ₁₀)	Moderate
22.Roof of Regional Office Building,									
10. Keonjhar	•	•		•					
23.R.O, Baniapat	103	48	3	18	15	-	-	103.0(PM ₁₀)	Moderate
11. Konark									
24.Konark Police Station	70	NM	3	16	10.0	23.0	0.8	70.0 (PM ₁₀)	Satisfactory
12. Paradeep									
25.PPL Guest House	128	90	23	12	-	-	-	128.0(PM ₁₀)	Moderate
26.On the roof of IFFCO STP									
27.On the roof of Paradeep port trust									

Monitoring Locations	S	Sub inde	ex valu	ıe w.r.	t paran	neter		Overall AQI	Overall
	PM ₁₀	$\mathrm{PM}_{2.5}$	SO ₂	NO_2	NH ₃	O_3	Pb	With prominent parameter	Categorisation
13. Puri									
28. Sadar police Station	106	NM	3	18	15	22	0.9	106.0 (PM ₁₀)	Moderate
29. Town police Station									
14. Rayagada									
30. RO Building, Indiranagar	64	55	3	21	-	-	-	64.0 (PM ₁₀)	Satisfactory
31. LPS High School, Jaykaypur									
15. Rajgangpur									
32. DISR Rajgangpur	133	98	14	24	1	1	ı	133.0(PM ₁₀)	Moderate
16. Rourkela									
33.Regional Office Building, Sector-5	113	78	10	17	-	-	-	113.0(PM ₁₀)	Moderate
34. IDL Outpost									
35. IDCO Water Tank, IDC Kalunga									
36. Kuarmunda Out Post, Kuarmunda									
17. Sambalpur									
37.PHD Office, Modipara	92	80	7	30	5	16	-	92.0(PM ₁₀)	Satisfactory

Table-5.35 AQI range with categorization and Health impact

AQI VALUE	CATAGORY	IMPACT ON HUMAN HEALTH
0-50	GOOD	Minimal Impact
51-100	SATISFACTORY	Minor breathing discomfort to sensitive people
101-200	MODERATE	Breathing discomfort to the people with lung, heart disease, children and adults
201-300	POOR	Breathing discomfort to people on prolonged exposure
301-400	VERY POOR	Respiratory illness to the people on prolonged exposure
>401	SEVERE	Respiratory effects even on healthy people

5.8 INDUSTRIAL INSPECTIONS, MONITORING OF WATER, AIR AND SOLID WASTE SAMPLES

The Board has analysed following samples. The status of inspection and monitoring during the year 2019-20 is given in Table-5.36.

Table - 5.36 Inspection and Monitoring of Water, Air and Solid Waste

Nos. of In-	Samples	Nos. of	Nos. of	Nos. of	Nos. of	Ambient A	ir Quality	studies	Ambient
spec-tions	under NWMP.	Industrial samples	other water	Soil/solid waste/	Stack emission	Industrial	SAMP /	Others	Noise
	SWMP &		samples	Plant sam-	samples	premises	NAMP		
	NRCP			ples					
7134	4277	3064	2173	32	873	1517	11,715	315	675

5.9 PUBLIC GRIEVANCES

The status of various public complaints received and redressed on following matters during 2019-20 is given in Table 5.37.

- 17 categories of highly polluting industries
- Disposal of hazardous chemicals and hazardous wastes
- Stone crusher
- Brick Kiln
- Other industries
- Mines
- Iron Crushers
- Public nuisance
- Other miscellaneous issues

Table - 5.37 Status of Public Complaints

No. of complaint received	Disposal	Under investigation
544	341	203

5.10 IMPLEMENTATION OF RIGHT TO INFORMATION ACT, 2005

The Right to Information Act, 2005 provides for setting out the practical regime of right to information for citizens to secure access to information under the control of Public Authorities (P.A), in order to promote transparency and accountability in the working of every public authority.

According to Section 6 of this Act, any person who desires to obtain any information under this Act can apply in Form A specifying the particulars of the information sought by him or her in writing or electronically in English or in local official language. The application should be accompanied with the requisite fee, prescribed under the Act.

As per the Act, the State Pollution Control Board, Odisha is providing available information as and when sought through proper application. Mrs. Kainta Tudu, Env. Scientist of the Board has been declared as the Public Information Officer under the provisions of the Act. 705 no. of requests were received under RTI during 2019-20 (Table-5.38). The total amount collected for RTI requests during 2019-20 is ₹ 9,521/-.

Table - 5.38 Status of Applications under RTI Act

SL. No.	Details of the Application	Nos.
01.	Total no. of applications received	705
02.	No. of applications on which Information provided	601
03	No. of applications on which request rejected	47
04.	No. of requests transferred to other public Authorities	28
05.	No. of applications under evaluation	29

CHAPTER - VI

LEGAL MATTERS

6.1 STATUS OF LEGAL CASES

The Board initiates legal action against those units which fail to adopt adequate pollution control measures entailing violation of norms and directives, in spite of repeated persuasion and after having received adequate opportunity.

The Board has filed/counter filed 152 cases and 122 cases have been disposed off by the respective Courts during 2019-2020. The details of cases filed by the Board alongwith the status of public interest litigations and writ petitions filed in different Courts are presented in Table-6.1.

Table - 6.1 Details of Cases Filed by the Board

Sl. No	Name of the Court	No. of Cases			
		Filed/Counter filed	Disposal*		
A	Lower Court (SDJM)				
1.	The Water (PCP) Act	Nil	Nil		
2.	The Air (PCP) Act	Nil	Nil		
3.	The Environment (Protection) Act	Nil	01		
В	High Court				
1.	PIL	16	25		
2.	Writ	60	47		
С	Supreme Court				
1.	PIL	02	Nil		
2.	Writ	01	Nil		
D	Other Court				
1.	Civil Suit	04	Nil		
2.	Consumer Dispute Cases	Nil	Nil		
3.	Lokpal Cases	Nil	Nil		
4.	N.H.R.C. / O.H.R.C.	14 (NHRC-09+ OHRC-05)	25 (NHRC-21+ OHRC-04)		
5.	Cases U/S-133 of CrPC	03	Nil		
6.	Cases before the State Appellate Authority	03	04		
7.	Cases before the National Green Tribunal	49	20		
8.	Misc. Cases	Nil	Nil		
	Total	152	122		

N.B: *Include cases carried over from the previous years:

CHAPTER - VII

FINANCE AND ACCOUNTS

The estimated and the actual receipts during 2019-20 are given in Table-7.1.

Table-7.2 reflects the details of budget provision and actual expenditure incurred during the year 2019-20.

Table - 7.1

RECEIPT FOR F.Y.- 2019-20 (Rs. in Lakhs)

Sl No.	Head of Receipt	Budget for 2019-20	Actual Receipt for 2019-20
1	Consent to operate fees		
	a) Received during the year for 2019-20	210.87	195.53
	b) Received in advance in Previous Years for 2019-20	3398.44	
	c) Received during the year as advance for comming Years.	0	4006. 51
2	Consent to Establish	707.70	761.89
3	Misc Receipts(PWM, Reg.under Batteries, Empanelment of Consultants,RTI, Hrd board, auction sale)	3.00	32.83
4	Analysis Charges	3.50	3.49
5	Recovery of Loans & Others	40.00	32.55
6	Public Hearing	15.00	19,50
7	Hazardous Waste Auth	18.00	27.56
8	Aut.Bio.Med. Fees	5.00	25.40
9	Interest on Savings/Advances	1800.00	6018.73
	Sub-Total	6201.51	11123.99
10	Pollution Charges / Penalty (NGT)	1.55	10.10
11	Forfeiture of Bank Guarentee	252.22	252.22
	Sub-Total	253.77	262.32
(ii)	GRANT-IN-AID FOR SCHEME "CONTROL OF POLLUTION"	304.91	304.91
(C)	Receipt of Scheme	965.20	1087.55
	Sub-Total	1270.11	1392.46
	Grand Total	7725.39	12778.77

Table - 7.2

Expenditure for F.Y.- 2019-20

Sl. No.	Source of Funding	Head of Account	Budget for 2019-20	Expenditure for 2019-20
1	Board's Own Fund	i) Salary	1860.00	1625.72
		ii) Recurring Exp.	598.49	484.75
		iii) Loans & advances	20.00	17.40
		iv) Non Recurring	96.00	18.57
		v) Transfer of Fund to OEMFT	125.00	0.00
		vi) State level committee on solid waste management	40.00	34.61
		vii)Contribution to Chief Minister's relief fund	200.00	200.00
		Sub Total	2939.49	2381.06
2	Grant-in-Aid of CPCB	i) Salary & Establishment Expenditure	152.45	152.45
		ii) E-governance & IT Operations	41.00	17.75
		iii) Pollution Assessment and R& D Activities	104.70	75.93
		iv) Laboratory Development	11.10	9.10
		v) Management of Polluting sources	31.44	28.10
		vi) Training & Mass Awarness	22.56	21.59
		Sub Total	363.25	304.91
3	Sponsored Scheme		992.16	333.22
		Total	4294.90	3019.18
4	Others	i) Deposit of Income Tax for the F.Y 2012-13/A.Y-2013-14		3600.81
		ii) Tax Deducted at Source from Bank Interest		66.41
		iii) Bank Charges on B.G		10.62
	Grand Total			6697.02

CHAPTER - VIII

OTHER IMPORTANT ACTIVITIES

8.1 NTEGRATED COASTAL ZONE MANAGEMENT PROJECT (ICZMP)

Coastal Water Monitoring and Analysis has been made regularly since April 2014 on quarterly/seasonal basis by the PEA from the assigned monitoring area i.e. from Paradeep (20°10′02.67°N; 86°31′22.63°E) to Dhamara coast (20°5′58.96N; 86°58′12.27E), covering nearly 80 KM in the sea. All samplings have been made from on-shore and off-shore sampling points with the help of trawler as well as monitoring vessel (MV Sagar Utkal). As given in the protocol, seventy three (73) sampling locations have been selected for the entire monitoring area (Mahanadi transect-32 points, Dhamara transect-17 points and Gahirmatha-Bhitarkanika transect-24 points).

The details of monitoring conducted during 2019-20 by the ICZMP Cell are given in table below.

Table- 8.1

Year/ Monitoring Quarter	Period	Duration of sam- pling	Name of Stretch/Zone	No. of Water samples collected	No. of Sedi- ment samples collected
2019-20/Q4	December-February	January-2020	Paradeep (Z-1)	562	28
2019-20/Q4	December-February	January-2020	Paradeep (Z-1)	250	22
2019-20/Q4	December-February	February-2020	Paradeep (Z-1)	118	15
2019-20/Q4	December-February	February-2020	Gahirmatha-Bhitarakanika (Z-2)	236	21
2019-20/Q4	December-February	February-2020	Gahirmatha-Bhitarakanika (Z-2)	255	Nil
2019-20/Q4	December-February	February-2020	Dhamara (Z-3)	312	Nil
	Total no.	of samples collected		1733	86

Parameters analysed for the water samples include pH, Conductivity, Total Suspended Solid, Total Dissolved solid, Turbidity, Fluoride, Dissolved Oxygen, Biochemical Oxygen Demand, Alkalinity, Salinity, Nitrite, Nitrate, Ammonia, Silicate, Ortho-phosphate, TOC, TIC, heavy metals (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Pb, Cd, Hg), PAH, Pesticides, Total Coliform, Fecal Coliform, Chlorophyll-a, Chlorophyll-b, Chlorophyll-c, Total Chlorophyll, Phaeophytin pigment, Carotenoid, Phytoplankton and Zooplankton.

Parameters analysed for the sediment samples include pH, TOC, TIC, heavy metals, composition of sediment (sand, silt and clay), Macro Benthos and Meio Benthos.

Some photographs during sampling in vessel are given below:

» Blue Flag Beach Certification of Beach along coastal stretch of Odisha:

As per Blue Flag standards, a beach must be plastic-free and equipped with a waste management system. Clean water shall be available for tourists, apart from international amenities. The beach shall have facilities for studying the environmental impact around the area.

The drive for the Blue Flag certification; which is the tag given to environment-friendly and clean beaches, equipped with amenities of international standards for tourists; has been initiated for a few coastal stretches in the State of Odisha. In this connection, twelve more beaches in the country are being developed by the Society for Integrated Coastal Management (SICOM), which is the Environment Ministry's body working for the management of coastal areas in accordance with the Blue Flag standards. As per the proposal of Govt. of Odisha and MoEF & CC, GoI; the OSPCB has been involved in conducting detail survey of environmental status of the coast as desired.

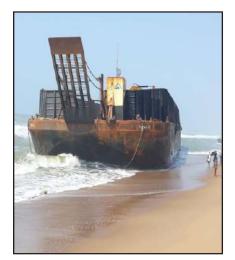
SICOM has monitored five coastal stretches of Odisha i.e, one stretch at Chandrabhaga,two in Paradeep and two at Puri.Out of these stretches a stretch of 435 meters in Puri beach (19°47′60″N-85°50′20″E) from Rajbhawan to Hotel Mayfair has been certified as Pilot Blue Flag Beach.A total of 334 water samples from five different locations of Puri Beach have been collected during the period from April,2019 to March,2020 and analyzed in respect of the parameters i.e., Colour, Odour, pH, Turbidity, Dissolved Oxygen,Biochemical Oxygen Demand,Fecal coliform,Fecal Streptococci and Oil & Grease under the guidelines of Foundation for Environmental Education (FEE),required for the Blue Flag certification.

(Sampling Location at Puri Stretch under Blue Flag Certification)

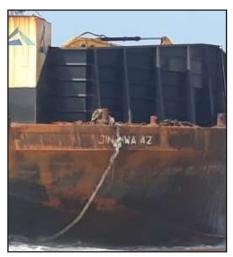
Photographs of Puri Beach during monitoring under Blue Flag Certification

Other Activities of ICZMP, SPCB, Odisha:

 Monitoring and sampling of sea water at Rajhansa, Chilika in and around the grounded Malaysian tug Boat


Inspection has been conducted near the grounded Malaysian tug boat (JIN HWA 32) and towed barge (JINHA 42) landed off near Rajahansa Island in Chilika lake and necessary sampling was made. Analysis result indicated no sign of pollution due to berthing of this tug boat and barge along the coast.

FEW PHOTOGRAPHS OF GROUNDED MALAYSIAN TUG BOAT JIN HWA 32 & TOWING BOAT JN HWA 42 NEAR CHILIKA AT RAJHANSA



View of JN HWA32

Towing boat JN HWA42

8.2 FLY ASH RESOURCE CENTRE (FARC)

Fly Ash Resource Centre (FARC) is functioning in the Board since June'2013 as per the decision of High Level Committee, chaired by the Chief Secretary, Govt. of Odisha. During 2019-20, about 31330076 MT of fly ash has been generated, out of which about 89.91% has been utilised.

The mandate of the FARC is to enhance the utilisation of fly ash in the State by facilitating and exploring various options such as brick manufacturing, cement, asbestos manufacturing, quarry filling, coal mine void filling, dyke raising, land development, road making etc. The Board has also taken up awareness programme from time to time among the stakeholders. FARC has prepared the following guidelines which are available in the Board's website.

- a. Guidelines for Manufacturing of quality Fly Ash Bricks
- b. Guidelines for Low lying area filling with fly ash
- c. Guidelines for Use of Fly ash Tiles in canal lining
- d. Best Practices in Fly ash utilization
- e. Fly ash in Road construction

8.3 UNIDO-GEF-Funded MoEF Project on Biomedical Waste (BMW) Management

Odisha has been identified as one of the five States in the Country (Other States are Maharashtra, Gujarat, Punjab, Karnataka) for implementing UNIDO-GEF-Funded MoEF Project on Biomedical Waste Management. SPC Board has been designated by the Govt. as the Nodal Agency and the Board has signed the contract with UNIDO. The project is implemented in 28 Health Care Establishments (HCEs) including three Govt. Medical Colleges and Hospitals. Govt. of Odisha is co-financing the project.

The achievements of the project in implementing best BMW management in the State are as follows:

- 14 qualified manpower have been provided to 03 large Medical College & Hospitals, State Bio-Medical Waste Cell in H & FW Dept., 06 District Head Quarters Hospitals and at SPCB, Bhubaneswar through outsourcing agency to exclusively deal with Bio-medical Waste Management.
- After deployment of Project Officers, regular training has been imparted to waste handlers and due
 to regular surveillance, the Bio-medical Waste Management practice in the aforesaid 9 Govt. HCEs
 has been improved considerably, particularly the practice of segregation of bio-medical wastes.

- Colour-coded bins (3360 nos.) and waste collection trolleys (241 nos) have been provided to the identified 28 HCEs.
- Capacity building of Medical Officers, Nurses, Paramedical Staff, Waste Handlers and related stockholders has been made.
- Seven workshops have been conducted throughout the State involving Doctors, Nodal Officers, Paramedical Staff, Nurses and Waste Handlers as participants.
- Standard Operating Procedure(SOP) and Training Manuals, prepared by MS Ramaiah Medical College, Bangalore have been distributed to the Board, Health and Family Welfare Department, CBWTF and all identified HCEs.
- The training manuals have been translated into Odia language and circulated among all stakeholders.
- Microwaves have been provided to 4 nos. of large medical college and hospitals namely SCB Medical College and Hospital, Cuttack; VIMSAR, Burla; MKCG Medical College and Hospital, Berhampur; and SUM Hospital, Bhubaneswar under the project.
- Specification of PPE, Mercury Spill Kit, Biological Spill Kit and Needle Syringe Destroyer has been prepared and shared with all identified hospitals to procure it from their user fund.

8.4 OBSERVATIONS DURING DIFERENT FESTIVALS

8.4.1. Impact of Festive Activities during Dussehra and Deepavali on Noise level and Ambient Air Quality (AAQ) of selected towns and cities of Odisha.

State Pollution Control Board, Odisha has taken pro-active measures to publish public notices in two Odia and one English newspaper on dtd:-23.10.2019 to create public awareness on ill effects of noise and bursting of fire crackers. Copies of the public notices are enclosed as Annexure I & II.

Further the Board has conducted monitoring of Noise Level in pre- and on the day of Dussehra and Deepavali at 14 towns/cities of the State. The Board also conducted ambient air monitoring with respect to PM_{10} , $PM_{2.5}$, $SO_2 \& NO_2$ in 17 towns/cities to assess the impact on ambient air quality in pre- and on the day of Dussehra.

The findings of the monitoring are summarized below and results are presented in Table-8.2 and 8.3.

IMPACT OF DUSSEHRA FESTIVAL CELEBRATION ON AMBIENT NOISE LEVEL

State Pollution Control Board, Odisha has conducted ambient noise monitoring at 52 locations in 14 towns/cities i.e. Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur covering Industrial, Commercial, Residential and Silence zone during day and night time prior to and during Dussehra to assess the impact of Dussehra festival on the ambient noise level. Out of 52 locations of noise monitoring, 10 are in Industrial zone, 14 each are in commercial, residential and silence zones.

I. Industrial Zone

The noise level at all locations in pre & on the day of Dussehra are below the prescribed limit for day time i.e., 75 dB (A) Leq except at two locations at Khapuria Industrial Estate and Jesco, Rayagada on pre Dussehra and at Kalinganagar Industrial Estate, Jajpur during Dussehra.

During night time the noise level are below the limit i.e. 70 dB (A) Leq at all locations except at four locations i.e., Khapuria Industrial Estate, Cuttack, Bombay chowk, Jharsuguda, Kalinganagar Industrial Estate and Jesco Industrial Estate at Rayagada on the day of Dussehra and Khapuria Industrial Estate, Cuttack in pre Dussehra.

II. Commercial Zone

The noise level in day time on pre & during Dussehra at all locations are above the limit i.e., 65 dB (A) Leq except at two locations in pre Dussehra at Sahidnagar Bhubaneswar and at Ambagan, Rourkela. The maximum noise occurred at Motiganj, Balasore i.e., 91.0 dB (A) Leq on the day of Dashera. The noise level in night time exceeds the limit i.e., 55 dB (A) Leq at all locations in pre & on the day of Dussehra except at Sahidnagar Bhubaneswar on pre-Dussehra. The maximum noise level occurred i.e 84.9 dB (A) Leq at Motiganj, Balasore.

III. Residential Zone

The noise level in the day time exceed the limit i.e. 55 dB (A) Leq in both pre & during Dussehra at all locations except at Nayapalli, Bhubaneswar, Madhipur at Konark on pre Dussehra, Brahmanagar during Dussehra and Ainthapalii, Sambalpur on both Pre & During Dussehra. The maximum noise level occurred at Indiranagar, Rayagada i.e., 84.1 dB (A) Leq in day time on the day of Dussehra.

During night time the noise level in pre & during Dussehra are more than the limit i.e., 45 dB (A) Leq at all locations except at one location in pre Dussehra i.e., Nayapalli, Bhubaneswar. The maximum noise level occurred i.e., 75.6 dB (A) Leq at COX colony, Jharsuguda during Dussehra in night time.

IV. Silence Zone

The noise level in day time & night time at all locations are above their respective limit i.e., 50 dB (A) Leq & 40 dB (A) Leq respectively except at Capital Hospital Unit-6, Bhubaneswar during day time in both pre and on the day of Dussehra and IGH Steel Township in Day time in pre Dussehra. The Maximum noise level i.e., 78.2 dB (A) Leq in day time occurred at District Head Quarter Hospital, Paradeep on the day of Dussehra & at night time and the maximum noise level i.e., 70.4 dB (A) Leq occurred at SCB medical college is observed in pre Dussehra.

Table-8.2 Noise level in dB(A) Leq at different locations on pre and on Dashera day during the year 2019

S1.	Towns/Cities	Monitoring Locations	Pre Das	shera	Dash	era Day
No			D	N	D	N
1.	Angul	1.Amalapada(R)	61.7	53.9	69.4	56.3
		2.Bazar chhak(C)	66.6	58.8	83.6	60.4
		3.District Head Quarter Hospital(S)	61.4	48.9	63.0	50.9
		4.Hakimpada(I)	64.3	54.7	65.8	59.4
2.	Balasore	5.Sahadevkhunta(R)	66.5	53.6	73.5	58.4
		6.Motiganj Bazar(C)	78.2	64.7	91.0	84.9
		7.District Head Quarter Hospital(S)	60.1	47.6	58.3	66.1
		8.Balasore Industrial Estate(I)	61.3	54.0	61.5	52.9
3.	Berhampur	9.Brahmanagar(R)	62.6	57.0	53.5	54.4
		10.Girija market square(C)	70.8	80.5	77.3	74.6
		11.MKCG Medical & Hospital(S)	53.0	50.0	68.3	54.5
		12.Ankuli(I)	64.0	50.8	68.2	59.0
4.	Bhubaneswar	13.Nayapalli(R)	48.7	43.2	58.0	56.6
		14.Sahidnagar(C)	61.0	49.4	68.3	65.4
		15.Capital Hospital(S)	43.7	41.7	44.0	42.4
		16.Rasulgarh(I)	56.7	45.7	70.4	65.8

S1.	Towns/Cities	Monitoring Locations	Pre Da	shera	Dash	era Day
No			D	N	D	N
5.	Cuttack	17.Suryavihar(R)	66.0	71.3	71.6	68.2
		18.Badambadi(C)	76.0	76.8	79.6	73.2
		19.SCB Medical College & Hospital(S)	65.7	70.4	73.5	65.9
		20.Khapuria(I)	76.5	70.8	72.5	70.3
6.	Jharsuguda	21.Cox Colony(R)	72.6	60.6	76.8	75.6
		22.Jhanda Chowk(C)	69.6	70.6	74.2	72.3
		23.District Head Quarter Hospital(S)	65.1	70.2	73.2	67.1
		24.Bombay Chowk(I)	68.1	67.7	74.5	72.7
7.	Kalinganagar	25.Sapagadia(R)	72.8	70.1	77.9	64.2
		26.Gopabandhu Chowk(C)	73.9	66.4	86.2	83.1
		27.CHC Hospital, Jajpur Road(S)	64.2	60.2	68.5	64.6
		28.Kalinganagar Industrial Estate(I)	67.7	69.7	75.7	84.7
8.	Keonjhar	29.Baniapat Chowk(R)	69.6	64.2	73.7	68.9
		30.Punjabi Chowk(C)	72.0	71.1	79.7	71.1
		31.Govt.Hospital(S)	62.2	60.8	62.7	52.6
9.	Konark	32.Madhipur(R)	52.5	45.1	53.0	50.7
		33.NAC Market(c)	69.3	59.4	72.0	69.9
		34.Public Health Centre(S)	52.0	46.8	58.8	47.6
10.	Paradeep	35.Near Police Colony(R)	69.1	71.0	70.9	70.1
		36.LIC Building Jagatsinghpur(C)	77.3	70.8	81.8	71.3
		37.District Head Quarter Hospital(S)	67.2	66.9	78.2	69.5
11.	Puri	38.Kumutisahi, Old Sadar lane(R)	62.1	54.5	63.5	59.2
		39.Sri Mandir(C)	75.5	68.2	81.0	71.1
		40.District Head Quarter Hospital(S)	62.0	57.1	66.3	55.1
	Rayagada	41.Indira Nagar(R)	74.7	65.2	84.1	74.8
12.		42.Near Main Market(C)	76.0	72.0	81.9	73.8
		43. District Head Quarter Hospital (S)	73.1	70.3	69.3	65.3
		44.Near Jesco (I)	75.1	60.9	70.9	80.5
	Rourkela	45.Sector-6(R)	55.1	57.8	48.9	37.4
13.		46.Ambagan(C)	63.0	62.6	75.4	65.4
		47.IGH steel Township(S)	43.9	43.3	53.0	44.7
		48.RSP Sail(I)	58.3	57.6	58.3	52.8
14.	Sambalpur	49.Ainthapali(R)	53.0	57.0	53.8	54.9
		50.Golebazar(C)	75.3	66.8	72.9	69.5
		51.District Head Quarter Hospital(S)	59.9	55.5	55.0	47.5
		52.Bareipali(I)	63.6	66.5	65.2	59.9

Ambient Noise Standard (In Leq dB(A))

Category of area zone	Day Time	Night Time
Industrial area(I)	75	70
Commercial area(C)	65	55
Residential area(R)	55	45
Sience area(S)	50	40

N.B:-D-Day Time monitoring period (6PM to 10PM), N-Night Time monitoring period (10PM to 12.00 AM)

IMPACT OF DEEPAVALI CELEBRATION ON AMBIENT NOISE LEVEL

State Pollution Control Board, Odisha has conducted ambient noise monitoring at 53 locations in 14 towns/cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur town/cities covering Industrial, Commercial, Residential and Silence Zone in the day and night time to assess the impact of noise during celebration of Deepawali as well as in the pre Deepawali period to assess the impact. Out of 53 locations 11 locations are in Industrial zone, 14 locations are in commercial zone, 14 locations are in residential zone and 14 locations are in silence zone respectively. The findings of the monitoring are summarized below and results are presented in **Table-8.3**

I. Industrial Zone

The day time noise levels in the pre and during Deepavali are found below the prescribed standard of 75dB (A) Leq at all locations except 5 locations at Khapuria Industrial Estate, Cuttack, Kalinganagar Industrial Estate, IFFCO Ltd, Paradeep, Jesco Industrial Estate, Rayagada, and Bareipali Industrial estate, Sambalpur during Deepavali.

In night time the noise level in pre and during Deepavali are within the prescribed standard of 70dB (A) Leq at all locations except 5 locations at Khapuria Industrial Estate, Cuttack, Bombay chowk, Jharsuguda, Kalinganagar Industrial Estate, Kalinganagar, IFFCO Ltd, Paradeep, and Bareipali Industrial estate, Sambalpur during Deepavali.

II. Commercial Zone

The day time noise level in pre & on the day of Deepavali were remained above the prescribed standard of 65 dB(A) Leq at all the locations except at Sahidnagar, Bhubaneswar, Biju memorial Hospital, Paradeep and Bisra Chowk, Rourkela in pre Deepavali.

In night time the noise level in pre and during Deepavali were above the prescribed standard of 55dB (A) Leq at all locations.

III. Residential Zone

The day time noise level in residential zone exceeded the standard of 55 dB (A) Leq at all locations in pre & during Deepavali except at Sector-6, Rourkela in pre Deepavali.

The night time noise level in residential zone exceeded the standard of 45 dB (A) Leq at all locations in pre & during Deepavali.

IV. Silence Zone

The day time noise level were found to be exceeded the prescribed standard of 50 dB (A) Leq at all locations in pre & During Deepavali.

In night time noise level in pre & during Deepavali were found to be exceeded the prescribed standard of 40 dB (A) Leq at all locations.

Table-8.3 Noise level in dB(A) Leq at different location in pre Deepavali & Deepavali day during the year 2019

Sl.No	Towns/Cities	Monitoring Locations	Pre D	eepawali	Deepawali Day		
			D	N	D	N	
1	Angul	1.Amalapada(R)	64.1	56.3	70.5	60.3	
		2.Bazar chhak(C)	73.1	62.0	75.6	67.3	
		3.District Head Quarter Hospital(S)	66.3	55.4	67.3	55.2	
		4.Hakimpada(I)	62.0	55.8	67.4	59.3	

Sl.No	Towns/Cities	Monitoring Locations	Pre D	eepawali	Deepa	wali Day
			D	N	D	N
2	Balasore	5.Sahadevkhunta(R)	61.5	54.2	77.0	58.5
		6.Motiganj Bazar(C)	79.9	71.2	87.5	75.6
		7.District Head Quarter Hospital(S)	60.7	51.65	66.9	61.0
		8.Balasore Industrial Estate(I)	52.7	57.5	73.3	66.4
3	Berhampur	9.Brahmanagar(R)	55.2	52.4	72.9	61.8
		10.Girija market square(C)	76.2	67.1	76.4	71.1
		11.MKCG Medical & Hospital(S)	65.3	57.5	67.7	59.1
		12.Ankuli(I)	66.3	57.5	67.7	60.6
4	Bhubaneswar	13.Nayapalli(R)	66.3	58.0	67.3	60.5
		14.Sahidnagar(C)	61.3	58.5	70.2	61.1
		15.Capital Hospital(S)	52.3	54.4	64.2	59.2
		16.Rasulgarh(I)	58.6	51.5	69.1	61.3
5	Cuttack	17.Suryavihar(R)	66.0	65.3	73.8	70.6
		18.Badambadi(C)	74.8	73.7	75.8	77.0
		19.SCB Medical College(S)	68.2	62.9	68.8	67.2
		20.Khapuria(I)	70.9	67.6	75.2	75.2
6	Jharsuguda	21.Cox colony(R)	64.9	66.3	77.6	83.2
		22.Jhanda Chowk(C)	69.5	68.7	73.1	84.1
		23.Mangala Bazar(S)	66.2	66.5	75.1	80.8
		24.Bombay Chowk(I)	71.4	68.8	74.5	80.0
7	Kalinganagar	25.Sapagadia(R)	69.1	71.4	83.3	83.1
		26.Gopabandhu Chowk(C)	75.1	77.0	83.9	76.7
		27.CHC Hospital(S)	68.2	68.3	73.8	79.4
		28.Kalinga nagar industrial estate (I)	67.6	67.5	76.9	74.9
8	Keonjhar	29.Baniapat Chowk(R)	70.4	73.4	76.0	69.8
		30.Punjabi Chowk(C)	74.6	75.1	79.8	76.0
		31.Govt.Hospital(S)	66.0	62.8	71.5	63.8
9	Konark	32.Madhipur(R)	58.4	47.0	60.0	56.6
		33.NAC Market(C)	74.4	63.3	68.8	56.7
		34.Public Health Centre(S)	59.0	51.9	57.4	51.8
10	Paradeep	35.PPT Colony(R)	58.0	66.1	71.2	67.0
		36.Badapadia Market(C)	70.1	70.3	74.8	68.8
		37.Bijumemorial Hospital(S)	57.6	54.4	71.5	63.5
		38.IFFCO Ltd(I)	67.3	64.9	76.4	70.2
11	Puri	39.Kumutisahi, Old Sadar lane(R)	71.1	62.9	77.3	68.3
		40.Near Sri Mandir(C)	77.7	69.6	82.0	75.7
		41.District Head Quarter Hospital(S)	65.9	60.3	73.9	65.9
12	Rayagada	42.Indiranagar(R)	68.9	46.8	83.5	63.7
		43.Main market(C)	74.6	71.9	76.9	61.3
		44.District Head Quarter Hospital(S)	71.6	69.7	77.1	75.9
		45.Jesco(I)	67.6	66.4	79.5	66.8

Sl.No	Towns/Cities	Monitoring Locations		Pre I	Deepawali	Deepa	wali Day
				D	N	D	N
13	Rourkela	46.Sector-6(R)		51.0	49.1	70.1	56.6
		47.Bisra Chowk(C)		63.3	64.0	73.3	60.5
		48.IGH steel Township(S)		50.4	51.5	60.7	63.7
		49.RSP Sail(I)	64.6	40.2	67.3	69.3	
14	Sambalpur	50.Ainthapali(R)		57.2	57.9	71.0	65.4
		51.Golebazar(C)		75.3	72.3	79.9	82.6
		52.District Head Quarter Ho	spital(S)	52.7	51.0	67.3	72.8
		53.Bareipali(I)		65.2	62.7	75.1	72.8
		Ambient Noise Sta	ındard(In Leq d	B(A))			
Category	y of area zone		Day Time		Nig	tht Time	
Industria	ıl area(I)	75		70			
Commer	cial area(C)	65		55			
Resident	ial area(R)	55		45			
Sience ar	rea(S)		50			40	

N.B:-D-Day Time monitoring period (6PM to 10PM), N-Night Time monitoring period (10PM to 12 AM)

IMPACT OF DEEPAWALI CELEBRATION ON AMBIENT AIR QUALITY

State Pollution Control Board, Odisha has monitored the Ambient Air Quality on pre & during Deepawali at 38 locations in 17 town/cities i.e. at Angul, Balasore, Berhampur, Bhubaneswar, Bonaigarh, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rajgangpur, Rourkela, Sambalpur & Talcher with respect to parameters like SO₂, NO₂, PM₁₀ (at 38 locations) & PM_{2.5} (at 30 locations) to assess the impact of bursting of fire crackers on the surrounding ambient air quality.

The SO_2 & NO_2 values on pre & during Deepavali remained below the prescribed limit i.e $80~\mu g/m^3$ (for both SO_2 & NO_X on 24-hourly average basis) at all 38 locations. The maximum SO_2 value i.e., $35.6~\mu g/m^3$ observed at Modipara, Sambalpur and maximum NO_2 value i.e., $48.5~\mu g/m^3$ observed at Girija market square, Berhampur. The respirable particle matter (PM_{10}) values were below prescribed limit $100~\mu g/m^3$ on 24-hourly average basis at 04 locations on the day of Deepavali and at 28 locations on pre Deepavali out of 38 locations whereas $PM_{2.5}$ values were below prescribe limit $60~\mu g/m^3$ on 24-hourly average basis at 10 locations on the day of Deepavali and at 25 locations on pre Deepavali out of 30 monitoring locations (08 locations were not monitored on pre and during Deepavali). On the day of Deepavali, maximum PM_{10} & $PM_{2.5}$ value i.e., $266~\mu g/m^3$ and $164~\mu g/m^3$ respectively observed at Modipada, Sambapur. The concentration of gaseous pollutants SO_2 & NO_2 , Respirable particulate matter (PM_{10}) & fine particulate matter ($PM_{2.5}$) were shown higher value on the day of Deepavali than the corresponding pre Deepavali value of the monitoring at all locations shows the impact of bursting of fire crackers on the air quality.

The monitoring results are given in following Table no-8.4.

Table-8.4 Ambient Air Quality status of major cities/towns in the pre & during Deepavali-2019

	Sl.no	Towns/cities	Monitoring Loca-			Parameter Monitored					
ı			tions		$\overline{\mathrm{SO}_2}$		$\overline{\mathrm{NO}_2}$]	PM_{10}		$PM_{2.5}$
١					Values a	are expressed in microgram per cubic meter					r
ı				PRE	DURING	PRE	DURING	PRE	DURING	PRE	DURING
ſ	1	Angul	1. RO SPCB Building	9.2	19.1	26.3	31.2	86	189	48	84
١			2. Nalco Township	9.9	15.4	21.6	34.1	102	222	41	60

Sl.no	Towns/cities	Monitoring Loca-				Parameter	Monito	ored		
		tions		$\overline{\mathrm{SO}_2}$		$\overline{\mathrm{NO}_2}$]	PM ₁₀]	$\overline{PM}_{2.5}$
				Values a	are exp	ressed in n		am per cubi		
			PRE	DURING	PRE	DURING	PRE	DURING	PRE	DURING
2	Balasore	3.Ganeswarpur	BDL	BDL	11.0	12.0	85.0	103.0	33.0	62.0
		4.DIC Office Angaragadia	BDL	BDL	10.6	12.9	81.0	113.0	30.0	70.0
		5.Rasalpur Industrial Estate		9.0	11.3	13.6	87.0	115.0	42.0	75.0
3	Berhampur	6.Brahmanagar	4.5	10.5	25.6	45.6	52	92	24	45
		7.Girija market square	7.4	14.2	30.2	48.5	72	110	31	55
		8.MKCG Medical College& Hospital	BDL	8.5	22.2	40.2	62	88	28	44
		9.Industrial Estate, Ankuli	5.2	10.2	28.2	50.2	65	104	20	65
4	Bhubaneswar	10.SPCB Office Building	BDL	4.3	18.5	20.2	86	218	29	110
		11.IRC Nayapalli	BDL	4.9	13.7	22.1	86	234	27	129
		12.Capital Police Station	BDL	7.1	15.8	25.0	82	206	21	37
		13.Patrapada	BDL	4.3	14.4	26.0	70	164	21	34
		14.Chandrasekharpur	BDL	5.7	14.2	21.2	97	244	29	83
		15.Palasuni water works	BDL	6.9	13.7	21.2	80	110	17	40
5	Bonaigarh	16.Govt. Hospital Bonai	8.8	12.1	13.6	19.6	123	177	70	83
6	Cuttack	17. PHD Office near Barabati Stadium	BDL	4.2	18.6	19.1	73	112	NM	NM
		18. RO SPCB Build- ingSuryanagar	BDL	9.9	24.4	42.3	75	159	38	94
		19.Hotel Bishal Inn near Traffic Tower Badambadi	4.2	8.1	19.6	31.1	87	235	34	97
7	Jharsuguda	20. RO Building, Cox Colony, Babubagicha	8.1	30.6	13.2	44.8	75	167	34	97
8	Kalinganagar	21. RO SPCB Building	BDL	4.8	16.7	26.8	116.1	226	NM	NM
		22. BRPL Guest House	BDL	4.9	16.5	25.9	71.0	179	NM	NM
9	Keonjhar	23 RO SPCB Building	BDL	BDL	15.1	25.1	108	212	NM	NM
10	Konark	24. Konark Police Station	BDL	BDL	12.9	13.8	68.0	77	nm	nm
11	Paradeep	25. STP Building, IFFCO,	18.9	26.2	10.0	18.1	119.0	139	NM	NM
		26. PPL Guest House,	16.2	24.9	9.9	17.9	97.0	134	NM	NM
		27. PPT Staff Quarters,	15.8	26.6	9.9	19.2	91.0	139	NM	NM
12	Puri	28.Town Police Station	BDL	5.3	14.9	22.4	91.0	163	13.0	91
13	Rayagada	29. RO SPCB Building	4.9	11.6	13.1	21.6	26	112	13	91
		30.LPS High School	4.2	9.4	12.3	20.5	32	83	16	61

Sl.no	Towns/cities	Monitoring Loca-				Parameter	Monito	ored		
		tions		SO_2	NO_2		PM ₁₀		$\mathrm{PM}_{2.5}$	
				Values a	are exp	ressed in m	nicrogra	am per cubi	ic mete	r
			PRE	DURING	PRE	DURING	PRE	DURING	PRE	DURING
14	Rajgangpur	31.DISIR Rajgangpur	13.7	18.0	18.9	22.1	108	132	72	93
15	Rourkela	32. RO SPCB Building	10.6	15.9	18.9	21.9	123	178	69	88
		33.IDL Police Outpost	6.0	10.3	10.8	16.3	90	160	72	93
		34.IDC Kalunga	11.9	15.4	22.9	24.8	110	124	33	45
		35. Kuarmunda Hospital,	10.2	13.6	15.8	21.9	143	199	72	93
16	Sambalpur	36.Modipara	5.5	35.6	22.5	46.2	38.0	266	29	164
17	Talcher	37.Talcher Thermal	8.8	13.9	28.2	31.9	79	116	42	53
	38 MCL area, Talcher		9.1	13.7	27.0	35.0	117	130	46	51
	Standard on 24	thrly avg. basis		80	80		100		60	

N.B-BDL-Below Detection Limit,BDL value for SO₂ ≤4 µg/m³, NM-Not Monitored

8.4.2 Impact of Immersion of Idols in Water Bodies

Durga Puja is celebrated in a big way in most of the cities of Odisha. Generally the idols are immersed on a single day at the designated sites of the rivers flowing along the cities. To minimize the impact of idol immersion on the water quality, the Board has taken following steps as recommended in the Guideline for idol immersion.

- Informed all the District Collectors and authorities of Urban Local Bodies of the State prior to Ganesh Puja and Durga Puja to implement the Guidelines of immersion in their jurisdiction.
- Created public awareness through public notice on safe idol immersion practices in local newspapers and in Board's website and through public address system.
- Made several meetings with the local bodies / authorities, Puja Committee Organizers to create awareness on ill impacts of idol immersion in water bodies.
- Coordinated with the local bodies/ authorities for construction of temporary immersion ponds near rivers as prescribed in the Guideline.
- Idols are generally immersed in flowing water which makes the rivers as the ideal choice. In such

Fig. 1 Appeal to Public to observe pollution free Ganesh puja, Durga Puja, Laxmi Puja and Kali Puja through Public Notice on Newspapers

cases, as per the Guideline, either temporary ponds having earthen bunds along the river bank for use as idol immersion spots had been constructed or a part of the river bed had been cordoned to demarcate it as idol immersion site. The bottom of the pond in either cases had been lined with removable synthetic liner well in advance of the idol immersion. The said liner along with remains of the idols were removed within 48 hours of idol immersion by the local bodies and disposed in the municipal dumpsites. The water of the temporary ponds was then treated with lime and allowed to settle prior to discharge into rivers.

• In some urban local bodies, though temporary immersion ponds were not constructed specifically for idol immersion purposes, the left-overs of idol immersion were removed by the local peoples within 48 hours of idol immersion and disposed at the municipal dumpsites.

Temporary Idol immersion pond created on the bank of Kuakhai river along Bhubaneswar.

- Conducted water quality assessment of Kuakhai river and Daya river along Bhubanewar city, Kathajodi river along Cuttack city and Mangala river along Puri city,
- Water quality status was assessed with respect to the physico-chemical parameters as recommended in the Guideline, such as, pH, Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Conductivity (EC), Turbidity, Total Dissolved Solids (TDS), Total Solids (TS) and metals (cadmium, chromium, iron, lead, zinc and copper.
- Water quality status is evaluated by comparing with the tolerance limits for Class A (Drinking water source without conventional treatment but after disinfection) and Class C (Drinking water source with conventional treatment followed by disinfection) Inland surface water quality. The variation in concentration of different parameters at the immersion sites are compared with the values at the upstream and downstream of immersion sites to assess the impact of idol immersion.

Obervation from the water quality data.

- Turbidity and Suspended solids in Kathajodi river along Cuttack city and in Daya river along Bhubaneswar during-immersion period are observed to be higher in comparison to the pre- and post-immersion period. This may be attributed to the increase in suspended materials on the water body during immersion of idols whereas, no significant change was observed in case of turbidity and Suspended solid values in Kuakhai river along Bhubaneswar and Mangala river along Puri city.
- Dumping of puja materials and left-overs into the water body depletes the oxygen level of water body and therefore there was increase in BOD and COD values at the immersion site on the day of idol immersion. During post-immersion monitoring, the river water rejuvenated itself due to

continuous flow of water, which is reflected by lower BOD values and other parameters in Kuakhai and Daya rivers along Bhubaneswar city. However, BOD values of the river water at all these monitoring locations remained well within the tolerance limit of 3.0 mg/l during all the three phases of monitoring.

- During immersion period, increase in the conductivity and total dissolved solids at the immersion site in comparison to the upstream and downstream stations may be ascribed to the leaching of puja materials and idols immersed in the water body.
- Variation in concentrations of heavy metals such as cadmium, lead, copper and hexavalent chromium during the period of study was not significant.
- Concentration of heavy metals such as cadmium, chromium, iron, lead, zinc and copper in both
 during-immersion and post-immersion period remain much below the tolerance limit for most
 beneficial uses of water. This may be correlated to the very slow leaching process of heavy metals
 from the synthetic paints and other materials used in the idols in natural conditions of water bodies.
- Further, because of the preventive measures taken by the district administration not to allow the water of idol immersion ponds to flow into the river, water quality of downstream stations during-immersion and Post-immersion periods mostly remained well within the tolerance limits of the designated use.

From the study, it may be concluded that all the parameters specified for the study remained within the tolerance limit for designated class of the river i.e. Class-C (Drinking water source with conventional treatment followed by disinfection) even after immersion of idols excepting few cases. Concentration of heavy metals such as cadmium, chromium, iron, lead, zinc and copper remain much below the tolerance limits and no significant impact is exerted on the heavy metal concentration of the water bodies due to immersion of idols. Though some of the physical and chemical parameters like Turbidity, electrical conductivity, TDS and BOD show higher values during-immersion period in comparison to the pre-and post-immersion period, but still remained much below the tolerance limit. Further, immersion of idols in the temporary immersion ponds has minimized the probability of contamination of the main course of river water.

8.4.3 Impact of mass bathing during Kartika Purnima on Water quality of Mahanadi and Kathajodi river (Cuttack Stretch)

To assess the impact of mass bathing during Kartika Purnima on water quality of river Mahanadi and Kathajodi along the Cuttack city, the Board had conducted a water quality monitoring study at the major bathing ghats on Pre- (07.11.2019), During- (12.11.2019) and Post-(26.11.2019) Kartika Purnima. Water quality was assessed with respect to the physico-chemical parameters like pH, Dissolved oxygen (DO), Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and bacteriological parameters e.g. total coliform (TC) and fecal coliform (FC).

Comparison of the water quality data with the bathing water quality standard prescribed under IS: 2296 (1982) and organized bathing water quality standard laid down by MoEF & CC (* MoEF Notification G.S.R. No. 742(E) Dt. 25th September, 2000), it has been revealed that, pH remained within the permissible range 6.5-8.5 at all the monitored locations. Dissolved oxygen remained well above the permissible limit of 5.0 mg/l on all occasions.

Though an increase in BOD level at the bathing ghats are observed during the Kartika Purnima, still it is within prescribed limit of 3.0 mg/l during the post- Kartika Purnima period. However, significant impact on the bacteriological quality with respect to total coliform and fecal coliform are observed at the bathing ghats of Mahanadi river and Kathajodi river on the day of Kartika Purnima due to mass bathing and other human activities. Water quality data with respect to BOD, TC and FC in Pre-, During- and post-Kartika Purnima period is given in Table-8.5.

Table-8.5 Water quality with respect to BOD, TC and FC at the bathing ghats of Mahanadi river and Kathajodi rivers on Pre-, During- and Post-Kartika Purnima -2019

	g	BOD (mg/l)				TC (MPN/ 100ML)			FC (MPN/ 100ML)		
SI. No.	Location	Pre (07.11.2019)	During (12.11.2019)	Post (26.11.2019)	Pre (07.11.2019)	During (12.11.2019)	Post (26.11.2019)	Pre (07.11.2019)	During (12.11.2019)	Post (26.11.2019)	
Ma	ahanadi River										
1	Mundali	0.4	0.8	0.7	490	790	790	68	170	170	
2.	Chahata Ghat	1.1	1.8	0.9	160000	160000	92000	92000	92000	35000	
3.	Gadagadia Ghat	0.8	1.9	1.2	24000	160000	92000	4900	160000	24000	
4.	Zobra	0.4	0.8	0.9	28000	54000	43000	6400	17000	14000	
5.	Kanehipur	0.8	1.3	0.8	2200	3300	2400	1100	1300	1300	
Ka	thajodi River										
6.	Naraj	0.9	0.7	1.0	1700	2200	490	490	490	130	
7.	Puri Ghat	1.1	1.4	1.2	160000	160000	54000	24000	92000	13000	
8.	Khan Nagar	1.2	1.8	1.9	4900	17000	17000	2200	4900	4600	
9	Urali	1.8	1.8	2.0	4900	7900	4600	2200	2200	2100	
(IS	lerance limit for Class B S-2296-1982) / P) Rule, 1986 *		3.0			500			00 (Desiral 0 (Permis		

^{*} MoEF Notification G.S.R. No. 742(E) Dt. 25th September, 2000

8.5 OTHER ONGOING PROJECTS

8.5.1 Survey and Monitoring of Ground and Surface Water Quality with respect to Fluoride Content around Phosphatic Fertilizer Units, Paradeep

The Board has conducted a survey on ground water and surface water quality in and around phosphatic fertilizer plants of Paradeep e.g. M/s Indian Farmers Fertiliser Corporation (IFFCO) and M/s Paradeep Phosphates Ltd. (PPL). During 2019, surface water sample were collected from Atharabanki creek from different locations around these two fertilizer plants. Ground water samples were collected from the test wells of both the plants and from three locations outside the plant. Water quality monitoring was done on quarterly basis during the months of February, May, August and November.

The fluoride concentration in Atharabanki creek at the upstream of the fertilizer plants varies within 0.418 – 8.28 mg/l. As the flow of Atharabanki creek depends upon the tidal condition of the sea, it is not unidirectional, and therefore, wide fluctuation in fluoride content is observed in Atharabanki creek water. The fluoride concentration in Atharabanki creek varies within 0.643-6.25 mg/l. The fluoride concentration in creek water at Bhim Bhoi colony varies within 1.42 - 6.25 mg/l, near entrance gate to Paradeep Port Township varies within 1.61 - 4.84 mg/l, near conveyor belt of IFFCO varies within 1.83 – 4.15 mg/l. Whereas, the fluoride concentration in the creek water near fishing jetty varies within 0.643 - 1.77 mg/l.Near fishing jetty the water quality is greatly influenced by sea water.

Fluoride concentration in the surface run-off drain near Gypsum pond of M/s PPL near Shyamakoti bridge varied within 2.09 – 7.11 mg/l, whereas, Fluoride concentration in the surface run-off drain near Loknath colony varied within 0.445-0.82 mg/l.

The test wells around M/s IFFCO exhibit fluoride concentration within 0.141-3.09 mg/l, whereas, those around M/s PPL exhibit fluoride concentration 0.241- 1.06mg/l.

Fluoride content in ground water samples collected from outside of the plant area i.e. at Badapadia, varies within 1.31-1.47 mg/l, whereas in Musadiha, the fluoride concentration varies within 0.340 – 0.430 mg/l and inside the Shiv temple, it varies within 0.765 – 1.10 mg/l. Fluoride content in gruond water monitored at public locations remained within the acceptable limit of 1.5 mg/l.

8.6 LIBRARY AND INFORMATION SERVICE

Board's Library acts as a document repository and referral centre for dissemination of information in the field of environmental science and engineering and its associated areas. Apart from Board employees, the Library is also used by research scholars of different Universities and technical Colleges, institutions in Orissa, various NGOs and Social activists. The Library has a collection of Books, Reports, Audio Visual materials, Maps, Photographs, Topo sheets, River Basin Atlas and soft copies of different aspects of environmental science and engineering. During 2019-20, the library has received 58 Books, 78 Reports, 18 Journals, 11 Newspaper and 02 Magazines. 1500 News clippings on environmental issues from various sources of information have been collected for reference of the users. 03 nos of outside scholars have been enrolled as library members on payment basis during the period. Besides news clipping, 493 pages of reprographic service to different outside members have been provided on payment basis.

8.7 TRAINING ATTENDED BY BOARD OFFICIALS

The Board has deputed its officials on various training programmes, seminars and workshops for the upgradation of their knowledge and exposure to recent technological advancements in the field of pollution control and environment protection issues.

The list of officials of the Board along with name of training programmes / workshops / seminars in various institutions attended during 2019-20 is given in Table - 8.6.

Table - 8.6 Training Programme attended by officials and organized / sponsored by of the Board A. Training / Workshop / Seminar attended by officials of the Board

Sl. No.	Name (Sh/Shri) & Designation	Date	Title of the Training / Workshop / Seminar	Conducted by	Venue
1	Dr. P. K. Prusty, Chief Env. Engineer (Resource Person)	15 th April, 2019	One-day workshop on Environmental Social Management System	Odisha Forestry Sector Development Project, SFTRI Campus, Ghatikia, Bhubaneswar	Odisha Forestry Sector Development Project, SFTRI Campus, Ghatikia, Bhubaneswar
2	Dr. N. R. Sahoo, Chief Env. Engineer (Resource Person)	15 th April, 2019	One-day workshop on Environmental Social Management System	Odisha Forestry Sector Development Project, SFTRI Campus, Ghatikia, Bhubaneswar	Odisha Forestry Sector Development Project, SFTRI Campus, Ghatikia, Bhubaneswar
3	Dr. B. N. Bhol, Chief Env. Engineer (Resource Person)	15 th April, 2019	One-day workshop on Environmental Social Management System	Odisha Forestry Sector Development Project, SFTRI Campus, Ghatikia, Bhubaneswar	Odisha Forestry Sector Development Project, SFTRI Campus, Ghatikia, Bhubaneswar

Sl. No.	Name (Sh/Shri) & Designation	Date	Title of the Training / Workshop / Seminar	Conducted by	Venue
4	S. S. Mishra, Env. Scientist	6 th – 7 th June, 2019	Training programme & Exposure Visit on "Framing Strategies for Construction and Demolition (C & D) Waste and Dust Management for Clean Air in the Non-attainment Cities"	Centre for Science & Environment (CSE), New Deldi	Centre for Science & Environment (CSE), New Deldi
5	Er. Narottam Be- hera, Env. Engineer, RO, Bhubaneswar	6 th – 7 th June, 2019	Training programme & Exposure Visit on "Framing Strategies for Construction and Demolition (C & D) Waste and Dust Management for Clean Air in the Non-attainment Cities"	Centre for Science & Environment (CSE), New Deldi	Centre for Science & Environment (CSE), New Deldi
6	Dr. N. R. Sahoo, Chief Env. Engineer (Resource Person)	29 th June, 2019	Seminar on "Responsible Mining"	Bhubaneswar-Sukinda Chapter, The Mining En- gineering Association of India	Hotel Pal Heights, Jayadev Vihar, Bhubane- swar
7	Dr. N. R. Sahoo, Chief Env. Engineer (Resource Person)	29 th June, 2019	Workshop of OFSDP-ll on Environmental & Social Management System Framework (ESMSF) and Sched- ule Tribe and Forest Department Planning Framework	(OFSDP), Ghatikia, Bhu-	Odisho Forestry Secior Development project (OFSDP), Ghatikia, Bhu- baneswar
8	Bhabagrahi Jena, SSA, Central Labo- ratory	10 th – 12 th July, 2019	Workshop on "Design, Organise and Manage- ment of Water Quality Monitoring"	Central Pollution Control Board, Regional Directorate (South), Bengaluru	Central Pollution Control Board, Regional Directorate (South), Bengaluru
9	Dr. (Mrs.) U. R. Pat- tnaik, Env. Scientist, Central Laboratory	26 th August, 2019	Training Programme on "Quick Hygienic Survey of Rivers"	CPCB, New Delhi	BITS Pilani, Hyderabad Campus
10	Dr. (Mrs.) U. R. Pattnaik, ES, Central Laboratory	11 th - 14 th September, 2019	Training programme on "Laboratory Quality Management System and Internal Audit as per ISO/IEC 17025- 2017 (Latest Revision)"	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubaneswar-751024	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubane- swar-751024
11	Dr. S. K. Mohanty, ES, Central Labora- tory	11 th - 14 th September, 2019	Training programme on "Laboratory Quality Management System and Internal Audit as per ISO/IEC 17025- 2017 (Latest Revision)"	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubaneswar-751024	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubane- swar-751024
12	Dr. S. S. Pati, AES, ICZMP	11 th - 14 th September, 2019	Training programme on "Laboratory Quality Management System and Internal Audit as per ISO/IEC 17025- 2017 (Latest Revision)"	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubaneswar-751024	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubane- swar-751024

Sl. No.	Name (Sh/Shri) & Designation	Date	Title of the Training / Workshop / Seminar	Conducted by	Venue
13	Dr. (Mrs.) S. Mishra, AES, ICZMP	11 th - 14 th September, 2019	Training programme on "Laboratory Quality Management System and Internal Audit as per ISO/IEC 17025- 2017 (Latest Revision)"	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubaneswar-751024	CIPET: Institute of Plastics Technology (IPT), Patia, Bhubane- swar-751024
14	Dr. Nihar Ranjan Sahoo, Chief Env. Engineer	13 th – 21 st September, 2019	Training Programme on "Best Practices in Environmental Govern- ance"	Centre for Science and Environment, New Delhi-110062	New Delhi and Sweden
15	Er. Rajat Kumar Sethi, Asst. Env. Engineer, Regional Office, Bhubaneswar	16 th – 20 th September, 2019	Training Programme on "Design, Operation, Maintenance and Per- formance of STP & CB- MWTFs"	Engineering Staff College of India (ESCI), Hydera- bad sponsored by CPCB	Engineering Staff College of India (ESCI), Hydera- bad
16	Er. R. N. Prusty, Sr. Env. Engineer (L-I)	19 th September, 2019	Interactive Indo-Euro- pean Meet on Resource Eficiency in the ALu- minium Industry with a Focus on Effective Utilization of Red Mud (Bauxite Residue)	MoEF&CC, JNARDDC & EU	Hotel Taj Mansingh (Taj Mahal), New Delhi
17	Dr. L. D. Pal, Env. Scientist	23 rd –27 th September, 2019	Training Programme on "Planning, Design- ing, Monitoring and In- spection of WWTPs and APC measures"	National Productivity Council, Chennai spon- sored by CPCB	National Productivity Council, Chennai
18	Dr. S. S. Pati, Asst. Env. Scientist, Central Laboratory	23 rd – 27 th September, 2019	Training Programme on "Analysis of Pesti- cides & Other Organic Chemicals in Environ- mental Samples"	CSIR-IITR, Lucknow, Uttar Pradesh sponsored by CPCB	CSIR-IITR, Lucknow, Uttar Pradesh
19	Soumya Ranjan Mallick, Sr. Scientific Asst., Central Lab, Bhubaneswar	23 rd – 27 th September, 2019	Training Programme on "Analysis of Pesti- cides & Other Organic Chemicals in Environ- mental Samples"	CSIR-IITR, Lucknow, Uttar Pradesh sponsored by CPCB	CSIR-IITR, Lucknow, Uttar Pradesh
20	Dr. A. K. Swar, Chief Env. Engineer	24 th – 26 th September, 2019	International Environ- mental Monitoring Event – CEM India Con- ference 2019	Energy Policy Institute at the University of Chicago (EPIC), New Delhi	New Delhi
21	Dr. A. K. Mallick, Env. Scientist, Re- gional Officer, Angul	24 th – 26 th September, 2019	International Environ- mental Monitoring Event – CEM India Con- ference 2019	Energy Policy Institute at the University of Chicago (EPIC), New Delhi	New Delhi
22	H. N. Nayak, Env. Scientist, Regional Officer, Rourkela	24 th – 26 th September, 2019	International Environ- mental Monitoring Event – CEM India Con- ference 2019	the University of Chicago	
23	Er. Subhadarshini Das, Env. Engineer	14 th – 18 th October, 2019	Training Programme on "Air Quality Monitor- ing (Ambient & Source) and CAAQM"	ICMR-Regional Occupa- tional Health Centres(S), Bengaluru sponsored by CPCB	Regional Occupational Health Centre (ICMR), Bangaluru

Sl. No.	Name (Sh/Shri) & Designation	Date	Title of the Training / Workshop / Seminar	Conducted by	Venue
24	Er. Babita Singh, Env. Engineer, Regional Office, Rourkela	14 th – 18 th October, 2019	Training Programme on "Air Quality Monitor- ing (Ambient & Source) and CAAQM"	ICMR-Regional Occupational Health Centres(S), Bengaluru sponsored by CPCB	Regional Occupational Health Centre (ICMR), Bangaluru
25	Manoranjan Pradhan, SSA, Regional Office, Sambalpur	14 th – 18 th October, 2019	Training Programme on "Monitoring of PM _{2.5} and Other Notified Air Pollutants as per revised NAAQS, 2009"	CSIR-Indian Institute of Toxicology Research Lucknow,Lucknow, Uttar Pradesh sponsored by CPCB	CSIR-Indian Institute of Toxicology Research Lucknow,Lucknow, Uttar Pradesh
26	Er. P. K. Behera, Regional Officer, Kalinganagar	14 th – 18 th October, 2019	Training Programme on "Effective Management of Hazardous Waste In- cluding E-waste-Co-Pro- cessing and Co-Inciner- ation-Hazardous Waste Rules & Field Visits"	International Institute of Waste Management (IIWM), Bengaluru spon- sored by CPCB	International Institute of Waste Management (IIWM), Bengaluru
27	Er. B. K. Sethi, Env. Engineer	14 th – 18 th October, 2019	Training Programme on "Effective Management of Hazardous Waste In- cluding E-waste-Co-Pro- cessing and Co-Inciner- ation-Hazardous Waste Rules & Field Visits"	International Institute of Waste Management (IIWM), Bengaluru spon- sored by CPCB	International Institute of Waste Management (IIWM), Bengaluru
28	Er. R. Priyadarshi- ni, Env. Engineer, Regional Office, Cuttack	21 st – 23 rd October, 2019	Training Programme on "Noise Pollution, Measurement, Regula- tion & Implementation"	ICMR-Regional Occupational Health Centres(S), Bengaluru sponsored by CPCB	Regional Occupational Health Centre (ICMR), Bangaluru
29	Ms. Anusha Ekka, Asst. Env. Scientist, Regional Office, Jharsuguda	21 st – 23 rd October, 2019	Training Programme on "Noise Pollution, Measurement, Regula- tion & Implementation"	ICMR-Regional Occupational Health Centres(S), Bengaluru sponsored by CPCB	Regional Occupational Health Centre (ICMR), Bangaluru
30	Er. Narottam Be- hera, Env. Engineer, Regional Office, Bhubaneswar	11 th – 15 th November, 2019	Training Programme on "Occupational Health & Safety Management System (OHSMS) 18001: 2007 - Audit Training"	National Institute of Occupational Health, Ahmedabad sponsored by CPCB	NIOH, Ahmedabad
31	Er. Twinkle Mo- hanty, Asst. Env. Engineer, Regional Office, Paradeep	11 th – 15 th November, 2019	Training Programme on "Occupational Health & Safety Management System (OHSMS) 18001: 2007 - Audit Training"	National Institute of Occupational Health, Ahmedabad sponsored by CPCB	NIOH, Ahmedabad
32	Er. R. K. Mohanty, Asst. Env. Engineer, Regional Office, Angul	18 th – 22 nd November, 2019	Training Programme on "Integrated Waste Management – Municipal Waste, Plastic Waste, Bio-Medical Waste, Bio Composting, Landfill Gas Management & Control and Waste to Energy with Field Visit"	Engineering Staff College of India, Hyderabad spon- sored by CPCB	Engineering Staff College of India, Hyderabad

S1.	Name (Sh/Shri) &	Date	Title of the Training /	Conducted by	Venue
33	Designation Er. C. S. Chauhan, Asst. Env. Engineer, Regional Office, Angul	18 th – 22 nd November, 2019	Workshop / Seminar Training Programme on "Integrated Waste Management – Municipal Waste, Plastic Waste, Bio-Medical Waste, Bio Composting, Landfill Gas Management & Control and Waste to Energy with Field Visit"	Engineering Staff College of India, Hyderabad spon- sored by CPCB	Engineering Staff College of India, Hyderabad
34	Er. P. C. Rauta, Sr. Env. Engineer	20 th – 22 nd November, 2019	Training Programme on "Identification and Assessment of Contam- inated Sites"	The Energy and Resources Institute (TERI), New Delhi sponsored by CPCB	TERI- Retreat, Gurugram, Haryana
35	Er. Deepesh Biswal, Asst. Env. Engineer	20 th – 22 nd November, 2019	Training Programme on "Identification and Assessment of Contam- inated Sites"	The Energy and Resources Institute (TERI), New Delhi sponsored by CPCB	TERI- Retreat, Gurugram, Haryana
36	Dr. A. K. Swar, Chief Env. Engineer (C) (Panel Discussion & Presentation)	21 st – 23 rd November, 2019	Training Programme on "Capacity Building & Awareness Programme on Aluminum"	Jawaharlal Nehru Aluminium Research Development & Design Centre (JNARDC), Nagpur	Hotel Mayfair, Bhubane- swar
37	Er. R. N. Prusty, Sr. Env. Engi- neer(L-I)	21 st – 23 rd November, 2019	Training Programme on "Capacity Build- ing & Awareness Pro- gramme"	Jawaharlal Nehru Aluminium Research Development & Design Centre (JNARDC), Nagpur	Hotel Mayfair, Bhubaneswar
38	Dr. Anup Kumar Mallick, Regional Officer, Angul	4 th – 6 th December, 2019	Training Programme on "Indoor & Outdoor Air Pollution, Standards and Impact on Human Health – Case Studies"	Postgraduate Institute of Medical Education & Re- search, Chandigarh spon- sored by CPCB	PGIMER, Chandigarh
39	Dr. Sohan Giri, Regional Officer, Cuttack	4 th – 6 th December, 2019	Training Programme on "Indoor & Outdoor Air Pollution, Standards and Impact on Human Health – Case Studies"	Postgraduate Institute of Medical Education & Re- search, Chandigarh spon- sored by CPCB	PGIMER, Chandigarh
40	Dr. C. P. Das, Env. Scientist	9 th – 11 th December, 2019	Training Programme on "Global Warming, Climate Change and Disaster Management – Future Perspective"	TERI School of Advanced Studies, New Delhi spon- sored by CPCB	TERI School of Advanced Studies, New Delhi
41	Er. Soumendra Mohanty, Asst. Env. Engineer, Regional Office, Angul	9 th – 11 th December, 2019	Training Programme on "Global Warming, Climate Change and Disaster Management – Future Perspective"	TERI School of Advanced Studies, New Delhi spon- sored by CPCB	TERI School of Advanced Studies, New Delhi
42	Er. B. K. Bhoi, Asst. Env. Engineer, Regional Office, Rourkela	9 th – 11 th December, 2019	Training Programme on "Sampling and Analysis of Hazardous and oth- er Wastes listed under HOWM Rules, 2016"	SGGSI&T, Nanded, Maharashtra sponsored by CPCB	Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded, Maharashtra

Sl. No.	Name (Sh/Shri) & Designation	Date	Title of the Training / Workshop / Seminar	Conducted by	Venue
43	Er. D. K. Sahoo, Asst. Env. Engineer, Regional Office, Rourkela	9 th – 11 th December, 2019	Training Programme on "Sampling and Analysis of Hazardous and oth- er Wastes listed under HOWM Rules, 2016"	SGGSI&T, Nanded, Maharashtra sponsored by CPCB	Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded, Maharashtra
44	Er. Simanchal Dash, Sr. Env. Engi- neer(L-I)	11 th – 13 th December, 2019	Training Programme on "Air Quality Model- ling and Source Appor- tionment"	The Energy and Resources Institute (TERI), New Delhi sponsored by CPCB	TERI- Retreat, Gurugram, Haryana
45	Er. D. K. Dash, Regional Officer, SPC Board, Sambalpur	12 th - 14 th December, 2019	2 nd International Conference on Processing and Characterization of Materials	National Institute of Technology, Rourkela sponsored by CPCB	National Institute of Technology, Rourkela
46	Er. D. Sethi, Dy. Env. Engineer, Regional Office, Berhampur	January, 2020	Training Programme on "Carbon Seques- tration Estimation and Nitrogen Footprint As- sessment"	Indian Institute of Technology, Roorkee sponsored by CPCB	Indian Institute of Technology, Roorkee
47	Dr. P. K. Mohapatra, Regional Officer, Balasore	13 th - 17 th , Jan- uary, 2020	Training Programme on "Environmental Management in Tanner- ies, Sponge Iron Plants, Slaughter Houses, Pharma and Chemical Sector"	Indian Institute of Technology Roorkee sponsored by CPCB	Indian Institute of Technology, Roorkee
48	Er. S. Marandi, Asst. Env. Engineer, Regional Office, Balasore	20 th – 24 th Jan- uary, 2020	Training Programme on "Cleaner Technolo- gies & Waste Minimi- zation for Prevention of Industrial Pollution and Four R's – Reduce, Re- use, Recycle and Recov- er – Case Studies"	National Sugar Institute (NSI), Kanpur sponsored by CPCB	National Sugar Institute (NSI), Kanpur
49	Dr. (Mrs.) U. R. Pat- tnaik, Env. Scientist, Central Laboratory	30 th January, 2020	Workshop on "Restoration of Polluted Water Bodies"	Central Pollution Control Board, Delhi	Indian Habitat Centre (IHC), Delhi
50	Er. Biswakanta Pradhan. Asst. Env. Engineer, Regional Office, Sambalpur	3 rd – 7 th Febru- ary, 2020	Training Programme on "Environmental Data Interpretation, Compi- lation, Analysis, Pres- entation and Report- ing-Hands-on Training and Case Study"	Indian Statistical Institute (ISI), Delhi sponsored by CPCB	Indian Statistical Institute (ISI), Delhi
51	Er. R. N. Prusty, Sr. Env. Engineer(L-I)	3 rd – 7 th Febru- ary, 2020	Training Programme on "Environmental Leg- islations, Interpretation, Enforcement, Legal and Statutory Requirements – Case Studies"	National Law School of India University (NLSIU), Bangalore sponsored by CPCB	National Law School of India University (NL- SIU), Bangalore
52	Shri B. P. Pattajoshi, Sr. Law Officer	3 rd – 7 th Febru- ary, 2020	Training Programme on "Environmental Leg- islations, Interpretation, Enforcement, Legal and Statutory Requirements – Case Studies"	National Law School of India University (NLSIU), Bangalore sponsored by CPCB	National Law School of India University (NL- SIU), Bangalore

Sl. No.	Name (Sh/Shri) & Designation	Date	Title of the Training / Workshop / Seminar	Conducted by	Venue
53	Er. Maheswar Behera, Asst. Env. Engineer, Regional Office, Berhampur	13 th – 14 th February, 2020	Training Programme on "Inspection and Monitoring of Brick Kilns" scheduled to be held during at CSE, New Delhi	Centre for Science and Environment, New Delhi	Centre for Science and Environment, New Delhi
54	Er. Sandhyayani Marandi, Asst. Env. Engineer, Regional Office, Balasore	13 th – 14 th February, 2020	Training Programme on "Inspection and Monitoring of Brick Kilns" scheduled to be held during at CSE, New Delhi	Centre for Science and Environment, New Delhi	Centre for Science and Environment, New Delhi
55	Dr. P. K. Mohapatra, Regional Officer, Balasore	25 th – 28 th February, 2020	Training Programme on "Urban Air Quality Management : Under- standing and Preparing Industry-Specific Action Plans"	Centre for Science and Environment, New Delhi	Anil Agarwal Environ- ment Training Institute (AAETI), Nimli, Alwar, Rajasthan
56	Er. C. S. Chauhan, Asst. Env. Engineer, Regional Office, Angul	25 th – 28 th February, 2020	Training Programme on "Urban Air Quality Management : Under- standing and Preparing Industry-Specific Action Plans"	Centre for Science and Environment, New Delhi	Anil Agarwal Environ- ment Training Institute (AAETI), Nimli, Alwar, Rajasthan
57	Shri Ashok Kumar Bhoi, AES, Regional Office, Rayagada	24 th – 28 th Feb- ruary, 2020	Training Programme on "Water Quality Monitoring of Surface, Ground, Wastewater / Effluents, Data Inter- pretation and Quality Assurance	Central Pulp & Paper Research Institute (CPPRI), Saharanpur sponsored by CPCB	Central Pulp & Paper Research Institute (CPPRI), Saharanpur
58	Er. D. L. Mohapatra, AEE, Regional Office, Keonjhar	24 th – 28 th February, 2020	Training Programme on "Water Quality Monitoring of Surface, Ground, Wastewater / Effluents, Data Inter- pretation and Quality Assurance	Central Pulp & Paper Research Institute (CPPRI), Saharanpur sponsored by CPCB	Central Pulp & Paper Research Institute (CPPRI), Saharanpur
59	Mrs. Sumitra Nayak, Asst. Env. Scientist, ICZMP	28 th February - 1 st March, 2020	National Conference on "Coastal Ocean-Atmos- phere Science & Tech- nology (COAST-2020)"	Bhanjabihar, Berham-Bhanjabihar, Berl	
60	Mrs. Sangeeta Mishra, Asst. Env. Scientist, ICZMP	28 th February - 1 st March, 2020	National Conference on "Coastal Ocean-Atmosphere Science & Technology (COAST-2020)"	Berhampur University, Bhanjabihar, Berham- pur-760007 & SPCB, Od- isha	Berhampur University, Bhanjabihar, Berham- pur-760007

B. Training / Workshop / Seminar Organised / Sponsored by SPC Board

Sl. No.	Training Programme	Duration	Venue	Organised / Sponsored by
1	Air Quality Action Plan (AQAP) for six Non-attain- ment cities (Angul, Balaso- re, Bhubaneswar, Cuttack, Rourkela & Talcher) in Odisha		Hotel Crown, Bhubaneswar	Centre for Science and Environment (CSE), Delhi in association with Forest and Environment Department, Govt. of Odisha, and State Pollution Control Board, Odisha

Sl. No.	Training Programme	Duration	Venue	Organised / Sponsored by
2	National Conclave on Climate Change and Water	19 th – 20 th October, 2019	Bhubaneswar	Indian Chambers of Commerce and Industry Federation House, New Delhi & SPC Board, Odisha
3	9 th International Conference on Sustainable Waste Management towards Circular Economy (IconSWM-CE)	27 th – 30 th November, 2019	KIIT University, Bhubaneswar	KIIT University, Bhubaneswar, Jadavpur University, WB and State Pollution Control Board, Odisha
4	2 nd International Conference on Processing and Charac- terization of Materials	12 th – 14 th December, 2019	NIT, Rourkela	NIT, Rourkela and State Pollution Control Board, Odisha
5	Innovation in Waste Management in Smart Cities (IWSC-2019)	17 th – 21 st December, 2019	Gandhi Institute for Technology (GIFT), Bhubaneswar	Gandhi Institute for Technology (GIFT), Bhubaneswar & SPC Board, Odisha
6	Conference on Cost Effective Improvement in Existing Pollution Control & Waste Management Systems in Odisha Industry	19 th – 20 th December, 2019	Hotel Swosti, Bhubane- swar	Indian Chambers of Commerce and Industry Federation House, New Delhi & SPC Board, Od- isha
7	One day workshop on "Pollution Control in Iron & Steel Industry – Digital Transformation with the power of IoT"	8 th January, 2020	Hotel Swosti Premium, Bhubaneswar	Biju Patnaik National Steel Institute (BPNSI), Odisha & SPC Board, Odisha
8	Conference on "Water In- frastructure for Urban Ar- eas & Industries"	13 th -14 th Feb- ruary, 2020	KIIT Convention Centre, Bhubaneswar	Consulting Engineers Association of India, CEAI Centre, OCF Plot No.2, Pocket-9, Sector-B, Vas- anta Kunj, New Delhi & SPC Board, Odisha
9	National Conference on "Climate Change Initia- tives" – Impacts, Resilience & Adaptations for Sustain- able Resoruce Utilization	29 th February, 2020	Hotel Swosti Premium, Bhubaneswar	Indian Chamber of Commerce (ICC)Odisha State Council, BDA-HIG 23, In Front of Pal Heights, Behind Aditya Birla, Jayadev Vihar, Bhubaneswar

8.8 Internship taken by Students from different Educational Institutions

Sl. No.	Name of the Students	Name of the Educational Institutions	Duration of the Internship	Internship Taken Under
1	Mr. Sabyasachi Behera M.Sc.	Dept. of Ecology & Environment Sciences, Pondichery University, R. V. Nagar, Kala- pet, Puducherry	02.12.2019 to 28.02.2020	Shri Anupam Behera, Sr. Env. Scientist, Cen- tral Laboratory
2	Miss Sugyanee Kuanr (Roll No.051901008)	Birla School of Law, Birla Global University, IDCO Plot No.2, Institutional Area, Gothap- ana, Bhubaneswar	05.12.2019 to 26.12.2019	Shri B. P. Pattajoshi, Sr. Law Officer
3	Shri Pradosh Mahapatra (Roll No.051901021)	Birla School of Law, Birla Global University, IDCO Plot No.2, Institutional Area, Gothap- ana, Bhubaneswar	05.12.2019 to 26.12.2019	Shri B. P. Pattajoshi, Sr. Law Officer
4	Miss Loni Lipsa Sahoo (Roll No.051901044)	Birla School of Law, Birla Global University, IDCO Plot No.2, Institutional Area, Gothap- ana, Bhubaneswar	05.12.2019 to 26.12.2019	Shri B. P. Pattajoshi, Sr. Law Officer
5	Miss Simran Samal (Roll No.051901045)	Birla School of Law, Birla Global University, IDCO Plot No.2, Institutional Area, Gothap- ana, Bhubaneswar	05.12.2019 to 26.12.2019	Shri B. P. Pattajoshi, Sr. Law Officer
6	Shri Amruta Padhi (Roll No.051901052)	Birla School of Law, Birla Global University, IDCO Plot No.2, Institutional Area, Gothap- ana, Bhubaneswar	05.12.2019 to 26.12.2019	Shri B. P. Pattajoshi, Sr. Law Officer

Sl. No.	Name of the Students	Name of the Educational Institutions	Duration of the Internship	Internship Taken Under
7	Miss Subhashree Priyardarshini, M. Sc.	Dept. of Ecology & Environment Sciences, Pondichery University, R. V. Nagar, Kala- pet, Puducherry	15.12.2019 to 31.03.2020	Shri Anupam Behera, Sr. Env. Scientist, Cen- tral Laboratory
8	Shri Bhubhudatta Behera	M. Sc. Environmental Sciences (Env. Technology),Banaras Hindu University (BHU), Ajagara, Varanasi, Uttar Pradesh-221005	January to April, 2020	Dr. N. R. Sahoo, Chief Env. Engineer
9	Ms. B. M. Subhalaxmi Roll No.18ENV.Sc 012	M. Sc. Course in Env. Science, PG Department of Botany, Utkal University, Vani Vihar, Bhubaneswar	January to April, 2020	Dr. S. K. Mohanty, Env. Scientist, Central Labo- ratory
10	Ms. Subhashree Subhadars- inee Bal, Roll No.18ENV.Sc 015	M. Sc. Course in Env. Science, PG Department of Botany, Utkal University, 2020 Vani Vihar, Bhubaneswar		Dr. S. K. Mohanty, Env. Scientist, Central Labo- ratory
11	Ms. Saheba Khanam Roll No.180705270001	School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar		Dr. S. K. Mohanty, Env. Scientist, Central Labo- ratory
12	Ms. Pallabi Bal Roll No.180705270002	Centurion University of Technology and Scientific Scien		Dr. S. K. Mohanty, Env. Scientist, Central Labo- ratory
13	Ms. Komal Panch, M. Sc.	Department of Ecology and Environmental January to Mrs. Sciences, Pondichery Univeristy, Puduchery March, 2020 AES.		Mrs. Sumitra Nayak, AES, ICZMP, SPC Board, Odisha

8.9 OTHER ACTIVITIES

8.9.1. Training on Pollution Control and Environmental Protection

Workshop on "Can Citizen engagement contribute towards cleaner air in Non-attainment cities" orgnised by the Board with EPIC India on 12.03.2020 at NOCCI Residency, Balasore involving local college students.

8.9.2 Human Resource Development

- The Board has conducted various programmes through the Centre for Excellence for imparting
 training to various stakeholders on pollution control and environment protection and also deputed
 its officials on exposure training and to acquire knowledge in the above field.
- Imparted training on "Ambient air quality monitoring" to 65 B.Sc Nursing (Hons) students and 33 numbers of MBBS students of All India Institute of Medical Science, Bhubaneswar.
- Imparted training on "Prevention & control of Vehicular Pollution" to 309 numbers of traffic personnel at Traffic Training Institute, Bhubaneswar.
- The Board in association with Centre for Science and Environment (CSE), Delhi and Forest and Environment Govt. of Odisha had organized a stake holder workshop in Air Quality Action Plan (AQAP) for 6 non attainment cities (Angul, Balasore, Bhubaneswar, Cuttack, Rourkela and Talcher) in Odisha on 4th June, 2019.
- Board officials were deputed as resource persons in three different training programmes such as "Environment Impact Assessment", "ETP/STP operation and maintenance" and "Waste Management" under "Green Skill Development Programme (GSDP)" organized by Centre for Environmental Studies (CES). In each training programme 60 participants in three different batches

were given demonstration and hands-on training for sampling and analysis of water, wastewater, ambient air monitoring & analysis, soil and hazardous waste sampling & analysis.

8.9.3 Observation of Important Days

- **World Environment Day**
- Observation of World Environment Day by Regional Offices of SPCB

The State Pollution Control Board, Odisha observed World Environment Day on 5th June, 2019 through 12 Regional Offices. The theme of the World Environment Day for the year 2019 was "Beat Air Pollution". In this context, several programmes such as plantations, organizing debate / quiz/ rally / seminar /painting competitions followed by distribution of prizes, beach clean-up activities involving public /industries/ Govt. sectors /NGOs /students of schools & colleges were conducted by all the Regional Offices of State Pollution Control Board to create awareness for protection of environment.

WORLD ENVIRONMENT DAY OBSERVATION BY REGIONAL OFFICES

ROURKELA

BERHAMPUR

KEONJHAR

BHUBANESWAR

KALINGANAGAR

PARADEEP

BALASORE

ANGUL

SAMBALPUR

CUTTACK

JHARSUGUDA

❖ Observation of the World Environment Day in Partnership with EPIC-India

- On the occasion of World Environment Day, 2019 a State level awareness workshop was organized by SPC Board, Odisha in partnership with Energy Policy Institute at the University of Chicago (EPIC India) at Odisha Maritime Museum, Cuttack involving academicians, doctors, researchers, students, civil society and the intelligentsia of Cuttack with two broader aspects of Air Pollution in the cities of Odisha. First objective was to make aware about the current status of pollution in the city and its impacts on health and day to day life. The second objective was to create awareness about the public disclosure programs like Star Rating of Industries and to convince the public about how increased citizen engagement can be a key in achieving cleaner air goal not only for the city but also for the entire state of Odisha.
- Cuttack is one of the six 'non-attainment' cities in Odisha out of the 102 cities in the country that have failed to maintain the National Ambient Air Quality Standards fixed by the Central Pollution Control Board. University of Chicago's Air Quality Life Index suggests that residents in Cuttack could live 2.7 years longer if the city had met WHO air quality standards. Along with the Chowdwar-Jagatpur industrial belt in its periphery, the oldest city of Odisha is also one of the cities facing vehicular air pollution in the State.
- More than 70 participants were part of the World Environment Day Awareness Workshop with a theme "To Counter Air Pollution, We Need to Know it First" Prof. Dr. Ishan Kumar Patro, Vice Chancellor, Ravenshaw University delivered the opening speech on "Air Pollution and Cuttack-From an academician's point of View". Dr. Prafulla Kumar Das, Professor and Head of Dept. Acharya Harihar Regional Cancer Centre, Cuttack made an info-graphic presentation on "Harmful Impacts of Particulate Matter Emission on Human Health". Prof. Mrinal Chhatterjee, Director IIMC, Dhenkanal delivered his speech on 'Pollution is not a myth'. Dr. Bibekananda Bhol, Chief Environmental Scientist, SPCB Odisha talked on "Ambient Air Pollution in cities of Odisha". Dr. Akhila Kumar Swar, Chief Environmental Engineer, SPCB Odisha gave a talk on "Air Pollution is a mighty challenge, but can be handled-Measurement and Mitigation". Mr. Vaibhav Chowdhary, Senior Associate Director (Strategy & Operations), EPIC-India talked about "Public Disclosure-A game changer tool to tackle air pollution".

The participants interacted with the experts on different aspects of air pollution, how public disclosure can be helpful in better environmental performance and about different initiatives of State Pollution Control Board, Odisha to counter air pollution.

❖ 36th Foundation Day of SPC Board

State Pollution Control Board, Odisha observed its 36th Foundation Day on 18th September, 2019 at Jayadev Bhawan, Bhubaneswar. Sri Bikram Keshari Arukha, Cabinet Minister, Forest & Environment, Parliamentary Affairs, Govt. of Odisha graced the occasion as Chief Guest. Dr. Mona Sharma, IAS, Principal Secretary, F & E Department, Govt. of Odisha and Dr. K Murugesan, IFS, Director Environment-cum-Special Secretary to Govt., F & E Department, Govt. of Odisha were the Guests of Honour. Sri D. Biswal, IFS, Member Secretary, State Pollution Control Board, Odisha delivered the key note address on the occasion. Prof. Binaya K Dutta, Former Chairman of West Bengal Pollution Control Board and Visiting Professor, School of Environmental Science and Engineering, IIT, Kharagpur, West Bengal delivered Prof. M. K. Rout Memorial Lecture on "Remediation of Contaminated Soil" on the occasion. Distinguished guests from various sectors like Government, Industries, Officers & Staff from Regional Offices & Head Office of the Board attended the function.

SHRI BIKKRAM KESHARI ARUKHA, HON'BLE MINISTER, FOREST & ENVIRONMENT, PARLIAMENTARY AFFAIRS DELIVERING HIS ADDRESS DURING 36TH FOUNDATION DAY

PROF. BINAYA KUMAR DUTTA, FORMER CHAIRMAN, WEST BENGAL POLLUTION CONTROL BOARD DELIVERING PROF. M.K. ROUT MEMORIAL LECTURE

The Newsletter 'Paribesh Samachar' (April – June 2019) and a book entitled "Status and Trends of Coastal Parameters 2013-2018 Paradeep-Gahirmatha-Dhamra Coastal Environment", published by ICZMP, SPCB were released on the occasion.

RELEASE OF NEWSLETTER OF THE STATE POLLUTION CONTROL BOARD, ODISHA "PARIBESH SAMACHAR" (APRIL-JUNE, 2019)

RELEASE OF BOOK ON "STATUS AND TRENDS OF COASTAL PARAMETERS 2013-2018 PARADEEP- GAHIRMATHA -DHAMRA COASTAL ENVIRONMENT"

The Board has instituted pollution control excellence/appreciation awards to encourage the industries/mines / health care units for adoption of adequate pollution control measures. The list of awardees for this year is as follows:

1. Industries Caegory:

Pollution Control Excellence Award - M/s. J. K Paper Limited, At/PO: Jaykaypur, Dist: Rayagada.

Pollution Control Appreciation Award - M/s. GMR Kamalanga Energy Limited, At/PO; Kamalanga,

2. Mines Category:

Dist: Dhenkanal..

Pollution Control Appreciation Award - M/s. Sukinda Chromite Mines of IMFA, Kaliapani, Sukinda, Dist: Jajpur.

3. Health Care Unit Category:

Pollution Control Appreciation Award - Sardar Vallabhbhai Patel Post Graduate Institute of Paediatrics, At: Sishubhawan, Dist: Cuttack.

POLLUTION CONTROL EXCELLENCE AWARD AND APPRECIATION AWARD IN INDUSTRIES CATEGORIES

M/S. J. K. PAPER LTD., AT/PO-JAYKAYPUR, DIST: RAYAGADA

M/S. GMR KAMALANGA ENERGY LTD., AT: KAMALANGA, MERAMANDALI, DIST: DHENKANAL

POLLUTION CONTROL APPRECIATION AWARD IN MINES AND HEALTH CARE UNIT

M/S. SUKINDA CHROMITE MINES OF M/S IMFA, KALIAPANI, SUKINDA, DIST: JAJPUR

M/S. SARDAR VALLABHBHAI PATEL POST GRADUATE INSTITUTE OF PAEDIATRICS, SISHU BHAWAN, DIST: CUTTACK

* International Coastal Clean-up Day

The International Coastal Clean-up Day, 2019 was observed by the Board on the Sea Beach of Puri, Konark, Chandipur, Gopalpur & Paradeep on 21st September 2019 for creation of mass awareness on the protection and management of coastal environment involving District Administration, NGOs, volunteers and public etc.

OBSERVATION OF INTERNATIONAL COASTAL CLEAN-UP DAY

Puri Sea Beach

Konark Sea Beach

Gopalpur Sea Beach

Paradeep Sea Beach

Chandipur Sea Beach

***** World Ozone Day

The World Ozone Day was observed by the Board through Regional Offices on 16th September 2019 involving stake holders of different industries, NGOs and students from different Institutes to spread awareness on depletion of Ozone layer with this year's theme " **32 years and healing**" by conducting meetings, workshops etc.

OBSERVATION OF WORLD OZONE DAY BY REGIONAL OFFICES, SPC BOARD

BERHAMPUR

SAMBALPUR

KEONJHAR

JHARSUGUDA

PARADEEP

KALINGANAGAR

ROURKELA

ANGUL

National Pollution Prevention Day

The National Pollution Prevention Day was observed by the Regional Offices on 2nd December, 2019 by conducting mass rally, meeting and workshop etc. involving students from different institutions, NGOs and volunteers.

8.10 AWARENESS ACTIVITES

- For creation of awareness amongst general public, the Board regularly publishes advertisements relating to environmental issues in different periodicals / newspapers / souvenirs.
- The Board observed the World Environment Day on 5th June' 2019 through 12 Regional Offices to create awareness on environmental protection. Messages on protection of environment were given to the public through meetings, mass campaign, paintings, debates & plantations etc.
- The 36th Foundation Day of the Board was observed on 18th Sept, 2019 at Jaydev Bhawan, Bhubaneswar followed by release of newsletters and books. Prof. Binay Kumar Dutta, Former Chairman of West Bengal Pollution Control Board and Visiting Professor, School of Environmental Science and Engineering, IIT Kharagpur delivered Prof. M.K. Rout Memorial Lecture on "Remediation of Contaminated Soil".
- The International Coastal Clean-up Day was observed by the Board on the Sea Beaches of Puri, Konark, Chandipur, Gopalpur & Paradeep on 21st Sept, 2019 for creation of mass awareness on protection and management of environment involving District Administration, different NGOs & Volunteers.
- The World Ozone Day was observed by the Board through Regional Offices on 16th September, 2019 involving stake holders of different industries, NGOs and students from different Institutes to spread awareness on depletion of Ozone layer.
- During Deepawali festival awareness campaign was organized in & around Bhubaneswar and Cuttack for creating awareness among the public on effect of crackers on air pollution & noise pollution.
- An awareness program was conducted during first week of December, 2019 on method of control of air pollutiom in Non-attainment city, Cuttack.
- Out of 7 non-attainment cities (Angul, Balasore, Bhubaneswar, Cuttack, Kalinga Nagar, Rourkela and Talcher) in Odisha, State Pollution Control Board Odisha in association with Energy Policy Institute at the University of Chicago organized 4 citizen engagement workshops at 4 non-attainment cities such as Angul, Balasore, Kalinga Nagar and Rourkela under National Clean Air Program (NCAP).

Awareness workshop at Angul

Awareness workshop at Kalinganagar

Awareness workshop at Balasore

- An awareness workshop titled "Air Pollution in Non-attainment CIties" was conducted by Regional Office, SPC Board, Kalinga Nagar on 03.03.2020 at KNDA Mandap, Jajpur Road, Jajpur in collaboration with the Energy Policy Institute at University of Chicago.
- An awareness programme on "Plastic Waste Clean and Green Drive" was organized by Regional Office, SPC Board, Keonjhar on 17.10.2019 to spread the message "Say no to Plastic".
- Regional Office, SPC Board, Jharsuguda conducted Plastic Waste Free Campaign on 02.10.2019 to create public awareness on Plastic Waste Managment.

8.11 PUBLICATIONS

The Board has published the following Book & Reports during April, 2019 to March, 2020.

- » Newsletters "Paribesh Samachar" i.e. (April-June, 2019, July September, 2019, October-December, 2019).
- » Book on **"Status and Trends of coastal parameters 2013-2018"** by ICZMP, SPCB, Odisha was released during 36th Foundation Day of SPCB on 18th September, 2019 at Rabindra Mandap.

8.12 EMPANELLED ENVIRONMENTAL CONSULTANTS

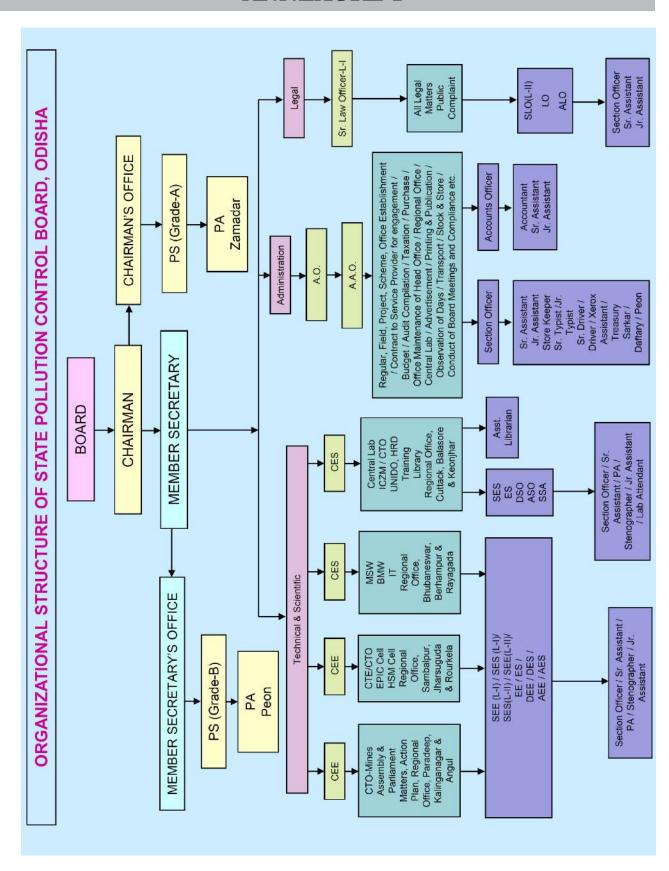
In the year 2019-20, total 16 nos. of consultants were empanelled as environmental consultant with the Board. Out of these 16 consultants, 09 consultants were empanelled under 'A' Category and 07 consultants under 'B' category. The name and address of these consultants, category under which they have been empanelled and validity period of their empanelment certificate are given in Table-8.7.

Table-8.7 Status of Environmental Consultants for the Year 2019-20 Category-A

Sl. no	Name of the Consultant	Category	Validity Period
1	M/s Kalyani Laboratories Pvt. Ltd Plot No-78/944, Near Nissan Show Room Balianta, Pahala, Bhubaneswar-752101 Phone – 06742460891/9437306091 E-mail – kalyanilab@yahoo.co.in	A	09.04.2019 to 08.04.2022
2	M/s Vardan Envirolab Samaspur, Opposite Amity School Sector-51,Gurgaon-122001, Haryana Phone –0124-4291036 E-mail –lab@vardanenvironet.com	A	09.05.2019 to 08.05.2022

Sl. no	Name of the Consultant	Category	Validity Period
3	M/s R.V.Briggs & CO. Private Ltd 8-9, Bentinck Street, 1st Floor Taher Mansion,Kolkata -700001 E-mail – rvbriggs.kolkata@gmail.com Phone – 2248-3661/7803	A	05.07.2019 to 04.07.2022
4	M/s Pollution and Project Consultants P-145, Bangur Avenue Block-A, Kolkata-700055 E-mail – ppconsultants@awsppc.in Phone – 033-2574-3418	A	22.07.2019 To 21.07.2022
5	M/s ABC Techno Labs India Private Limited No-400, 13 th Street, SIDCO Industrial Estate North Phase Ambattur, Chennai-600098 Phone -044-26257788 E-mail -lab@abctechnolab.com	A	09.08.2019 to 08.08.2022
6	M/s Sophisticated Industrial Material Analytic Labs Pvt. Ltd A-3/7, Mayapuri Industrial Area, Phase-II New Delhi-110064 E-mail – qa@simalab.co.in Phone – 011-43854300	A	30.08.2019 to 29.08.2022
7	M/s Superintendence Company of India (P) Ltd Plot No-Y-23, Block-EP, Sector-V Salt Lake, Kolkata-700091 Phone – (033)2357-1492/4670/4671 E-mail –supind50@yahoo.co.in	A	27.12.2019 to 26.12.2022
8	M/s Ecomen Laboratories Pvt. Ltd. Flat No-5-8, 2 nd Floor Arif Chamber-V, Sector-H, Aliganj, Lucknow-226024 Phone – 0522-2746282 E-mail – ravi.bhargava@gmail.com	A	17.01.2020 to 16.01.2023
9	M/s Envomin Consultant Pvt. Ltd., Plot No- 3054/9625, Pandra Bhubaneswar – 751010 Phone – 06742394518 E-mail – envomin@yahoo.com	A	05.02.2020 to 04.02.2023

Category-B


Sl. no	Name of the Consultant	Category	Validity Period
1	M/s Trident Academy of Technology Envirotech Centre Plot No-F2/A, Chandaka Industrial Estate, Infocit- yArea, Chandrasekharpur, Bhubaneswar-751024 Phone-0674-6649003/6649008/6649036 E-mail – info@trident.ac.in	В	22.04.2019 to 21.04.2022
2	M/s. Biosphere Scientific Research Centre Flat-204,2 nd Floor, Ratna Lifestyle Sikharchandi Nagar, Near KIIT Campus Patia, Bhubaneswar-751024 Phone – 9090980498 E-mail – bsrc.research@gmail.com	В	09.05.2019 to 08.05.2022
3	M/s Nature Care, Qtr No-05, Ekamra villa Nayapalli,Bhubaneswar-751015 E-mail:-rb_panda07@rediffmail.com Phone-0674-2553314	В	21.09.2019 to 20.09.2022

Sl. no	Name of the Consultant	Category	Validity Period
4	M/s Indicative Consultant India HPL Link Road, Basudevpur Khanjanchak, Haladia Purba Medinipur-721602 Phone No:- 03224-275765 E-mail – indicativeconsultantindia@gmail.com	В	08.11.2019 to 07.11.2022
5	M/s Good Earth Enviro Care S.D.Park, Kusumba PO-Narendrapur, Kolkata-700103 Phone No:- 033-2434-1105/1107 Email Id: -geec.debasish@gmail.com	В	08.01.2020 to 07.01.2023
6	M/s N.D. International 17, Jnan Goswami Sarani, 107 B, Block-F, New Alipore, Kolkata -700053 Phone No:- 033-4021-6600 Email Id: -ndinternational@gmail.com	В	08.01.2020 to 07.01.2023
7	M/s Utkal Ecotech Private Ltd. Plot No-5F/786, Sector-9, CDA, Cuttack-753014 Phone No:- 0671-2506210 Email Id: -utkalecotech@gmail.com	В	24.02.2020 to 23.02.2023

ANNEXURE-I

ANNEXURE-II

RATE CHART FOR SAMPLING AND ANALYSIS OF ENVIRONMENTAL SAMPLES

(Office Order No. 7828, dated 01.08.2019)

A. SAMPLING CHARGES

(I) Sampling charges for Ambient Air/ Fugitive emission samples

Sl. No.	Type of sampling		Charges in Rs.
1.	Air Monitoring		
	(a)	Sampling (upto each 8 hrs) for suspended particulate matter and gaseous pollutants	3500.00
	(b) Sampling (24 hrs) for suspended particulate matter and gaseous pollutants		10500.00
	(c)	Sampling of volatile organic compounds (VOCs) / Benzene Toluene Xylene (BTX)	3500.00
	(d) Sampling of Poly Aromatic Hydrocarbons (PAHs)		4400.00
	(e)	Sampling (24 hrs using PUF HVS) of ambient air for Dioxin-Furan (PCDDs-PCDFs) congeners	15000.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(II) Source Emission Monitoring / Sampling Charges

Sl. No.	Type of Sampling		Charges in Rs.
1.	Source	ee Emission Monitoring	
	(a) Sampling/ measurement of velocity, flow rate, temperature and molecular weight of Flue Gas (each specific location/ each sample in duplicate for the mentioned parameter)		9600.00
	(b) Sampling of SO ₂ / NO ₂		3500.00
	(c)	Sampling of Volatile Organic Compounds (VOCs / Benzene Toluene Xylene (BTX)	5300.00
	(d) Sampling of Poly Aromatic Hydrocarbons (PAHs)		6200.00
	(e)	Sampling of emission from stationery source for Dioxin-Furan (PCDDs-PCDFs) congeners using Manual sampling Kit	25000.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(III) Noise Monitoring

Sl. No.	Type of Sampling	Charges in Rs.
1.	Noise Monitoring	
	(a) First Monitoring	7000.00
	(b) Each Subsequent Monitoring within same premises	3500.00
	(c) For 08 hours Continuous Monitoring or more	18,000.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(IV) Sampling Charges for Water & Wastewater Samples

Sl. No.	Type of sampling	Charges in Rs.
1.	GRAB SAMPLING:	
	1. Grab sampling/ samples/ place	960.00
	2. For every additional Grab sampling / same place (at same point)	440.00
2.	COMPOSITE SAMPLING:	
	Composite sampling/source/place upto 8 hrs.	1800.00
	-do- upto16 hrs.	3500.00
	-do- upto 24 hrs.	5300.00
	For every additional composite sampling/same place but different source upto 8 hrs.	960.00
	-do- upto16 hrs.	2000.00
	-do- upto 24 hrs.	2900.00
3.	Flow rate measurement/ source -Once	700.00
	-do Every additional	270.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(V) Sampling charges for Soil samples

Type of Sampling	Charges in Rs.
Grab sampling/ sample/ place	1050.00
For additional Grab sampling / same place	530.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(VI) Hazardous Waste Sample collection charges at the premises of Industry/ Import site/ Disposal site

Туре	Charges in Rs.
Integrated sample collection charges	1800.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

B. ANALYSIS CHARGES

I. Analysis charges of Ambient Air/ Fugitive Emission Samples

Sl. No	Parameters (Air)	Analysis charges per sample in Rs.
1	Ammonia	1050.00
2	Analysis using dragger (per tube)	700.00
3	Benzene, Toluene, Xylene (BTX)	1800.00
4	Carbon Monoxide	1050.00
5	Chlorine	1050.00
6	Fluoride (gaseous)	1050.00
7	Fluoride (particulate)	1050.00
8	Hydrogen Chloride	1050.00
9	Hydrogen Sulphide	1050.00

Sl. No	Parameters (Air)	Analysis charges per sample in Rs.
10	Lead & Other Metals (per metal)	As mentioned in respective group at clause 5.0
11	NO_2	1050.00
12	Ozone	1800.00
13	Poly Aromatic Hydrocarbons (PAHs)	As mentioned in respective group at clause 5.0
14	Suspended Particulate Matter (SPM)	1050.00
15	Particulate Matter (PM _{2.5})	1800.00
16	Respirable Suspended Particulate Matter (PM ₁₀)	1050.00
17	Sulphur Dioxide	1050.00
18	Volatile Organic Carbon	3500.00
19	Trace metals on air, filter paper using ED-XRF Aluminium, Antimony, Arsenic, Barium, Bromine, Cadmium, Calcium, Cesium, Chlorine, Chromium, Cobalt, Copper, Gallium, Germanium, Gold, Iodine, Iron, Lanthanum, Lead, Magnesium, Manganese, Molybdenum, Nickel, Palladium, Phosphorous, Potassium, Rubidium, Rutherfordium, Selenium, Silicon, Silver, Sodium, Strontium, Sulphur, Tellurium, Tin, Titanium, Tungsten, Vanadium, Ytterbium and Zinc	5300.00 Per filter paper
20	Water extractable ions in air particulate matter using Ion Chromatograph (IC) Processing / pretreatment charge per sample (filter paper) Cations (Na ⁺ , NH ₄ ⁺ , K ⁺ , Ca ⁺⁺ , & Mg ⁺⁺) and Anions (F, Br, Cl, NO ₃ ⁻ , NO ₂ ⁻ , SO ₄ ⁻² & PO ₄ ⁻³)	530.00 2100.00 (for 12 ions)
21	Organic and Elemental Carbon (OC/EC) on quartz filter paper	3500.00
22	Sample processing and analysis for Dioxin-Furan (PCDDs-PCDFs) congeners (Isotope dilution method using GC-HRMS	75000.00

II. Analysis charges for Source Emission Parameters

Sl. No.	Parameters	Analysis charges per sample in Rs.
1	Acid mist	1050.00
2	Ammonia	1050.00
3	Carbon Monoxide	1050.00
4	Chlorine	1050.00
5	Fluoride (Gaseous)	1050.00
6	Fluorides (Particulate)	1050.00
7	Hydrogen Chloride	1050.00
8	Hydrogen Sulphide	1050.00
9	Oxides of Nitrogen	1050.00
10	Oxygen	880.00
11	Polycyclic Aromatic Hydrocarbons (Particulate)	As mentioned in respective group at clause 5.0
12	Suspended particulate matter	1050.00
13	Sulphur Dioxide	1050.00
14	Benzene Toluene Xylene (BTX)	2700.00
15	Volatile Organic Compounds (VOC)	5300.00
16	Sample processing and analysis for Dioxin-Furan (PCDDs-PCDFs) congeners (Isotope dilution method using GC-HRMS	75000.00

III. Ambient Air Quality Monitoring using on-line monitoring instruments by Mobile Van

Parameters	Charges in Rs.
PM_{10} , $PM_{2.5}$, SO_2 , NO_x , SPM , CO along with Meteorological data viz. temperature, Humidity, wind speed, wind direction	Rs.6200.00 per hour (minimum charges Rs.15,000/-) + Rs.50.00/km run of the van for 24 hours monitoring.

IV. Auto Exhaust Monitoring - One time checking of Vehicular Exhaust

Sl. No.	Type of vehicles	Charges in Rs.
1	Carbon Monoxide %	As per rate notified by transport department
2	Hydrocarbon, PPM	
3	Smoke Density, HSU	

V. Analysis Charges of Water and Wastewater Samples

Sl.No	Parameters	Analysis charges per sample in Rs.	
PHYSICAL PARAMETERS			
1	Conductivity	110.00	
2	Odour	110.00	
3	Sludge Volume index (S.V.I)	350.00	
4	Solids (dissolved)	180.00	
5	Solids (fixed)	270.00	
6	Solid (Volatile)	270.00	
7	Suspended Solids	180.00	
8	Temperature	110.00	
9	Total Solids	180.00	
10	Turbidity	110.00	
11	Velocity of Flow (Current Meter)	350.00	
12	Velocity of Flow (other)	960.00	
	CHEMICAL PARAMETERS		
Inorganic			
1.	Acidity	180.00	
2.	Alkalinity	180.00	
3.	Ammonical Nitrogen	350.00	
4.	Bicarbonate	180.00	
5.	Biochemical Oxygen Demand (BOD)	1050.00	
6.	Bromide	180.00	
7.	Calcium (Titrimetric)	180.00	
8.	Carbon dioxide	180.00	
9.	Carbonate	180.00	
10.	Chloride	180.00	
11.	Chlorine Demand	350.00	
12.	Chlorine Residual	180.00	
13.	Chemical Oxygen Demand (COD)	620.00	
14.	Cyanide	620.00	
15.	Detergent	350.00	
16.	Dissolved Oxygen (DO)	180.00	

Sl.No	Parameters	Analysis charges per sample in Rs.	
17.	Fluoride	350.00	
18.	H. Acid	350.00	
19.	Hardness (Calcium)	180.00	
20.	Hardness (Total)	180.00	
21.	Iodide	180.00	
22.	Nitrate – Nitrogen	350.00	
23.	Nitrite – Nitrogen	350.00	
24.	Percent Sodium	1050.00	
25.	Permanganate Value	350.00	
26.	рН	110.00	
27.	Phosphate (Ortho)	350.00	
28.	Phosphate (Total)	620.00	
29.	Salinity	180.00	
30.	Sodium Absorption Ratio (SAR)	1050.00	
31.	Settleable Solids	180.00	
32.	Silica	350.00	
33.	Sulphate	270.00	
34.	Sulphide	350.00	
35.	Total Kjeldahl Nitrogen (TKN)	620.00	
36.	Urea Nitrogen	620.00	
37.	Cations (Na ⁺ , NH ₄ ⁺ , K ⁺ , Ca ⁺⁺ , & Mg ⁺⁺) and Anions (F, Br, Cl, NO ₃ ⁻ , NO ₂ ⁻ , SO ₄ ⁻ & PO ₄ ⁻) in surface and ground water samples using Ion Chromatograph	2100.00 (for 12 ions)	
Metals			
	Processing / pre treatment charge per sample	880.00	
1.	Aluminium	530.00	
2.	Antimony	530.00	
3.	Arsenic	530.00	
4.	Barium	530.00	
5.	Beryllium	530.00	
6.	Boron	530.00	
7.	Cadmium	530.00	
8.	Chromium Hexavalent	350.00	
9.	Chromium Total	530.00	
10.	Cobalt	530.00	
11.	Copper	530.00	
12.	Iron	530.00	
13.	Lead	530.00	
14.	Magnesium	350.00	
15.	Manganese	530.00	
16.	Mercury (Processing and Analysis)	1400.00	
17.	Molybdenum	530.00	
18.	Nickel	530.00	
19.	Potassium	350.00	

Sl.No	Parameters	Analysis charges per sample in Rs.
20.	Tin	530.00
21.	Selenium	530.00
22.	Silver	530.00
23.	Sodium	350.00
24.	Strontium	530.00
25.	Vanadium	530.00
26.	Zinc	530.00
	Organics	
Organo C	Chlorine Pesticides (OCPs)	
U	Processing / pretreatment charge per sample	1800.00
1.	Aldrine	700.00
2.	Dicofol	700.00
3	DIeldrin	700.00
4	Endosulfan-I	700.00
5	Endosulfan-II	700.00
6	Endosulfan-Sulfate	700.00
7	Heptachlor	700.00
8	Hexachlorobenzene (HCB)	700.00
9	Methoxychlor	700.00
10	o,p DDT	700.00
11	p,p'- DDD	700.00
12	p,p'- DDE	700.00
13	p'p DDT	700.00
14	о-НСН	700.00
15	β-HCH	700.00
16	у-НСН	700.00
17	δ-HCH	700.00
Organo F	Phosphorous Pesticides (OPPs)	
	Processing / pre treatment charge per sample	1800.00
18	Chlorpyriphos	700.00
19	Dimethoate	700.00
20	Ethion	700.00
21	Malathion	700.00
22	Monocrotophos	700.00
23	Parathion-methyl	700.00
24	Phorate	700.00
25	Phosphamidon	700.00
26	Profenophos	700.00
27	Quinalphos	700.00
Synthetic	Pyrethroids (SPs)	
	Processing / pre treatment charge per sample	1800.00
28	Deltamethrin	700.00
29	Fenpropethrin	700.00

Sl.No	Parameters	Analysis charges per sample in Rs.
30	Fenvalerate	700.00
31	α-Cypermethrin	700.00
32	β-Cyfluthrin	700.00
33	γ-Cyhalothrin	700.00
Herbicide	s	<u>'</u>
	Processing / pre treatment charge per sample	1800.00
34	Alachlor	700.00
35	Butachlor	700.00
36	Fluchloralin	700.00
37	Pendimethalin	700.00
Polycyclic	Aromatic Hydrocarbons (PAHs)	
	Processing / pre treatment charge per sample	1800.00
38	Acenaphthene	700.00
39	Acenaphthylene	700.00
40	Anthracene	700.00
41	Benzo(a)anthracene	700.00
42	Benzo(a)Pyrene	700.00
43	Benzo(b)fluoranthene	700.00
44	Benzo(e)Pyrene	700.00
45	Benzo(g,h,i) Perylene	700.00
46	Benzo(k)fluoranthene	700.00
47	Chrysene	700.00
48	Dibenzo(a,h)anthracene	700.00
49	Fluoranthene	700.00
50	Fluorene	700.00
51	Indeno (1,2,3-cd)pyrene	700.00
52	Naphthalene	700.00
53	Perylene	700.00
54	Phenanthrene	700.00
55	Pyrene	700.00
Polychlor	inated Biphenyls (PCBs)	<u> </u>
	Processing / pre treatment charge per sample	1800.00
56	Aroclor 1221	700.00
57	Aroclor 1016	700.00
58	Aroclor 1232	700.00
59	Aroclor 1242	700.00
60	Aroclor 1248	700.00
61	Aroclor 1254	700.00
62	Aroclor 1260	700.00
Trihalome	ethane (THM)	
	Processing / pre treatment charge per sample	1400.00
63	Bromodichloromethane	700.00

Sl.No	Parameters	Analysis charges per sample in Rs.
64	Bromoform	700.00
65	Chloroform	700.00
66	Dibromochloromethane	700.00
Other Org	ganic Parameters	
67	Adsorbable Organic halogens (AOX)	3500.00
68	Tanin/ Lignin	620.00
69	Oil and Grease	350.00
70	Phenol	350.00
71	Total Organic carbon (TOC)	880.00
72	Volatile organic acids	620.00
	BIOLOGICAL TEST	
1.	Bacteriological Sample Collection	350.00
2.	Benthic Organism Identification and Count (each sample)	1050.00
3.	Benthic Organism Sample collection	1800.00
4.	Chlorophyll Estimation	1050.00
5.	E. Coli (MFT technique)	700.00
6.	E. Coli (MPN technique)	620.00
7.	Fecal Coliform (MFT technique)	700.00
8.	Fecal Coliform (MPN technique)	620.00
9.	Fecal Streptococci (MFT technique)	790.00
10.	Fecal Streptococci (MPN technique)	700.00
11.	Plankton (sample collection)	440.00
12.	Plankton (Phytoplankton) count	1050.00
13.	Plankton (Zooplankton) count	1050.00
14.	Standard Plate Count	350.00
15.	Total Coliform (MFT technique)	700.00
16.	Total Coliform (MPN technique)	620.00
17.	Total Plate Count	620.00
18.	Toxicological Bio-assay (LC ₅₀)	4900.00
19.	Toxicological –Dimensionless toxicity test	2800.00

Note:

- i. Sampling charges for water and waste water samples are separate as specified in $\frac{A(IV)}{E}$, but subject to minimum of Rs.700/- irrespective of number of samples.
- ii. Transportation charges are separate on actual basis.

VI. Analysis charges of Soil/ Sludge/ Sediment/ Solid waste/ Solid samples

Sl. No.	Parameters	Analysis charges per test in Rs.	
1	Ammonia	530.00	
2	Bicarbonate	350.00	
3	Boron	700.00	
4	Calcium	270.00	
5	Calcium Carbonate	620.00	
6	Cation Exchange Capacity (CEC)	700.00	

Sl. No.	Parameters	Analysis charges per test in Rs.	
7	Chloride	270.00	
8	Colour	175.00	
9	Electrical Conductivity (EC)	175.00	
10	Exchangeable Sodium Percentage (ESP)	960.00	
11	Gypsum requirement	620.00	
12	H. Acid	700.00	
13	Heavy metal	As mention in respective group at clause 5.0	
14	Trace metals using ED-XRF Aluminium, Antimony, Arsenic, Barium, Bromine, Cadmium, Calcium, Cesium, Chlorine, Chromium, Cobalt, Copper, Gallium, Germanium, Gold, Iodine, Iron, Lanthanum, Lead, Magnesium, Manganese, Molybdenum, Nickel, Palladium, Phosphorous, Potassium, Rubidium, Rutherfordium, Selenium, Silicon, Silver, Sodium, Strontium, Sulphur, Tellurium, Tin, Titanium, Tungsten, Vanadium, Ytterbium and Zinc per sample		
15	Magnesium	530.00	
16.	Mechanical Soil analysis(soil texture)	270.00	
17	Nitrate	530.00	
18	Nitrite	530.00	
19	Nitrogen available	620.00	
20	Organic Carbon/ Matter (chemical method)	620.00	
21	Polycyclic Aromatic Hydrocarbons (PAHs)	As mention in respective group at clause 5.0	
22	Polychlorinated Biphenyls (PCBs)	As mention in respective group at clause 5.0	
23	Pesticides	As mention in respective group at clause 5.0	
24	pH	175.00	
25	Phosphorous (available)	700.00	
26	Phosphate(ortho)	530.00	
27	Phosphate(total)	700.00	
28	Potash(Available)	350.00	
29	Potassium	530.00	
30	Sodium Absorption Ratio (SAR) in Soil extract	1140.00	
31	Sodium	530.00	
32	Soil Moisture	175.00	
33	Sulphate	350.00	
34	Sulphur	620.00	
35	Total Kjehldhal Nitrogen (TKN)	700.00	
36	тос	960.00	
37	Total Water Soluble Salts	350.00	
38	Water Holding Capacity	175.00	
39	Sample processing and analysis for Dioxin-Furan (PCDDs-PCDFs) congeners (Isotope dilution method using GC-HRMS)	75000.00	

VIII. Analysis charges for Hazardous Waste samples

Sl. No.	Parameters	Analysis Charges per test in Rs.
1.	Preparation of Leachate (TCLP extract / Water Extract)	1750.00
2.	Determination of various parameters in Leachate	As mention in respective group at clause 5.0
3.	Flash point/ Ignitibility	960.00
4.	Reactivity	960.00
5.	Corrosivity	960.00
6.	Measurement of Toxicity	
	- LC ₅₀	4900.00
	- Dimensionless Toxicity	2800.00
7.	Total Organic Carbon	880.00
8.	Adsorbable organic Halogen (AOx)	3500.00

VIII. AQC Participation Fees:

To be charged by the Board from respective recognized laboratories for Analytical Quality Control Exercise (AQC) samples.

1	Laboratories of Govt./Semi-Govt. / Public sector undertaken/Autonomous bodies	18000.00
2	Private Sector laboratories	27000.00

ANNEXURE-III

Staff Strength

Sl. No.	Name of the Post	No. of Post Sanctioned	No. of Post filled up	Post lying vacant
(A)	Cadre of Scientist			
1	Chief Environmental Scientist	2	1	1
2	Senior Enviornmental Scientist (L-I)	3	0	3
3	Senior Enviornmental Scientist (L-II)	3	3	0
4	Environmental Scientist	48	20	17
5	Deputy Environmental Scientist		4	
6	Assistant Environmental Scientist		7	
	Total	56	35	21
(B)	Cadre of Engineer			
7	Chief Environmental Engineer	2	2	0
8	Senior Environmental Engineer (L-I)	3	3	0
9	Senior Environmental Engineer (L-II)	3	3	0
10	Environmental Engineer	46	13	13
11	Deputy Environmental Engineer		6	
12	Assistant Environmental Engineer		14	
	Total	54	41	13
(C)	Cadre of Laboratory Officials	,		
13	Assistant Scientific Officer	7	6	1
14	Senior Scientific Assistant	15	8	7
	Total	22	14	8
(D)	Administrative Cadre			
15	Administrative Officer	1	0	1
16	Additional Administrative Officer	1	1	0
17	Accounts Officer	2	1	1
18	Section Officer	8	7	1
19	Accountant	5	0	5
20	Senior Assistant	13	12	1
21	Junior Assistant	18	7	11
	Total	48	28	20
(E)	Legal Personnel Cadre			
22	Senior Law Officer (L-I)	1	1	0
23	Senior Law Officer (L-II)	1	1	0
24	Law Officer	1	0	1
25	Assistant Law Officer	1	0	1
	Total	4	2	2
(F)	Stenographer Cadres			
26	Private Secretary (Gr. A)	1	1	0
27	Private Secretary (Gr. B)	2	2	0
28	Personal Assistant	8	7	1

Sl. No.	Name of the Post	No. of Post Sanctioned	No. of Post filled up	Post lying vacant
29	Senior Stenographer	9	0	9
30	Junior Stenographer	7	1	6
	Total	27	11	16
(G)	Others			
31	Asst. Librarian	1	1	0
32	Store Keeper	1	1	0
33	Sr. Typist	2	2	0
34	Jr. Typist	8	5	3
35	Head Driver	1	0	1
36	Sr. Driver	3	3	0
37	Driver	9	6	3
38	Record Supplier	1	1	0
39	Diarist	1	1	0
40	Xerox Asst.	1	1	0
41	Daftary	1	1	0
42	Lift Operator	1	1	0
43	Laboratory Attendant	10	8	2
44	Library Attendant	1	1	0
45	Tresury Sarkar	1	1	0
46	Zamadar	1	1	0
47	Peon	21	18	3
48	Watchman	2	2	0
49	Watchman-cum-Sweeper	5	3	2
	Sub-Total	71	57	14
	GRAND TOTAL (A+B+C+D+E+F+G)	282	192	90

STATE POLLUTION CONTROL BOARD, ODISHA

A/118, NILAKANTHA NAGAR, UNIT - VIII BHUBANESWAR