

ANNUAL REPORT 2020-21

STATE POLLUTION CONTROL BOARD, ODISHA A/118, NILAKANTHA NAGAR, UNIT-VIII BHUBANESWAR-751012 Published By: **State Pollution Control Board**, **Odisha**Bhubaneswar – 751012

Printed By: **Shree Maa Graphics**Plot No. 235, Saheed Nagar, Bhubaneswar

CONTENTS

Highlights of Activities			Page
Chapter-I In		ntroduction	1
Chapter-II	C	onstitution of the State Board	5
Chapter-III	C	onstitution of Committees	7
Chapter-IV	В	oard Meetings	12
Chapter-V	A	ctivities	13
Chapter-VI	L	egal Matters	146
Chapter-VII	F	inance and Accounts	147
Chapter-VIII	O	ther Important Activities	149
Annexures			
	(I)	Organisational Chart	181
	(II)	Rate Chart for Sampling & Analysis of Env. Samples	182
	(III)	Staff Strength	193

HIGHLIGHTS OFACTIVITIES OF THESTATE POLLUTION CONTROLOARD, ODISHA

The State Pollution Control Board (SPCB), Odisha was constituted on July, 1983 and was entrusted with the responsibility of implementing the Environmental Acts, particularly the Water (Prevention and Control of Pollution) Act, 1974, the Water (Prevention and Control of Pollution) Cess Act, 1977, the Air (Prevention and Control of Pollution) Act, 1981 and the Environment (Protection) Act, 1986. Several Rules addressing specific environmental problems like Hazardous Waste Management, Bio-Medical Waste Management, Solid Waste Management, E-Waste Management, Plastic Waste Management, Construction & Demolition Waste Management, Environmental Impact Assessment etc. have been brought out under the Environment (Protection) Act. The SPCB also executes and ensures proper implementation of the Environmental Policies of the Union and the State Government. The activities of the SPCB broadly cover the following:

- > Planning comprehensive programs towards prevention, control or abatement of pollution and enforcing the environmental laws.
- Advising the State Government on any matter concerning prevention and control of water and air pollution.
- Environmental Monitoring and Research.
- > Creating public awareness.

The achievements and activities of the Board during period of report are as follows.

1. Industrial Pollution Abatement and Control through Consent Administration

Improvement in compliance to pollution control norms, guidelines and regulations has been witnessed consistently through vigorous surveillance, regular inspections and monitoring, stipulation of a series of guidelines and directives. The Board has also taken the following measures/ activities:

- (i) Implementation of the on-line consent management system (from receipt of application to grant of consent order) for all industries, mines, on-line authorization management for Hazardous Waste, Solid Waste, Bio-Medical Waste, E-waste and on-line registration for plastic products manufacturing units.
- (ii) Implementation of GPRS based real time data transmission system with Y-Cable for online stack, ambient air quality and waste water monitoring network for highly polluting large scale industries and mines in order to keep the regulator and industries alert. So far online monitoring and data transmission system has been installed in 157 industries and 24 mines.
- (iii) The Fly Ash Resource Centre (FARC) has been setup in the State Pollution Control Board for promoting safe management and utilization of fly ash in the State. This center has prepared guidelines on utilization of fly ash in various sectors and it also co-coordinates among the users and generators. In addition, FARC is also organizing Workshops and Interaction meet among the stakeholders for enhancing fly ash utilization. The utilization of fly ash was 90.58% during the reporting period.

- (iv) The Board is monitoring bulk utilization of other industrial solid wastes like dolochar, phosphogypsum, blast furnace slag, anode butt, ferro-manganese sludge in different sectors like brick making, road construction, cement manufacturing and power generation etc.
- (v) The bedded health care establishments having 30 beds or more are covered under the Consent administration as per the provisions of Water (Prevention & Control of Pollution) Act, 1974 in order to dispose contaminated waste water in an environmentally sound manner.

(vi) Activity of Integrated Coastal Zone Management (ICZM)

• Coastal Water (Paradeep to Dhamara) Monitoring and Analysis.

The assigned monitoring area is from Paradeep to Dhamara coast covering nearly 80km. along the sea. Total seventy three (73) sampling locations have been selected for the entire monitoring area, out of which 32 are along Mahanadi transect, 17 in Dhamara transect and 24 in Gahirmatha-Bhitarkanika transect. Sampling was made from on-shore and few off-shore sampling points with the help of monitoring vessel **MV Sagar Utkal**. 3100 water samples and 126 sediment samples have been collected and analyzed during the reporting period.

Blue Flag Beach Certification:

Out of twelve beaches in the country being developed by the Society for Integrated Coastal Management (SICOM), an Environment Ministry's body working for the management of coastal areas, the District Administration along the State Project Management Unit (SPMU), ICZM Cell, SPCB developed the designated stretch of 435 meters in Puri sea beach (from Raj Bhawan to hotel Mayfair) in line with recommendation of Blue Flag Beach Certification and it is certified as Pilot Blue Flag Beach.

- Monitoring of Coastal water under National Water quality Monitoring Programme (NWMP)
 - The coastal water monitoring has been commenced by ICZM cell from January, 2021 for 91 locations under NWMP covering 6 coastal districts viz., Ganjam, Puri, Jagatsinghpur, Kendrapara, Bhadrak and Balasore along 480 KM coastal stretch of Odisha. The assessment of the suitability of coastal water quality for different uses of the coastal segment has been proposed based on the "Water Quality Standards for Coastal Waters Marine Outfalls" (G.S.R. 7(E) dated 22.10.1998 and subsequent amendment vide G.S.R. No. 682 (E) dated 05.10.1999). In total 130 samples were collected and analysed during the month of January and March from coastal district Jagatsinghpur (100 no.) and Bhadrak (30 no.), respectively.
- (vii) The Board has granted consent stipulating appropriate pollution control measures to 907 Industries, hotels, mineral stack yards, mineral processing units, railway sidings, stone crushers, brick kilns and DG Sets (as stand by) etc. for their establishment and refused / rejected consent of 62 units for establishment due to certain non compliances.
- (viii) Consent to operate has been granted to 2845 industries, mines, hotels, hospitals, mineral stack yards, mineral processing units, country liquor manufacturing units, railway sidings, stone crushers, brick kilns, DG Sets (as stand by), housing projects, mineral based industries etc. during the reporting period. Board has issued show cause notices to 175 units and direction /closure direction to 93 units. Consent to operate of 13 units have been refused.

- (ix) All the Urban Local Bodies have been directed to seek consent and submit time bound action plan for construction of sewage treatment plant.
- (x) The Board has conducted 34 public hearings for major industrial / mining / development projects, requiring environmental clearance from MoEF and CC, Govt. ofIndia/ State Environment Impact Assessment Authority (SEIAA), Odisha.

2. Regulation under Hazardous Waste Management Rules

The Board has granted authorization to 159 hazardous waste generating units for collection, storage, treatment and disposal of hazardous wastes. 27 nos. of actual users inside Odisha and 15 nos. of actual users outside Odisha have been authorized by the Board during the reporting period for utilization of hazardous wastes.

3. Management of Lead Acid Batteries

The Board has received 221 half yearly returns for smooth management and handling of batteries (Lead-Acid) from battery units under the provisions of the said Rules.

4. Management of Bio-Medical Waste

The Board has granted authorization to 550 Health Care Facilities (HCF) under the provisions of the Bio-Medical Waste Management Rules, 2016 with conditions for proper management, segregation, handling, treatment and disposal of biomedical wastes. Show cause notice to 139 units and refusal of authorization to 04 units have been issued due to improper management of biomedical wastes.

5. Management of Plastic Waste

The Board is consistently vigilant on carry bag manufacturing units for their compliance with the statutory provisions of the Plastic Waste Management Rules. Eleven plastic product manufacturing units have been registered with the Board during the reporting period.

6. Management of Electronic Waste

The Board has issued authorization to 04 E-waste collection-cum-dismantling units during the reporting period.

7. Legal Matters

The Board has filed 131 cases in appropriate legal forum and 89 cases have been disposed during the reporting period.

8. Right to Information

Under the Right to Information Act, 2005, the Board has disposed 434 applications by providing information.

9. Disposal of Public Complaints

The Board has addressed 306 public complaints on various environmental issues during the reporting period.

10. Planning and Monitoring

For prevention and control of pollution, the Board has undertaken following activities..

 Board is regularly monitoring the river water quality at 129 stations on 11 major river systems of the State i.e., Mahanadi, Brahmani, Baitarani, Rushikulya, Subarnarekha, Nagavali, Budhabalanga, Kolab, Vansadhara, Indravati and Bahuda. Water quality is assessed in respect of 32 water quality parameters under National Water Quality Monitoring Programme (NWMP) Besides these, water quality of Taladanda Canal at six locations, Puri canal at three locations, religious ponds such as Bindusagar (Bhubaneswar) at its four bathing ghats and five ponds in Puri town such as Narendra, Markanda, Indradyumna, Swetaganga and Parbati Sagar, one pond in Jeypore town, one pond in Angul town, lakes such as Chilika (two locations) & Anshupa (four locations), Tampara (one location) and coastal water quality at Puri, Gopalpur and Paradeep on the Bay of Bengal and creek water at Atharbanki has also been monitored.

Monitoring of ground water quality at 48 stations of 11 towns i.e., Cuttack, Bhubaneswar, Puri, Berhampur, Sambalpur, Paradeep, Angul, Talcher, Ib valley-Jharsuguda area, Sukinda and Balasore has also been conducted in respect of 32 water quality parameters.

- Central Pollution Control Board, Delhi has sanctioned 43 no. of additional ground water monitoring stations during January-March, 2021.
- Bio-monitoring at 25 locations of 08 major rivers i.e. Mahanadi, Brahmani, Rushikulya, Subernarekha, Budhabalanga, Kolab, Vansadhara, Nagabali and one location in Jagannatha Sagar Pond, Jaypore has been monitored to assess the biological health.
- Surface water quality of 5 stations on Atharabanki creek and ground water quality at 3 stations in the peripherals of Phosphatic Fertiliser Units and water samples from 07 test wells as well as samples from 05 wastewater discharging points of the fertilizer manufacturing units at Paradeep have been monitored on quarterly basis to assess fluoride contamination in the area.
- Water quality of Ganda Nallah and Kharasrota river has also been monitored at seven stations on regular interval to assess the impacts of waste water discharge from the Industrial Units in Kalinganagar area to the Nallah.
- Water quality of Damasala river at nine stations in Sukinda Chromite Mines area has been monitored on regular interval to assess the hexavalent chromium content in river water.
- Surface water quality in and around M/s Vedanta Aluminium Limited, Jharsuguda has been monitored at fourteen stations to assess the fluoride contamination in the area.
- Impacts of idol immersion after Durga puja on water quality of Kuakhai and Daya river (in Bhubaneswar city), Kathajodi river (in Cuttack city) and Mangala river (in Puri town) have been investigated. No significant impact due to immersion activities on the water bodies was observed.
- 2266 industrial wastewater samples, 5567 water samples under NWMP, National River Conservation Programme (NRCP), SWMP & different projects have been analysed by the Board during this period.
- NABL Accreditation has been accorded to Central Laboratory of the Board for a period of two years from 01.02.2021 to 31.01.2023 under **Chemical and Biological** testing (25 Chemical parameters, 2 Biological parameters, 8 heavy metal parameters and 9 pesticide residue parameters) for Surface water / Ground water / Waste water and 7 parameters for Ambient air.
- Ambient air quality at 36 stations of 17 important towns and industrial areas of Angul, Balasore, Berhampur, Bhubaneswar, Bonaigarh, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rajgangpur, Rourkela, Sambalpur & Talcher have been monitored by the Board under National Ambient Air Quality Monitoring Programme (NAMP)/State Ambient Air Quality Monitoring Programme (SAMP) in respect of 08 parameters like PM₁₀, PM_{2.5}, SO₂,

- NO₂, NH₃, O₃, Pb & Ni. In total, 1375 ambient air quality samples, 14,911 samples under NAMP/SAMP projects, 734 stack emission samples have been collected and analysed by the Board during the reporting period.
- Study on ambient noise levels in pre & during celebrations of Dusshera & Deepavali have been conducted in Industrial, Commercial, Residential and Silence Zones in 14 cities/towns such as Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur.
- To assess the impact of bursting of fire crackers during Deepavali, the ambient air quality with respect to parameters like SO₂, NO₂, PM₁₀ & PM_{2.5} have been monitored in pre- and on the day of Deepavali at 53 locations in 14 towns/ cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur.

11. Board's Publication

The Board has published two volumes of newsletters "Paribesh Samachar" during this period.

12 Awareness Programmes

- The Board observed the World Environment Day on 5th June' 2020 through its 12 Regional Offices. The theme of the World Environment Day for the year 2020 was "Time for Nature". Due to the pandemic COVID-19 situation the regular celebration activities were not organized. However, awareness meetings involving different organizations through virtual mode and plantation programmes were done in different industries as well as inside office premises of Regional Offices maintaining Covid protocol. Other activities like "International Coastal Cleanup Day" and "World Ozone Day" were also not observed by the Board due to pandemic situation.
- Public awareness on "Impact of bursting of fire crackers during Deepawali" and "Impact on immersion of idols on water quality of surface water bodies" were created through public notices in local news papers.

13. Human Resource Development

- Due to the current pandemic COVID-19 situation the Board officials (68 nos.) were imparted training on various sectors on virtual mode.
- 2nd National E-Conference on "Industrial Waste Management COVID-19 and Industrial Waste Management Ecosystem in India" was organized by the Board through video conferencing.
- Students (3 nos.) from Siksha 'O' Anusandhan University, Bhubaneswar have done internship work under Legal Consultant of the Board during the reporting period.

CHAPTER-I

INTRODUCTION

1.1 CONSTITUTION OF THE BOARD

The Odisha State Prevention and Control of Pollution Board was constituted in pursuance of sub-section (1) of section 4 of the Water (Prevention and Control of Pollution) Act, 1974, vide Notification No. 1481-VII-HI-11/83 (Vol. II)-S.T.E., dt. 15.7.1983 in the erstwhile Department of Science, Technology & Environment, Government of Odisha. The Board was re-designated as State Pollution Control Board, Odisha vide Govt. Notification No.Env.-E (F)/8/89/1882 F&E, dt.16.07.1999.

1.2 FUNCTIONS AND RESPONSIBILITIES OF THE BOARD

The constitution and functions of the Board are clearly spelt out in the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981. The Board is entrusted with the responsibility of implementation of Environmental Laws, particularly the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981 and the Environment (Protection) Act, 1986 and a number of Rules and Notifications issued thereunder as amended from time to time.

Responsibilities of the Board, however, can broadly be classified into the following four main categories:

- 1. To plan a comprehensive programme for prevention, control or abatement of pollution and enforce the environmental laws
- 2. To advise the State Government on any matter concerning prevention and control of water and air pollution
- 3. To conduct Environmental Monitoring and Research
- 4. To create public awareness

In addition, the Board is also expected to execute and ensure proper implementation of the Environmental Policies of the Union and the State Government.

1.3 ENVIRONMENTAL LAWS

The major Acts and Rules / Notifications issued thereunder, with which the Board is entrusted for implementation and execution, are as follows:

- 1. The Water (Prevention and Control of Pollution) Act, 1974
- 2. The Air (Prevention and Control of Pollution) Act, 1981
- 3. The Environment (Protection) Act, 1986
- 4. The Public Liability Insurance Act, 1991
- 5. The Hazardous Waste (Management, Handling and Transboundary Movement) Rules, 2008 amended as the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.
- 6. The Manufacture, Use, Import, Export and Storage of Hazardous Microorganisms, Genetically Engineered Organisms or Cells Rules, 1989
- 7. The Manufacture, Storage and Import of Hazardous Chemical Rules, 1989
- 8. The Chemical Accidents (Emergency Planning, Preparedness and Response) Rules, 1996

- 9. The Biomedical Waste (Management and Handling) Rules, 1998 amended as the Biomedical Waste Management Rules, 2016.
- 10. The Municipal Solid Waste (Management and Handling) Rules, 2000 amended as the Solid Waste Management Rules, 2016.
- 11. The Noise Pollution (Regulation and Control) Rules, 2000
- 12. The Ozone Depleting Substance (Regulation and Control) Rules, 2000
- 13. The Batteries (Management and Handling) Rules, 2001
- 14. The Environment Audit Notification, 1993
- 15. The Fly-ash Utilization Notification, 1999 and amended thereof
- 16. The Environment Impact Assessment Notification, 2006
- 17. The Plastic Waste (Management and Handling) Rules, 2011 amended as the Plastic Waste Management Rules, 2016
- 18. The E-Waste (Management and Handling) Rules, 2011 amended as the E-Waste (Management) Rules, 2016.
- 19. The Construction & Demolition Waste Rules, 2016.

1.4 LOCATIONS AND MAILING ADDRESSES OF BOARD'S OFFICES

Headquarters of the State Pollution Control Board, Odisha is located at Paribesh Bhawan, A/118, Nilakantha Nagar, Bhubaneswar in Khordha District. The Board has established its state-of-art Central Laboratory at B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar.

The jurisdictions, various functions, role, responsibilities and powers of Regional Officers of all the 12 Regional Offices have been defined vide Board's Office Order No. 16908, dtd.19.09.2013. The mailing addresses, Telephone/Fax Nos., E-mail/website and jurisdiction of the Head Office, the Central Laboratory and Regional Offices are given in Table-1. The locations of twelve Regional Offices of State Pollution Control Board are illustrated in Odisha Map in Fig. 1.

Table – 1: Address, Telephone / Fax, e-mail / Website and Jurisdiction of State Pollution Control Board, Odisha

Sl.	Address	Telephone / FAX /	Jurisdiction		
No.		e-Mail / Website	(Districts)		
	Н	EAD OFFICE	,		
1.	State Pollution Control Board, Odisha, Paribesh Bhawan, A/118, Nilakantha Nagar, Unit-8, Bhubaneswar-751 012	(0674) 2561909, 2562847 Fax- (0674) 2562827, 2560955 E-Mail:paribesh1@ospcboard.org Website: www.ospcboard.org	Whole of the Odisha State		
2.	Central Laboratory, State Pollution Control Board, Odisha, B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar	E-Mail: centrallab@ospcboard.org Website: www.ospcboard.org	Whole of the Odisha State		
	REGIONAL OFFICES				
1.	Regional Office, Angul S-3/3, Industrial Estate, Hakimpada, Angul - 759 143	Tel - (06764) 236389 Fax - (06764) 237189 E-mail:rospcb.angul@ ospcboard.org	1) Angul 2) Dhenkanal		

Sl. No.	Address	Telephone / FAX / e-Mail / Website	Jurisdiction (Districts)
2.	Regional Office, Balasore, Plot No – 1602, Ganeswarpur mouza, Januganj, Balasore – 756019	Tel/Fax-(06782) 265110 Email:rospcb.balasore@ ospcboard.org	1) Balasore 2) Bhadrak 3) Mayurbhanj
3.	Regional Office, Berhampur, New Divisions Office, IDCO, Berhampur Division Industrial Estate – 760008, Ganjam	Tel- (0680) 2281075 Fax- (0680) 2280139 Email:rospcb.berhampur@ ospcboard.org	 Ganjam Gajapati Phulbani Nayagarh
4.	Regional Office, Bhubaneswar, B-59/2 & 59/3, Chandaka Industrial Estate, Patia, Bhubaneswar	R.O Tel - (Mob) 9438883892 E-mail : rospcb.bhubaneswar @ospcboard.org Website: www.ospcboard.org	1) Puri 2) Khordha
5.	Regional Office, Cuttack, Plot No. 586, Surya Vihar, Link Road, Cuttack – 753 012	Tel/Fax-(0671) 2335478 E-Mail: rospeb.cuttack@ ospeboard.org	1) Cuttack
6.	Regional Office, Keonjhar At - Baniapat, College Road, Keonjhar-758 001	Tel / Fax - (06766) 259077 E-Mail: rospcb.keonjhar@ ospcboard.org	1) Keonjhar
7.	Regional Office, Rayagada 287/A, Kasturi Nagar, Rayagada – 765 001	Tel-(06856) 223073 Fax-(06856) 224281 E-Mail: rospeb.rayagada@ ospeboard.org	 Rayagada Koraput Nawarangpur Malkangiri Kalahandi
8.	Regional Office, Rourkela, Town Engineering Office Premises, Sector – 5, Rourkela – 769 002	Tel - (0661) 2646736 Fax - (0661) 2648999 E-Mail: rospcb.rourkela@ ospcboard.org	1) Sundergarh except Himgiri block of Sundergarh district (Basundhara mining areas) 2) Deogarh
9.	Regional Office, Sambalpur, Plot No.1070 Hospital Road, Modipara, Sambalpur-768 002	Tel- (0663) 2541910 Fax – (0663) 2541978 E-Mail:rospeb.sambalpur@ ospeboard.org	1) Sambalpur 2) Bargarh 3) Boudh 4) Bolangir 5) Nuapada 6) Sonepur
10.	Regional Office, Jharsuguda, Plot No. 370/5971, At – Babubagicha (Cox Colony) St. Marys Hospital Road, PO- Industrial Estate, DistJharsuguda- 768203	Tel- (06645) 273284 Fax – (06645) 2732294 E-Mail: rospcb.jharsuguda@ ospcboard.org	Jharsuguda Himgiri block of Sundergarh district
11.	Regional Office, Kalinga Nagar, At: Dhabalagiri, Near OMC Office, J.K. Road, PO: Ferro Crome Plant, , Dist – Jajpur – 755 019	Mob-9438883904 E-mail: rospcb.kalinganagar@ ospcboard.org	1) Jajpur
12.	Regional Office, Paradeep, At- Centre for Management of Coastal Eco-system (CMCE), Plot No. 47, Nuasandhakuda, Near Panthaniwas, Marine Road, Paradeep-754142	Mob-9438883905 E-Mail: rospcb.paradeep@ ospcboard.org	Jagatsinghpur Kendrapara

004

CHAPTER - II

CONSTITUTION OF THE STATE BOARD

- 2.1 As per the provisions of sub-section 2 of section 4 of the Water (Prevention and Control of Pollution) Act, 1974 and under sub-section 2 of section 5 of the Air (Prevention and Control of Pollution) Act, 1981, the State Board shall consist of the following members, namely:
 - i. A Chairman (either whole-time or part-time as the State Government may think fit), being a person having special knowledge or practical experience in respect of matters relating to environment protection or a person having knowledge and experience in administrating institutions dealing with the matters aforesaid, to be nominated by the State Government;
 - ii. Such number of officials, not exceeding five, to be nominated by the State Government to represent that Government;
 - iii. Such number of persons, not exceeding five, to be nominated by the State Government from amongst the members of the local authorities functioning within the State;
 - iv. Such number of officials, not exceeding three, to be nominated by the State Government to represent the interest of agriculture, fishery or industry or trade or any other interest which, in the opinion of the State Government, ought to be represented;
 - v. Two persons to represent the companies or corporations owned, controlled or managed by the State Government, to be nominated by that Government;
 - vi. A full time Member Secretary, possessing qualifications, knowledge and experience of scientific, engineering or management aspects of pollution control, to be appointed by the State Government.
- In exercise of the powers conferred under Sub-Section (1) of Section 4 of the Water (Prevention & Control of Pollution) Act, 1974 and Section 5 of the Air (Prevention & Control of Pollution) Act, 1981, Government in the Forest & Environment Department, Odisha constituted the present Board vide Notification No. 25653-Env-II-39/2018-F&E dated 29.11.2018 for a period of three years with the following members.

A. Chairman

Chairman, State Pollution Control Board, Odisha.

Sri Asit Tripathy, IAS, Chief Secretary, Odisha (From 19.08.2019 to 31.12.2020.)

Sri Suresh Chandra Mahapatra, IAS, Chief Secretary, Odisha (From 12.01.2021 and contd.)

B. Official Members

- 1. Secretary to Government, H & UD Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 2. Secretary to Government, Industries Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 3. Secretary to Government, Steel and Mines Department, Government of Odisha or his nominee, not below the rank of Joint Secretary
- 4. Director, Environment-cum-Special Secretary, Forest & Environment Department, Government of Odisha or his nominee
- 5. Director, Factories & Boilers, Government of Odisha or his nominee

C. Members Representing Local Authorities

- 1. Commissioner, Bhubaneswar Municipal Corporation, Bhubanewswar
- 2. Chairman / Executive Officer, Paradeep Municipality
- 3. Chairman / Executive Officer, Jharsuguda Municipality
- 4. Chairman / Executive Officer, Talcher Municipality
- 5. Chairman / Executive Officer, Barbil Municipality

D. Non-Official Members

- 1. Prof. Atanu Kumar Pati, Presently Vice Chancellor, G. M. University, Sambalpur
- 2. Dr. Ajit Kumar Patnaik, IFS (Retd), Former PCCF, Chief Executive, Chilika Development Authority
- 3. Dr. G.K. Roy, Retired Professor of Chemical Engineering & Former Director, NIT, Rourkela.

E. Members Representating Companies & Corporations

- 1. Managing Director, Odisha Mining Corporation Ltd., Bhubaneswar
- 2. Managing Director, Industrial Infrastructure Development Corporation (IDCO), Bhubaneswar

F. Member Secretary

Member Secretary, State Pollution Control Board, Odisha.

Dr.K. Murugesan, IFS (From 01.07.2020 and contd.)

CHAPTER - III

CONSTITUTION OF COMMITTEES

3.1 CONSENT COMMITTEE

3.1.1 Constitution of Consent Committees

The Board has re-constituted consent committee vide office order No. 355 dt. 08.01.2019 in pursuance to partial modification of order no.12547,dt.20.07.2015 with the members enlisted in Table-3.1 for establishment of various projects mentioned below:

17 categories of highly polluting industries having investment of ₹50 crores or more.

Coal, Bauxite, Iron Ore, Manganese, Limestone, Dolomite & Chromite Mines.

All Sponge Iron Plants.

Hazardous Waste recycling and re-processing unit including TSDF irrespective of any investment.

Reclamation of low lyling area / abandoned quarries with ash outside the plant premises for land measuring more than 10 Acres (Consent to Establish to be granted with the approval of Member Secretary and same to be taken to the Consent Committee for ratification on case to case basis as per Office Order no. 11047 / IND-IV-PCP-FARC-120, dated. 21.08.2017).

Members of the Committee are given in Table 3.1.

Table - 3.1 Members of the Consent Committee

1.	Member Secretary, SPC Board, Odisha, Bhubaneswar	Chairman
2.	One of the sectoral expert each of different Technical Committee constituted by the Board (such as Mining, Iron & Steel, Power, Chemical & Allied Industries, Petroleum refinery, Aluminium Smelter and Port Projects) in case of large industrial projects whose investment is ₹ 1000 crores or more or mining project with lease hold area 1000 ha. or more. (As per Table No.3.2)	Member
3.	External Expert Members to be nominated by the Chairman, SPC Board in specific cases, if required.	Member
4.	Secretary, Industries Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary	Member
5.	Secretary, Steel & Mines Department, Govt. of Odisha or his representative not below the rank of Deputy Secretary	Member
6.	Secretary, Water Resources Department, Govt. of Odisha or his re presentative not below the rank of Deputy Secretary	Member
7.	Director -cum-Special Secretary to Govt. Forest & Env.Deptt. Govt. of Odisha or his representative	Member
8.	Director, Factories & Boilers, Odisha, Bhubaneswar or his representative not below the rank of Deputy Director	Member
9.	Chief Conservator of Forest (Nodal), Odisha or his nominee not below the rank of D.F.O. in the office of PCCF, Odisha, Bhubaneswar	Member
10.	Concerned District Collectors or their nominees	Member

11.	Branch Head de aling the subject of Hazardous Waste, SPC Board, Odisha, Bhubaneswar.	Member
12.	Branch Head dealing with Consent to Operate, Mines, SPC Board, Bhubaneswar.	Member
13.	Branch Head dealing the subject of environmental monitoring, SPC Board, Odisha, Bhubaneswar	Member
14.	Branch Head of Consnet to Establish Cell, SPC Board, Odisha, Bhubaneswar	Convener

The Technical Committee has been merged with Consent Committee vide Office Order No. 12547, dtd.20.07.2015.

Table – 3.2 Members of the Technical Committee

Sl. No.	Technical Committee constituted for	Sectoral Experts		
1.	Mining Projects whose leasehold area is 1000 Ha or more. (vide Office Order No. 10729, dt. 03.05.07)	1) 2)	Prof. S. Jayantu, Dept. of. Mining Engineering, NIT Rourkela Sri B. N. Mishra, Ex-Director (T) MCL, CMD, EDL, Bhubaneswar	
2.	Iron and Steel Projects (vide Office Order No. 27958, dt. 16.11.06 & No. 10735 dt. 03.05.2007	1) 2)	Dr. Somanath Mishra, Ex- Principal, REC, Rourkela, Dr. R. C. Gupta, Professor and Head, /Department of Metallurg ical Engineering , Institute of Technology, Banaras Hindu University	
3.	Power Projects (vide Office Order No. 10761, dt. 03.05.07)	1) 2)	Sri B. C. Jena, Ex-CMD, Grid Corp. of Odisha Ltd, Bhubaneswar Mr. G. S. Panda, Ex. Head TTPS, Sailashree Vihar, Bhubaneswar	
4.	Chemical and Allied industries (vide Office Order No. 10850, dt. 05.05.07)	 Prof. G. K. Roy, Dept. of Chemical Engineering, NIT, Rourkela Sri R. K. Dash, Former Executive Director, PPL & OCFL, VIM 484 (near post office), Sailashree Vihar, Bhubaneswar 		
5.	Petroleum Refineries (vide Office Order No. 10761, dt. 03.05. 07)	 Dr. M. O. Garg, Director, Institute of Petroleum, Dehradun Prof. P. R ath, HOD, Department of Chemical Engineering, NIT, Rourkela 		
6.	Aluminium Smelter (vide Office Order No . 14791, dt. 22.06.07)	1) 2)	Electrometallurgy Dept., Institute of Minerals & Materials Technology (formerly known as Regional Research Laboratory) Bhubaneswar, Odisha	
7	Port Projects (vide office order No. 16387,dt. 05.07.2008)	1)	Dr. R. Sundarvadivelu, Professor and Head, Department o f Ocean Engineering, Indian Institute of Technology, Chennai – 600 036 Or Dr. Sannasi Raj, Associate Professor, Department of Ocean Engineering, Indian Institute of Technology, Chennai – 600 036 Sri Dibakar Mohapatra, (Retd. Chief Engineer, Paradeep Port Trust), Plot No. 7A, Brahmeswar Bag, Tankapani Road, Bhubaneswar	

3.1.2 Consent Committee Meetings

Ten Consent Committee meetings were held for consideration of 78 proposals for establishment during the financial year 2020-21. The details are given in Table - 3.3.

Table – 3.3 Details of Consent Committee Meeting

Sl. No.	Date of Consent Committee meeting	No. of cases disucssed
1.	24.06.2020	07
2.	22.07.2020	09
3.	27.08.2020	05
4.	24.09.2020	06
5.	03.11.2020	06
6.	27.11.2020	10
7.	08.01.2021	08
8.	02.02.2021	03
9.	25.02.2021	11
10.	25.03.2021	13
	Total	78

Constitution of Internal Consent Committee

In pursuance of office order No.352, dt. 08.01.2019, an internal consent committee has been reconstituted with the members reflected in Table 3.4 to evaluate the applications for grant of consent to establish (NOC) for the following projects:

17 categories of highly polluting industries having investment of less than ₹50 crores.

Other than 17 categories of polluting industries (Red and Orange Category) having investment of ₹50 crores or more.

Table – 3.4 Members of the Internal Consent Committee

1.	Branch Head dealing with Consent to Establish, SPC Board, Odisha, Bhubaneswar	Chairman
2.	Senior Officer not below the rank of DEE & DES, SPC Board, Odisha, Bhubaneswar dealing with Consent to Establish.	Member
3.	Senior Officer not below the rank of DEE & DES, SPC Board, Odisha, Bhubaneswar dealing with Consent to Operate of Industry / Mines.	Member
4.	Senior Officer not below the rank of DEE & DES, SPC Board, Odisha, Bhubaneswar dealing with the subject of Hazardous Waste.	Member
5.	Senior Officer not below the rank of DEE & DES, SPC Board, Odisha, Bhubaneswar dealing with the subject of Environmental Monitoring.	Member
6.	Branch officer of Consnet to Establish Cell, SPC Board, Odisha, Bhubaneswar	Convenor

3.1.3 Internal Consent Committee Meetings

Five Internal Consent Committee meetings were held on following dates and twenty consent to establish cases were discussed. The details are given in Table - 3.5.

Table – 3.5 Details of Internal Consent Committee Meeting

Sl. So.	Date	No. of cases discussed
1.	27.05.2020	01
2.	19.10.2020	04
3.	15.12.2020	07
4.	13.01.2021	05
5.	09.03.2021	03
	Total	20

3.1.4 Constitution of Technical Committee for issue of "No Increase in Pollution Load" Certificate for Changes in Plant Configuration and Product Mix for the Project.

In pursuance to MoEF&CC, Govt.of India Notification vide So.3518(E) dtd.23.11.2016, State Pollution Control Board has constituted a Technical Committee with the following members to examine the application and to make recommendations for issue of "No Increase in pollution load" certificate for changes in plant configuration & product mix for the project.

Table - 3.6 Members of Technical Committee for issue of "No Increase in Pollution Load" Certificate

Sl. No.	Name	Designation
1.	Member Secretary, State Pollultion Control Baord, Odisha	Chairman
2.	Dr. Sanjat Ku. Sahu, Professor, Dept. of Env. Science, Sambalpur University, Sambalpur (Nominated by F&E Department).	Member
3.	Dr. Himanshu B. Sahu, Associate Professor, Dept. of Mining Engineering, NIT, Rourkela (Nominated by F&E Department).	Member
4.	Dr. Chitta Ranjan Mohanty, Associate Projessor, Dept. of Civil Engineering, SSUT, Burla (Nominated by F&E Department).	Member
5.	Dr. Abhaya Ku Dalai, Former Reader in Botany, Ravenshaw University, 6GH/1150, C-15, Sector-9, CDA, Cuttack-753014, (Nominated by F&E Department).	Member
6.	Sri R.C. Saxena, Regional Director, CPCB, Kolkata or his nominee not below the rank of Addl. Director,	Member
7.	Sr. Env. Scientist, L-I/Sr. Env.Engineer, L-I, SPC Board, dealing with Consent to Establish of Industries / Mines	Member
8.	Sr. Env. Scientist, L-I/Sr. Env. Enginer, L-I, SPC Board,dealing with Consent to Operate of Industries	Member
9.	Sr. Env. Scientist, L-I/Sr. Env.Engineer, L-I, SPC Board, dealing with Consent to Operate of Mines	Member
10.	Sr. Env. Engineer, L-II, SPC Board, dealing with Consent to Establish of Industries & Mines.	Member

3.2 PURCHASE COMMITTEE FOR SCIENTIFIC STORE

3.2.1 Constitution of the Purchase Committee

In pursuance of the provision Under Section 9 of the Water (Prevention & Control of Pollution) Act, 1974 and Under Section 11 of the Air (Prevention & Control of Pollution) Act, 1981, a purchase committees has been constituted for the financial year 2020-21 vide order No. 655, dt.07.05.2020 with the following members for the purchase and maintenance jobs of scientific items of the Central Laboratory as well as Regional Offices laboratories of the Board valuing ₹15,000.00 and above is given in Table 3.7

Table – 3.7 Members of the Purchase Committee for ₹15,000.00 and above.

1.	Member Secretary, State Pollution Control Board, Odisha	Chairman
2.	Incharge of Central Laboratory. State Pollution Control Board, Odisha	Member
3.	Dr. B.S.Jena, Sr. Principal Scientist, Institute of Materials and Minerals Technology (IMMT), Bhubaneswar.	Member
4.	Financial Adviser -cum-Addl.Secretary to Govt., Forest & Environment Dept., Govt. of Odisha, Bhubaneswar	Member
5.	Director or his representative, Directorate of Export Promotion & Marketing, Bhubaneswar	Member
6.	Addl. Administrative Officer, State Pollution Control Board, Odisha	Member
7.	Accounts Officer, State Pollution Control Board, Odis ha, Bhubaneswar	Member
8.	Incharge of Purchase, LEM Cell, State Pollution Control Board, Odisha,	Member
	Bhubaneswar.	Convenor

Technical Committee has been constituted for the financial year 2020-21 vide order No. 650, dt.07.05.2020 for the specification of various equipments & instruments and to study the nature of requirement of different chemicals, glass wares, plastic wares, filtration products etc. required by the laboratory in Table - 3.8.

Table – 3.8- Members of the Technical Committee

1.	Incharge of Central Laboratory., State Pollution Control Board, Odisha	Chairman
2.	Dr. Giridhara Kumar Surabhi, Sr. Scientist, Regional Plant Resource Centre,	Member
	Ekamrakanan, Bhubaneswar	
3.	Incharge of Biological Laboratory, State Pollution Control Board, Odisha,	Member
4.	Incharge of Chemical Laboratory., State Pollution Control Board, Odisha	Member
5.	Incharge of Soil Laboratory., State Pollution Control Board, Odisha	Member
6.	Incharge of Air Laboratory., State Pollution Control Board, Odisha	Member
7.	Addl. Administrative Officer, State Pollution Control Board, Odisha,	
8.	Accounts Officer, State Pollution Control Board, Odish a,.	Special Invitee
9.	Incharge of Purchase, LEM Cell	Member
	State Pollution Control Board, Odisha,	Convenor

3.3 LIBRARY PURCHASE COMMITTEE

In pursuance of Section 9 of the Water (Prevention & Control of Pollution) Act, 1974 and Section 11 of the Air (Prevention & Control of Pollution) Act, 1981 an Internal Purchase Committee has been constituted vide office order No. 11994 dt. 23.07.2014 and amended vide office order No.2235/Estt.(Misc.) 60/2010 dt.28.02.2019 for examining and recommending purchase of Books, Journals, Reports, Non-book materials, furniture and other requisites for the Library. Members of the committee are given in Table - 3.9.

Table - 3.9 Members of the Library Purchase Committee

1.	Member Secretary, State Pollution Control Board, O disha	Chairman
2.	Senior Environmental Engineer- L-I (N),	M 1
	State Pollution Control Board, Odisha	Member
3.	Senior Environmental Engineer- L-I (C),	Member
	State Pollution Control Board, Odisha	Wiemoei
4.	Senior Environmental Scientist – L-I (P),	Member
	State Pollution Control Board, Odisha	Wember
5.	Administrative Officer, State Pollution Control Board, Odisha	Member
6.	Sr. Law Officer, State Pollution Control Board, Odisha	Member
7.	SES, In-Charge of Library upto 27.02.2019 (Order No.15332,	
	dtd.23.11.2017) and SEE, In-Charge of Library	Member Convener
	(Order No. 2235/Estt. (Misc)60/2010 dtd. 28.02.2019)	

CHAPTER - IV

BOARD MEETING

4.1 In the year 2020-21, three Board Meetings were held.

The 121st, 122nd & 123rd Board meetings of the State Pollution Control Board, Odisha were held on 15th October, 2020, 10th December, 2020 & 22nd March, 2021 respectively.

4.2 IMPORTANT DECISIONS OF THE 121st BOARD MEETING ARE AS FOLLOWS:

- → The Board approved the proposal towards establishment of 15 nos. of additional Continuous Ambient Air Quality Monitoring Stations (CAAQMS) in different air pollution prone cities in the districts of Cuttack, Balasore, Keonjhar, Sundargarh, Mayurbhanj, Angul and in the capital city of Bhubaneswar.
- → The Board approved the proposal for the project work on "Development of Geo Data base for Environmental Mapping and Web Based GIS application in critically polluted areas in Odisha".
- → The Board approved the re-constitution of Technical Committee for issue of "No increase in Pollution Load Certificate" for changes in plant configuration and product mix for the project.
- Revised Auto-renewal mechanism for Consent to Operate based on self-certification was approved by the Board
- → The Board approved the proposal of policy decision for applicability of consent of the Board for Extraction or Sourcing or Burrowing of ordinary earth for the linear projects such as roads, pipelines etc.
- → The Board approved fund allocation for research project of State Pollution Control Board, Odisha.
- ◆ Activities of Coastal Management Cell, ICZMP working with proper staff structure was approved.
- → Hiring charges for MV Sagar Utkal monitoring vessel for outside agency was taken into administrative approval of Chairman and accorded.

4.3 IMPORTANT DECISIONS OF THE 122 BOARDMEETING ARE AS FOLLOWS:

- → The Board approved the proposal to extend GIS based Geo Database to the whole State of Odisha.
- → The Board approved the proposal for Development of Air Quality Data Management Centre in the Head Office in respect of different districts and cities of Odisha.
- → The Board approved the proposal of restructuring of the cadre of Engineers, Scientists, Administrative staff, creation of promotional post and upgradation of posts in the cadre of Stenographer, Typist and Assistant Librarian.

4.4 IMPORTANT DECISIONS OF THE 123 BOARD MEETING ARE AS FOLLOWS:

- → The Board confirmed the proceedings of the 122nd special Board meeting held on 10.12.2020.
- → The Board approved the draft Annual Repot for the Financial Year 2019-20.
- → The Board approved revision of Budget for the financial year 2020-21 and Budget Estimate for the financial year 2021-22.
- → The Board decided to carry out a study on Mercury Emission on Thermal Power Plants.

CHAPTER - V

ACTIVITIES

5.1 CONSENT TO ESTABLISH (CTE)

5.1.1 Projects related to Manufacturing and Service Sectors

Board received 1152 applications from different manufacturing and service sectors for consent to establish during 2020-21 and 346 pending proposals were carried forward from the year 2019-20.

Consent to establish was granted to 907 units. The detailed status of 1498 Consent to Establish applications processed during 2020-21 is given in Table-5.1 and 5.2.

Table - 5.1 Status of Consent to Establish (CTE)

Sl.	Status	Head office	Regional	Total
No.		(H.O.)	Offic es (R.O.)	
1.	No. of applications received during 2020-21	113	1039	1152
2.	No. of applications carried forward from 2019-20	94	252	346
	Total applications	207	1291	1498
	i) Consent to establish granted	75	832	907
	ii) Consent to establish refused/applications	01	61	62
	rejected.			
	iii) No. of applications under evaluation	131*	398	529

N.B: *Incomplete applications and asked to comply-131 Nos.

Table - 5.2 Details of Consent to Establish Status by Regional Offices

Regional Office	No. of applications received during 2020- 21	No. of applications carried forward from year 2019-20	Total no. of applications received	No. of units granted	No. of units refused/ rejected	No. of cases disposed off	Under evalua- tion
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)
Angul	81	15	96	58	0	58	38
Balasore	70	0	70	68	0	68	02
Berhampur	141	08	149	95	45	140	09
Bhubaneswar	56	113	169	59	12	71	98
Cuttack	94	16	110	77	0	77	33
Jharsuguda	45	01	46	46	0	46	0
Kalinga Nagar	86	09	95	85	0	85	10
Keonjhar	23	16	39	32	0	32	07
Paradeep	13	04	17	07	0	07	10
Rayagada	126	48	174	101	04	105	69
Rourkela	141	14	155	72	0	72	83
Sambalpur	163	08	171	132	0	132	39
Total	1039	252	1291	832	61	893	398

5.1.2 Mines, Minor Minerals and Stone&Sand Quarry

The detailed status of 372 applications processed for consent to establish for mining, Minor Minerals and Stone & Sand Quarry operations during 2020-21 is given in Table-5.3.

Table - 5.3 Status of Consent to Establish for Mines, Minor Minerals and Stone & Sand Quarry of Regional Offices & H.O.

Sl. No.	Status	Mines, Minor Minerals, Stone & Sand Quarry
1.	Applications received during 2020-21	351
2.	Applications carried forward from 2019-20	21
3.	Total number of applications	372
	Consent to Establish granted	270
	Consent to Establish refused/ clarification raised	10
	No. of applications under evaluation	92

5.1.3 Status of Consent to Establish of Brick Manufacturing Units

Details of consent to establish of brick manufacturing units during 2020-21 are given in Table-5.4.

Table - 5.4 Status of Consent to Establish Brick Manufacturing Units

Sl. No.	Status	Number of Cases
1.	No. of applications received during 2020-21	10
2.	No. of applications carried forward from 2019-20	0
	Total number of complete applications	10
3.	Consent to Establish granted	06
4.	Consent to Establish refused /clacification raised	04
5.	No. of applications under evaluation	0

5.1.4 Status of Consent to Establish of Stone Crushers, Iron Ore Crushers, Mineral Beneficiation Units/Processing Units & Mineral Stack yards

Consent to establish status of Stone Crushers, Iron Ore Crushers, Mineral Beneficiation Units/Processing Units & Mineral Stack yards during 2020-21 is given in Table-5.5.

Table - 5.5 Status of Consent to Establish of Stone Crushers, Iron Ore Crushers, Mineral Beneficiation Units/Processing Units & Mineral Stack yards

Sl. No.	Status	Number of Cases
1.	No. of applications received during 2020-21	97
2.	No. of applications carried forward from 2019-20	35
	Total Number of complete applications	132
3.	Consent to Establish granted	87
4.	Consent to Establish refused/classification raised	05
5.	No. of applications under evaluation	40

5.2.1 CONSENT TO OPERATE (CTO)

5.2.1 Status of Consent to Operate

Board has received 3268 applications from industries, mines, stone crushers, iron ore crushers, brick kilns, hotels, hospitals, ceramic and refractories, telecom services, urban local bodies / townships and country liquor manufacturing units etc. and 528 pending cases were carried forward from 2019-20 and disposed 2938 applications for consent to operate during the year 2020-21. The details are given in Table-5.6.

Table - 5.6 Status of Consent to Operate

Name of the office	No. of complete Appli- cations received 2020-21	No. of cases carried forward from 2019-20	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused/rej ected/clari fication raised	No. of cases disposed	No. cases under evalua- tion	No. of Show Cause Notices Issued
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)	9
Angul R.O.	238	13	251	119	03	202	49	10
Balasore R.O.	289	51	340	284	0	284	56	28
Berhampur R.O.	358	45	403	316	60	376	27	87
BBSR, R.O	246	82	328	220	19	239	89*	0
Cuttack R.O.	152	35	187	130	0	130	57	0
Keonjhar R.O.	110	23	133	109	02	111	22	03
Rayagada R.O.	312	50	362	258	0	258	104	10
Rourkela R.O.	301	02	303	78	01	79	224	0
Sambalpur R.O.	547	154	701	546	03	549	152	19
Kalinga Nagar R.O.	274	24	298	263	0	263	35	01
Jharsuguda R.O.	98	18	116	115	0	115	01	0
Paradeep R.O.	32	*02	34	10	0	10	24	01
Head office	311	29	340	317	05	322	18	16
Total	3268	528	3796	2845	93	2938	858	175

N.B: * Incomplete applications 91(89+02)nos..

Category wise consent to operate status during 2020-21 is given in Table-5.7 (a),(b)&(c)

Table - 5.7 Categorywise Consent to Operate Status

(a) Mines, Minor Minerals, Stone quarry and Sand bed.

Name of the office	No. of complete appli- cations received	No. of cases carried forward from 2019-20	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused/cl arificat- ion raised	No. of cases dispose d	Under evalua- tion	No. of Show Cause Notices Issued
1	2	3	4(2+3)	5	6	7(5+6)	8(4-7)	9
Angul R.O	77	01	78	68	03	71	07	01
Balasore R.O	140	0	140	131	0	131	09	0
Berhampur R.O	48	0	48	32	16	48	0	0
Bhubaneswar R.O	24	0	24	10	0	10	14*	0
Cuttack R.O	10	01	11	10	0	10	01	0
Jharsuguda R.O	08	07	15	15	0	15	0	0
Kalinga Nagar R.O	70	02	72	70	0	70	02	0
Keonjhar R.O	36	06	42	36	0	36	06	0
Paradeep R.O	0	0	0	0	0	0	0	0

Name of the office	No. of complete appli- cations received	No. of cases carried forward from 2019-20	Total no. of complete appli- cations	No. of units granted CTO	No. of units refused/cl arificat- ion raised	No. of cases dispose d	Under evalua- tion	No. of Show Cause Notices Issued
Rayagada R.O.	68	08	76	42	0	42	34	0
Rourkela R.O.	44	0	44	28	0	28	16	0
Sambalpur R.O.	74	0	74	49	0	49	25	0
Head office	97	03	100	97	02	99	01	03
Total	696	28	724	588	21	609	115	04

*Incomplete applications-14 nos.

(a) Status of Consent to Operate (Stone Crusher, Iron ore Crusher & Mineral Beneficiation Unit)

Name of the office	No. Of complete Appli- cations received	No. Of cases carried forward from 2019-20	Total no. Of complete applicatio ns	No. Of units granted CTO	No. of units refused/ clarifica tion raised	No. of cases disposed	Under evalua- tion	No. Of Show Cause Notices Issued
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)	9
Angul R.O.	44	04	48	36	0	36	12	03
Balasore R.O.	38	13	51	48	0	48	03	0
Berhampur R.O.	52	06	58	31	16	47	11	22
Bhubaneswar R.O	32	27	59	38	01	39	20*	0
Cuttack R.O.	01	0	01	0	0	0	01	0
Jharsuguda R.O	01	02	03	03	0	03	0	0
Kalinga Nagar R.O	82	08	90	84	0	84	06	0
Keonjhar R.O.	22	08	30	24	0	24	06	01
Paradeep R.O	0	0	0	0	0	0	0	0
Rayagada R.O.	41	10	51	34	0	34	17	04
Rourkela R.O.	33	01	34	13	0	13	21	0
Sambalpur R.O.	66	06	72	46	0	46	26	0
Total	412	85	497	357	17	374	123	30

*Incomplete applications-20nos. (b) Brick Manufacturing Units

Name of the office	No. Of complete Appli- cations received	No. Of cases carried forward from 2019-20	Total no. Of complete appli- cations	No. Of units granted CTO	No. Of units refused/ Clarification raised	No. Of cases disposed	Under evalua- tion	No. of Show Cause Notices Issued
1	2	3	4 (2+3)	5	6	7 (5+6)	8 (4-7)	9
Angul R.O.	01	03	04	04	0	04	0	0
Balasore R.O.	04	0	04	04	0	04	0	13
Berhampur R.O.	27	0	27	12	11	23	04	0
Bhubaneswar R.O	0	0	0	0	0	0	0	0

Name of the office	No. Of complete Appli- cations received	No. Of cases carried forward from 2019-20	Total no. Of complete appli- cations	No. Of units granted CTO	No. Of units refused/ Clarification raised	No. Of cases disposed	Under evalua- tion	No. of Show Cause Notices Issued
Cuttack R.O.	02	00	02	00	00	00	02	00
Jharsuguda R.O.	00	00	00	00	00	00	00	00
Kalinga Nagar R.O.	02	00	02	00	00	00	02	00
Keonjhar R.O.	00	00	00	00	00	00	00	00
Paradeep RO	01	00	01	00	00	00	01	00
Rayagada R.O.	00	00	00	00	00	00	00	00
Rourkela R.O.	03	00	03	00	00	00	03	00
Sambalpur R.O.	00	00	00	00	00	00	00	00
Total	40	03	43	20	11	31	12	13

5.2.2 Status of Consent to Operate for wastewater treatment facility by the Urban Local Bodies/ Townships under Water (Prevention & Control of Pollution) Act, 1974

The Urban Local Bodies (ULBs) and the industrial townships are required to be regulated under consent administration for disposal of sewage effluent as per provisions under Section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974.

The Board has issued directions to all Municipal authorities as per the CPCB direction dtd. 21.04.2015 to seek Consent under Water (PCP) Act, 1974 and submit the detail compliance with time bound action plan for setting up sewerage system/septage management covering proper collection, treatment & disposal of sewage generated in the local / urban area. The Board intimated all the ULBs to improve the sanitary conditions of open drains carrying sewage/sullage as per the CPCB guidelines. The new standards formulated by CPCB, Delhi for treated sewage effluent has been communicated to all the ULBs and concerned departments with instruction that the treated effluent shall meet the latest prescribed standard.

5.2.3 Status of Installation of GPRS based Real Time Data Acquisition System (RT-DAS) from the Online Monitoring Stations of the Industries in Odisha

The Board has implemented online monitoring system as a tool for self-regulation for the industries and at the same time, maintain transparency with the regulators i.e, SPCBs and CPCB. The CPCB advised all the SPCBs to install central server and software for acquisition of real time data. The system has been introduced with an objective to receive realtime data of online monitoring from all the States and to maintain a central data base at CPCB for the whole country.

The State Pollution Control Board, Odisha has developed a GPRS based Real Time Data Acquisition System (RT-DAS) using 'Y' cable to receive tamper proof data directly from online Stack, AAQ & Effluent monitoring systems installed by the industries. The central RT-DAS server has been installed in the Computer Cell of State Pollution Control Board, Odisha at its Head Office, Bhubaneswar. This RT-DAS server is receiving data from 157 industries and 24 mines operating in the State. The status of RT-DAS for the online is given in **Table -5.8.**

Table - 5.8 Status of Real Time Data Acquisition from the Online Continuous Monitoring Stations of Industries & Mines in Odisha

	INDUSTRIES			
Sl. No.	Name & Address	Connected to R Board, O	disha till 31.0	er of the SPC 03.2021
		AAQMS	CEMS	EQMS
1	ArcelorMIttal Nipon Steel Ltd. Formerly Essar Steel India Ltd	3	1	0
2	Penguin Trading & Agenci es Limited(Formerly Bhagawati Steels Pvt Ltd)	0	1	0
3	Bhushan Energy Limited	0	3	0
4	DALMIA DSP UNIT OCL India Ltd	1	3	0
5	Dhenkanal Steel Plant of M/s. Rungta Mines Ltd.	4	0	0
6	Nu Vista Limted Grinding Unit	0	2	0
7	Essar Power Orissa Ltd	2	1	1
8	Facor Power Limited	3	1	0
9	GM Iron & Steel Company Limited	0	2	0
10	GOA CARBON LIMITED	2	1	0
11	Grasim Industries Ltd (formerly known as Jayshree Chemicals Ltd)	0	5	1
12	Hindustan Coca-Cola Beverages Pvt Ltd	0	0	1
13	Indian Farmer Fertilizer Cooperation	3	8	1
14	Indian Metals & Ferro Alloys Ltd (120 MW PP)	4	2	0
15	Indian Metals & Ferro Alloys Ltd.	0	2	0
16	JK Lakshmi Cement Limited	1	1	0
17	JSW Cement LIMITED	1	2	0
18	Jai Hanuman Udyog Ltd	0	1	0
19	Jay Jagannath Steel & Power Ltd.	0	2	0
20	K.J.S. Ahluwalia Ltd. (Hima Ispat Pvt. Ltd)	0	3	0
21	KAMANDA STEEL PLANT	4	5	0
22	ACC Ltd	3	4	1
23	Grewal Associates (P) Ltd.	0	2	0
24	MAA MANASHA DEVI ALLOYS PVT LTD	0	1	0
25	Meta Sponge (P) Ltd	0	1	0
26	Neelachal Ispat Nigam Limited	3	4	2
27	Rourkela Steel Plant	4	21	8
28	Tata Steel Long Products Ltd. (Formerly known as Tata Sponge Iron Ltd)	3	3	0
29	Visa Steel Ltd	4	7	1
30	Emami Paper Mill Ltd.	3	3	1
31	Birla Tyres	1	3	0
32	Green Waves Pvt. Ltd.	0	0	1
33	Jalan Carbons and Chemicals Pvt. Ltd.	1	0	0
34	Jindal Steel & Power Limited	2	2	0
35	Kapilas Cement Manufacturing Works(A unit of OCL India Ltd)	3	1	0
36	MSP Sponge Iron Ltd	0	3	1
37	Talcher Thermal Power Stations	4	6	1
38	Tata Steel Limited	7	18	2
39	Utkal Metaliks Ltd	0	1	0
40	Vedanta Limited (2400 MW Thermal Power Plant)	4	4	1
41	Vedanta Limited (Smelter & CPP)	4	33	3
42	Virajaa Steel &Power Pvt. Lt d.	0	1	0
43	M/s Vishal Metallics Pvt. Ltd	0	1	0
44	KJ Ispat Ltd.	0	1	0
45	Bajrangbali Sponge and Power Limited (Formerly known as Kal inga Sponge Iron Limited) Kalinga Sponge Iron Limited	0	1	0
				•

	INDUSTRIES				
Sl. No.	Name & Address	Connected to R Board, Oc	disha till 31.0	er of the SPC 03.2021	
		AAQMS	CEMS	EQMS	
46	Mahakali Ispat Pvt. Ltd.	0	1	0	
47	Shree Ganesh Metaliks Limited	0	3	0	
48	Aaditya Kraft and Papers Pvt. Ltd	0	1	1	
49	Aarti Steels Ltd.	4	8	0	
50	Adhunik Metaliks Limited	4	11	0	
51	Aditya Aluminium(A unit of Hindalco Industries Ltd.)	4	14	1	
52	Agarsen Sponge Private Limited	0	2	0	
53	Aryan Ispat & Power Ltd.	3	2	0	
54	B.R. Sponge & Power Limited	0	1	0	
55	BRG Iron & Steel Co. Ltd.	0	2	0	
56	Bhaskar Steel & Ferro Alloys Ltd.	0	1	0	
57	Bhubaneshwar Power Pvt. Ltd.	4	2	1	
58	Bhusan Power & Steel Ltd	2	35	4	
59	Boudh Distillery Pvt Ltd	0	1	1	
60	Brand Steel & Power Pvt. Ltd	0	1	0	
61	Crackers India (Alloys) Ltd.	0	1	0	
62	Ferro Alloys Plant Bamipal TATA STEEL LTD	0	1	0	
63	GMR Kamalanga Energy Ltd.	4	3	1	
64	Ganesh Sponge Pvt. Ltd	0	1	0	
65	Green Waves Pvt. Ltd.	0	1	0	
66	Govindam Projects (P) Ltd.	0	1	0	
67	Hindalco Industries Ltd. (Smelter Plant)	2	7	5	
68	Hindalco Industries Ltd.(CPP)	3	5	1	
69	Hindalco Industries Ltd. (FRP)	0	3	2	
70	IB Thermal Power Station (OPGC)	6	4	2	
71	Indian Metals & Ferro Alloys Ltd.(138 MW)	0	6	0	
72	J.K. Paper Ltd.	3	3	1	
73	Jai Balaji Jyoti Steels Ltd	0	2	0	
74	Jay Iron & Steels Limited	0	1	0	
75	Jindal Coke Limited	0	1	1	
76	Jindal India Thermal Power Ltd.	4	2	0	
77	Jindal Stainless Steel Ltd.	4	6	1	
78	Jindal Steel and Power Ltd.	4	37	3	
79	Kashvi International Pvt Ltd.	0	2	0	
80	Kaushal Ferro Metals (P) Ltd.	0	1	0	
81	Khedaria Ispat Limited	0	1	0	
82	L.N. Metallics Ltd.	0	1	0	
83	Maa Samaleswari Industries Pvt. Ltd.	0	1	0	
84	Maa Shakumbari Sponge Pvt. Ltd.	0	1	0	
85	Mayur Electro Ceramics (P) Ltd.	0	2	0	
86	N.K. Bhojani Pvt. Ltd.	0	1	0	
87	Narbheram Power & Steel Ltd.	0	1	0	
88	Nava Bharat Ventures Ltd. (CPP)	3	3	1	
89	New Laxmi Steel and Power Pvt. Ltd. (Unit III) (Formerly known as Suryaa Sponge Iron Limited)	0	2	0	
90	Dalmia Cement Bharat Limited (Formerly known as OCL INDIA Ltd.)	4	10	1	
91	OCL Iron and Steel Ltd.	0	4	0	
92	Ores Ispat Pvt. Ltd.	0	1	0	
93	Paradeep Phosphate Limited	4	8	3	

	INDUSTRIES			
Sl. No.	Name & Address	Connected to R	e Monitoring T-DAS Serve disha till 31.0	er of the SPC
		AAQMS	CEMS	EQMS
94	Paradeep Refinery Project IOCL	7	21	1
95	Patnaik Steel & Alloys.	0	1	0
96	Pawanjay Sponge Iron Ltd.	0	1	0
97	Pooja Sponge (P) Ltd.	0	2	0
98	Prabhu Sponge Pvt. Ltd.	0	2	0
99	The Ramco Cements Limited	2	1	0
100	R.B. Sponge Iron Pvt. Ltd.	0	1	0
101	Rourkela Sponge LLP (Formerly known as Maa Tarini Industries Ltd)	0	2	0
102	Rathi Steel and Power Ltd	0	1	0
103	Reliable Sponge Pvt. Ltd.	0	1	0
104	Rexon Strips Ltd.	0	1	0
105	SMC Power Generation Ltd	4	2	0
106	Seeta Integrated Steel & Energy Ltd.	0	2	0
107	Shakti Sugar Ltd. (Distillery Unit)	0	1	2
108	Shiv Mettalicks (P) Ltd.	0	1	0
109	Shiva Cement Ltd.	0	4	0
110	Shree Hari Sponge Pvt. Ltd.	0	1	0
111	Shree Jagannath Steels & Power Ltd.	0	3	0
112	Shri Mahavir Ferro Alloys Private Limited.	0	4	0
113	Shyam Metaliks & Energy Ltd.	4	10	1
115	Sponge Udyog Pvt. Ltd.	0	1	0
116	Sree Metaliks Ltd.	0	9	0
117	Sri Balaji Metallics Pvt. Ltd.	0	1	0
118	Sri Hardev Steels Pvt. Ltd.	0	1	0
119	Suraj Products Ltd.	0	3	0
120	Surendra Mining Indsutries (P) Ltd	0	2	0
121	Swastik Ispat Pvt. Ltd.	0	2	0
122	T.R. Chemicals Pvt. Ltd. Times Steel Power Pvt. Ltd.,	0	1	0
122	Times Steel Fower Fvt. Etd.,	0	1	0
123	Toshali Cements Pvt. Ltd.	0	2	0
124	Vasundhara Metaliks Pvt. Ltd.	0	2	0
125	Vikram Pvt. Ltd.	0	1	0
126	Viraj Steel & Energy Pvt. Ltd	0	3	0
127	Yazdani Steel and Power Ltd	0	2	0
128	MGM Minerals Limited(Formerly MGM Steels Ltd.)	0	1	0
129	Maa Samaleswari Ferro Metals Pvt. Ltd	0	1	0
130	Mideast Integrated Steels Ltd	4	5	1
131	NALCO CPP	4	10	1
132	NALCO Ltd(Smelter Unit)	4	10	1
133	M/s.NALCO (Alumina Refinery)	4	9	0
134	NTPC Ltd Darlipali	4	1	1
135	NTPC-SAIL Power Company (P) Limited. (CPP-II)	3	2	1
136	Reliable Hi-Tech Infrastructure Pvt. Ltd	0	1	0
137	Reliable Sponge Pvt Ltd	0	1	0
138	Rungta Mines Ltd.(SID)	4	2	0
139	Sakthi Sugars Limited	0	1	1
140	Sani Clean Pvt Ltd.	0	1	0

	INDUSTRIES				
Sl. No.	Name & Address	No. of Online Monitoring Station Connected to RT-DAS Server of the Board, Odisha till 31.03.2021			
		AAQMS	CEMS	EQMS	
141	Mediaid Marketing Services	0	1	0	
142	Scan Steels Ltd (Unit-2)	0	3	0	
143	Scan Steels Ltd. (Unit-1)	0	1	0	
144	Seven Star Steels Limited	0	2	0	
145	Sumrit Metaliks Pvt Ltd	0	1	0	
146	Talcher Super Ther mal Power Station NTPC	4	6	1	
147	Tata Steel BSL	7	34	6	
148	Tata Steel Ltd. Ferro Managnese Plant	0	4	0	
149	Thakur Prasad Sao & Sons Pvt. Ltd (Unit-IV)	0	2	0	
150	Thakur Prasad Sao & Sons Pvt.Ltd (Unit-1)	0	1	0	
151	Thakur Prasad Sao & Sons Pvt.Ltd (Unit -3)	0	2	0	
152	Toshali Cements Pvt Ltd	0	1	0	
153	Ultratech Cement Limited	4	2	0	
154	Utkal Alumina International Limite d	1	3	0	
155	Vedanta Limited	6	3	0	
156	Visa Sun Coke Limited	0	2	0	
157	Odisha Cement Plant (A Unit of Shree Cement Ltd.)	4	CEMENT	0	
	Total	206	582	73	

	MINES					
	Name of the Mine	CAAQMS	CEMS	EQMS		
1	Barsuan-Taldih-Kalta Iron Ore Mines of SAIL, Sundargarh	3	0	0		
2	Balda Block Iron Mines of Serajuddin & Co, Keonjhar	4	0	0		
3	Bolani Iron Ore Mines of SAIL, Keonjhar	4	0	0		
4	Jajang Iron and Manganese Mines of Rungta Mines Ltd., Keonjhar	4	0	0		
5	Joda East Iron Mines of Tata Steel Ltd, Keonjhar	3	0	0		
6	Kamarda Chromite Mines of B. C. Mohanty & Sons Pvt. Ltd., Jajpur	0	0	2		
7	Kalarangiatta Chromite Mines of FACOR Ltd., Jajpur	0	0	2		
8	Kaliapani Chromite Mines of Balasore Alloys Ltd., Jajpur	0	0	2		
9	Katamati Iron Ore Mines of TATA Steel Ltd., Keonj har	3	0	0		
10	Koira Iron Ore Mine of M/s. Essel Mining Industries Ltd, Sundargarh	3	0	0		
11	Nadidih Iron and Manganese Ore Mines of Bona i Industrial Co. Ltd., Sundargarh	3	0	0		
12	Nadidih Iron and Manganese Ore Mines of Feegrade & Co. Pvt. Ltd., Sundargarh	4	0	0		
13	Nuagaon Iron Ore Mines of KJS Alhuwalia, Keonjhar	3	0	0		
14	Oraghat Iron Ore Mines of Rungta Sons (P) Ltd., Sundargarh	3	0	0		
15	Ostapal Chromite Mines of FACOR, Jajpur	0	0	2		
16	Saruabil Chromite Mines of Mishrilal Mines (P) Ltd., Jajpur	0	0	2		
17	Serenda Bhadrasahi Iron & Manganese Mine of M/s. OMC Ltd, , Keonjhar	1	0	0		
18	South Kaliapani Chromite Mines of OMC Ltd., Jajpur	0	0	5		
19	Sukinda Chromite Mines			_		
20	Mahagiri Chromite Mines of M/s IMFA, Jajpur	0	0	2		
	Sukinda Chromite Mines of TATA Steel Ltd, Jajpur	0	0	3		
21	Tailangi Chromite Mines of IDCOL, Jajpur	0	0	2		
22	Thakurani Iron Ore Mines of Kaypee Enterprises , Keonjhar	4	0	0		
23	Jillinga Mines of Essel Mining Corporation, Keonjhar	3	0	0		
24	Kahandbondh Iron ore mines of Tata Steel, Keonjhar	3	0	0		
	Total	48	0	22		

5.3 CLOSURE DIRECTIONS

As a part of the Board's regulatory actions, units brought under consent administration, if found defaulting the prescribed standards or violating the directions of the Board, are allowed reasonable time to comply with the standards /directions. On persistent non-compliance, the defaulting units are served with Show Cause Notices (Table 5.6) followed by personal hearing to draw time bound action plan for compliance. Persistent non-compliances lead to issuance of closure directions. Table-5.9 shows the status of closure directions, issued by the Board

Table - 5.9 Status of Closure Directions/Directions issued during 2020-21.

No. of directions issued	No of industries under closure	No. of revocations after due
		compliance
28 (18+10)	08	37*

N.B: * Out of 37 applications, 27 are carried forward from previous year 2019-20.

5.4 PUBLIC HEARING

The State Pollution Control Board has been entrusted with the responsibility of conducting public hearing for the projects seeking environmental clearance from the Ministry of Environment and Forests and SEIAA in coordination with District Administration as per EIA Notification No. S.O.-1533 (E), dt. 14.09.2006.

Details of public hearings conducted during the period 2020-21 are given in Table-5.10 and 5.11.

Table - 5.10 Status of Public Hearings

1.	Number of projects received by the Board for public hearing during the financial year 2020-21.	66
2.	. Number of projects carried forward from previous financial year 2019-20	
3	Total Number of projects received for public hearing	76
4	Number of projects for which public hearing have been conducted	34
5	Number of cases wherein Collectors were requested to fix up date	33
6	Number of cases for which public hearing date fixed	09

Table - 5.11 Details of Projects for which Public Hearings Conducted

Sl. No.	Name & Address of the project	Purpose	Date
1.	Anjira-Makundapur Hillocks (Cluster- 1) at Anjira & Mukundapur village , tahsil –Dharmasala,Dist- Jajpur	Mining for production of building stone/ road metal over an area of 55.79 Ha. (15 nos of mining leases)	28.8.2020
2.	Aruha Hillocks (Cluster-2) mine at Aruha, tahsil –Dharmasala,Dist- Jajpur	Mining for production of building stone/road metal over an area of 59.89 Ha. (5nos of mining leases)	26.8.2020
3.	Bajabati Hillocks (Cluster-3) at Bajabati, tahsil –Dharmasala,Dist- Jajpur	Mining for production of building stone/ road metal over an area of 14.43 Ha. (6 nos of mining leases)	26.8.2020
4.	Bichhakhandi Hillocks (Cluster-4) at Bichhakhandi , tahsil – Dharmasala,Dist- Jajpur.	Mining for production of building stone over an area of 36.65 Ha. (16 nos of lease)	28.8.2020
5.	Dankari, Barada and Baraman Hillocks (Cluster-5) located in Dankari, Barada and baraman villages, tahsil – Dharmasala,Dist- Jajpur.	Mining over an area of 98.42 Ha.(24 nos of mining leases)	26.8.2020

Sl.	Name & Address	Purpose	Date
No.	of the project		
6.	Lunibar Hillocks (Cluster-6) at Lunibar, tahsil –Dharmasala,Dist- Jajpur.	Mining for production of building stone over an area of 22.26 Ha. (5 nos of mining lease)	27.8.2020
7.	Rahadpur Hillocks (Cluster-7) at Rahadpur, tahsil –Dharmasala,Dist- Jajpur.	Mining for production of building stone/ road metal over an area of 42.40 Ha.(12 nos of mining leases)	25.08.2020
8.	Sahanidiha Hillocks (Cluster-8) at Sahanidiha, tahsil –Dharmasala,Dist- Jajpur.	Mining for production of building stone over an area of 20.08 Ha.(2 nos of mining lease)	27.8.2020
9.	M/s Vedanta Limited, at village Bhurkamunda, PO: Kalimandir ,district - Jharsuguda	Expansion of aluminium smelter from 16 LTPA to 18 LTPA,(CPP-1215MW),adding 2 smelter plant.	30.09.2020
10.	Dhania, Sankari and Tangeni Hillocks Stone Quarry (Cluster - I) over an area of 96.597 Ha. at village Kaipadar in the district of Khordha. Shree Jagannath Temple Administration	Dhania hillock(52.597ha), Sankhari hillock (33.428 ha) and Tangeni hillock (10.885 ha) Stone Quarry over an area of 96.597 Ha.	08.9.2020
11.	Golaputakhua hillocksDuburi hillocks Hatia hillocks) and Kalinga Hillocks) Stone Quarry (Cluster -II), Kiajhari, Nijagadatapanga, Chhatrama and Jhinkijhari,Khodha.	Golaputakhua hillocks(28.189ha), Duburi hillocks(2.72), Hatia hillocks(32.442ha) and Kalinga Hillocks(19.805ha	09.9.2020
12.	Cluster - 3 Kalachua Hillocks Stone Quarry,at- Dangarpada and Santarapur , Khordha	Cluster - 3 Kalachua Hillocks Stone Quarry, over an area of 49.84 Ha	10.9.2020
13.	M/s Shree Hari Sponge Pvt. Limited ,At- Kendrikela village, tehsil-Bonai ,Dist-Sundergarh.	Enhancement in production Sponge Iron from 60000 TPA to 2.7 LTPA, 1.35 LTPA Steel Billets, 1.20 LTPA TMT Bars, 26 MW Power through WHRB (16 MW) & AFBC (10 MW) and production of 30 million Fly Ash Bricks per annum	16.10.2020
14.	M/s Mohashakti Ferro Alloys Pvt. Ltd. at Bargada village, Bayree of Jajpur district	Expansion of 18,000 TPA capacity Low Carbon Ferro Alloys Plant	20.10.2020
15.	M/s Chariot Steel & Power Pvt. Ltd. at Kalunga Industrial Estate, Lathikata tahsil of Sundergarh district.	New Cement Grinding Unit of Chariote cement Company for production of 0.99 LTPA PSC/PPC/OPC Cement	04.12.2020
16	Baideswar Sand Ghat of M/s Minakshi Pradhan at Patugadadharpur village, Banki tahsil of Cuttack district	Sand ghat Capacity of 94120 Cum/Annum over ML area of 13.355 ha.	07.12.2020
17	M/s NHAI under Bharatmala Pariyojana Development of Economic Corridors, Inter-Corridors, feeder routes and Coastal Road), Nabarangpur.	Freight movement in India (Lot-3 Odisha & Jharkhand/Package-2) Raipur – Visakhapatnam(Ch.124.661 – Ch. 365.033 km) (Length 240 km)	07.12.2020
18	M/s NHAI under Bhaætmala Pariyojana Development of Economic Corridors, Inter-Corridors, feeder routes and Coastal Road), Koraput.	Odisha & Jharkhand/Package-2) Raipur – Visakhapatnam(Ch.124.661 – Ch. 365.033 km) (Length 240 km)	08.12.2020
19	M/s Adish Minerals Pvt. Ltd. at Baunsamuli village, Badachana Thana, district – Jajpur.	Establishing Chrome Ore Beneficiation plant of 1,20,000 TPA throughput	15.12.2020
20	Sidhua River Jaripada Sand Quarry of Sri Pranakrushna at- village Sidhua, under Cuttak Sadar tahsil of Cuttack district	Jaripada Sand Quarry over an area of 10.11 ha.	22.12.2020
21	M/s Indian Oil Corporation Ltd at-, Pahimahura & Helpur villages, Bhandaripokhari tahsil of Bhadrak dist	Establishing a Greenfield Textile Project	30.12.2020

Sl. No.	Name & Address of the project	Purpose	Date
22	Katamati Iron Mine ,M/s Tata Steel Ltd. at Deojhar and Thakurani village, Dist - Keonjhar	Expansion Mine from 8 MTPA to 13.5 MTPA (ROM) with total excavation of 15 MTPA, mineral beneficiation plant of 4 MTPA, ML area -403.3238 ha.	30.12.2020
23	Aryan Ispat &Power (P)Ltd At-Bomaloi,rengali ,Sambalpur(coal washery)	Establishment of 5.0 MTPA capacity Coal Washery	12.1.2021
24	Aryan Ispat &Power (P)Ltd At-Bomaloi,rengali ,Sambalpur (Integrated steel plant)	Expansion of existing Steel Plant to Integrated Steel Plant	12.1.2021
25	M/s National Highway Authority of India under Bharatmala Pariyojana(Development of Economic Corridors, Inter-Corridors, feeder routes and Coastal Road) for Koraput district.	Development of Economic Corridors, Inter- Corridors, feeder routes and Coastal Road primarily to improve the efficiency of freight movement in India (Lot-3 Odisha & Jharkhand/Package-2) Raipur – Visakhapatnam(Ch.124.661 – Ch. 365.033 km) (Length 240 km	21.01.2021
26	Naini Coal Mine M/s Singareni Coal Co. Ltd Near Chhendipaada,Angul	Production of Coal upto 10 MTPA and coal washery capacity of 8 MTPA (Peak 9 MTPA) in mine lease area of 912.799 ha	20.01.2021
27	Rungta mines Ltd ,Korakolha sponge iron division At-Karakhendra ,Barbil,Keonjhar.	Expansion of Integrated steel plant(0.18MTPA DRI,22 MW CPP,0.554MTPA Steel,132 MW CPP)	11.02.2021
28	Rungta mines Ltd Karakhendra Steel Plant,Barbil, Keonjhar	Expansion of Steel Plant from 0.127 MTPA to 0.606 MTPA crude steel capacity with instillation of 121 MW CPP	11.02.2021
29	Shaheed Lakhan Nayak Small Hydroelectric Power Project M/s Meenakshi Odisha Power Pvt. Ltd. at Tentuligumma village in the district of Koraput	Small Hydroelectric Power Project capacity of 25 MW	17.2.2021
30	Kamanda Steel Plant ,M/s Rungta Mines Limited Kamanda Kamanda, Kula, Kusumdihi and Nuagaon PO: Koira ,dist- Sundargarh	Expansion capacity from (0.97 MTPA to 1.774 MTPA semi-finished Steel & from 0.912 to 2.022 MTPA finished steel)	09.03.2021
31	M/s Indian Oil Corporation Ltd. at IOCL Paradeep Refinery & Petrochemical Complex, Paradeep, Jagatsinghpur	Proposed Integrated Paraxylene & Purified Terephthalic Acid (PX-PTA) project at IOCL Paradeep Refinery & Petrochemical Complex.	02.03.2021
32	MGM Minerals Ltd, Nimidha,Dhenkanal.	Expansion of g Sponge Iron Plant from 1,05,000 TPA to 2,50,000 TPA and Power Generation through WHRB from 8 MW to 16 MW, installation of SMS with Induction Furnace, LRF & CCM toproduce M.S.Billets of 2,50,000 TPA, Rolling Mill to produce 2,50,000 TPA of Wire/TMT bars, Pellet Plant of 0.6 MTPA & CFBC Power Plant of 2x16 MW	16.03.2021
33	Anuary Sand Quarry of Sri. Patitapaban Swain for sand quarry mining on River Mahanadi over an area of 5.059Ha.in villagePatugadadharpur village, Banki- tahsil dist-Cuttack	Sand quarry mining on River Mahanadi over an area of 5.059Ha	17.03.2021
34	Manoharpur Coal Mine M/s Odisha Coal and Power Ltd. Manoharpur and at IB Valley Coalfield, tehsil,Himgir in the district of Sundargarh.	Expansion of Manoharpur Coal Mine production capacity from 8 MTPA to 16 MTPA over M.L area of 1848.379 Ha	23.03.2021

STATUS OF WATER CESS

The Water Cess Act, 1977 has been repealed with effect from 01.07.2017.

5.6 ENFORCEMENT UNDER THE ENVIRONMENT (P) ACT, 1986

5.6.1 Implementation of the Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016.

Ministry of Environment, Forest and Climate Change, Govt. of India in supersession of Hazardous Waste (Management, Handling & Transboundary Movement) Rules, 2008 has notified the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 on 4th April, 2016. These rules apply to the management of hazardous and other waste as specified in the Schedules to these rules.

The Authorization status of hazardous waste generating industries during 2020-21 is given in Table 5.13.

Table 5.13 Authorization Status of Hazardous Waste

Sl. No.	Authorization status	Number
(i)	Total no. of applications received	211
(ii)	No. of units granted authorisation	159
(iii)	No. of units refused/rejected	07
(iv)	Total No. of applications disposed	166
(v)	No. of applications under evaluation	45
(vi)	No of show cause notices issued	26

(A) Authorisation Status of Actual Users of Hazardous Wastes:

During the period 2020-21, 27 Nos. of Actual Users (inside Odisha) and 15 Nos. of Actual Users (Outside Odisha) have been authorised by the Board for recycling / reprocessing of different hazardous wastes (Used Oil, Waste Oil, Used Anode Butt, Aluminium Dross, Used Lead Acid Battery, Zinc Skimming / Zinc Ash / Zinc Dross etc.) under Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.

List of Actual users (Processor / Recyclers) having valid authorization of SPCB (Inside Odisha)

Sl.	Name and address of the Actual Users	Hazardous & other	Validity of
No.		Waste	Authorisation
1	A K Enterprises, Plot No 7, Khurda Industrial Estate,	Aluminium Dross	31.03.2022
	Dist - Khurda, Odisha		
2	A K Enterprises, Plot No 7, Khurda Industrial Estate,	Aluminium Dross Residue /	31.03.2023
	Dist - Khurda, Odisha	Rejects	
3	A. K. Enterprises, Plot No A/29, Sarua Industrial Area,	Aluminium Dross	31.03.2021
	Khurda, Odisha – 752057		
4	A. K. Enterprises, Plot No A/29, Sarua Industrial Area,	Aluminium Dross	31.03.2023
	Khurda, Odisha – 752057		
5	Aditya Aluminium Limited,	Aluminium Dross	31.03.2023
	(A Unit of Hindalco Industries Limited),	Used Anode Butt	
	At/Po - Lapanga, Beside SH- 10,		
	Dist – Sambalpur, Odisha – 768212		
6	Hindalco Industries Ltd., Smelter Unit,	Aluminium Dross	31.03.2023
	(In-house Dross Recycling Plant),		
	At/Po- Hirakud,Dist - Sambalpur,		
	Odisha – 768016		
7	Vedanta Limited, (Smelter and CPP)	Used Anode Butt	31.03.2022
	At - Bhurkamunda, PO - Siripura, Dist - Jharsuguda		
8	BNDM Enterprises, At-Ladukhai, PO-Kalamati, PS-	Aluminium Dross	04-11-2020
	Burla, Dist - Sambalpur, Odisha – 768025		

Sl.	Name and address of the Actual Users	Hazardous & other	Validity of
No.		Waste	Authorisation
9	BNDM Enterprises, At - Ladukhai, PO - Kalamati, PS -	Aluminium Dross	31-03-2022
	Burla, Dist - Sambalpur, Odisha – 768025		
10	East Coast Biotech Project, Dist - Khurda	Zinc Skimming / Zinc Ash /	31-03-2022
		Zinc Dross	
11	Gajanan Petro Chemical Industry, Dist - Jajpur	Waste Oil	31-03-2025
12	Ideal Industries, Dist - Jharsuguda	Aluminium Dross Residue /	13-11-2020
		Rejects	
13	Ideal Industries, Dist – Jharsuguda	Aluminium Dross Residue /	18-04-2021
	-	Rejects	
14	Ideal Industries, Jharsuguda	Aluminium Dross Residue /	31-03-2024
	· -	Rejects	
15	Konark Steel Industries Pvt. Ltd., Sundargarh	Iron and Steel Scrap	31-03-2021
		(M. S. Scrap /C. I. Scrap)	
16	MaaLaxmi Petrochemicals, Dist - Ganjam	Used Oil	31-03-2024
17	Metacast International, Dist – Sambalpur	Used / Spent Anode Butt	31.03.2023
18	Ratna Industries, Dist - Sundargarh	Used Oil	31.03.2022
19	Shree Shyam Minerals, Dist – Jharsuguda	Aluminium Dross	31-03-2023
20	ShriSaiMetallik, At – Jamunalia, PO – Badaposhi, VIA –	Aluminium Dross	31-03-2020
	Naranpur, Dist - Keonjhar, Odisha		
21	ShriSaiMetallik, At – Jamunalia, PO – Badaposhi, VIA –	Aluminium Dross	31-03-2024
	Naranpur, Dist - Keonjhar, Odisha		
22	ShyamJi Processors and Recyclers Pvt. Ltd., Sundargarh	Used / Spent Anode Butt	31.03.2022
23	ShyamJi Processors and Recyclers Pvt. Ltd., Sundargarh	Used / Spent Anode Butt	31.03.2022
24	Siddhi Industries, Dist - Sambalpur	Aluminium Dross	30-09-2020
25	Siddhi Industries, Dist – Sambalpur	Aluminium Dross	21-12-2020
26	Siddhi Industries, Dist – Sambalpur	Aluminium Dross	31-03-2021
27	Susim Enterprises, Dist - Cuttack	Used / Spent Oil	31-03-2022

List of Actual users (Processor / Recyclers) having valid authorization of SPCB (Outside Odisha)

Sl. No.	Name & Address of the actual Users Authorized by SPCB, Odisha	Hazardous and other Waste	Validity of Authorisation
1	Ashirwad Enterprise, Dist : Rajkot	Aluminium Dross	17-11-2024
2	Columbia Petrochemicals, Chhattisgarh	Used Oil	31-03-2023
3	Green Living, Andhra Pradesh	Used / Spent Anode Butt	02-09-2021
4	Mangalam Lubricants Pvt. Ltd., Jharkhand	Used / Spent Oil	30.06.2020
5	K M Oils Pvt. Ltd., Banagalore	Used Oil	30-06-2020
6	K M Oils Pvt. Ltd., Banagalore	Used Oil	31-03-2026
7	National Lubricants, Dist - Palghar, Maharashtra	Used Oil	31-03-2021
8	National Lubricants, Dist - Palghar, Maharashtra	Used Oil	31-03-2023
9	Neelam Metal Products, Rajasthan	Zinc Skimming / Zinc Ash / Zinc Dross	31-03-2024
10	Plus Lubricants, At - Gut No 228, Survey No 43, Satepada Road, City - Abitghar – 421303, Taluka – Wada, Dist - Thane, Maharashtra	Used Oil	31-03-2023
11	R. S. Oil industries, West Bengal	Used Oil	31-03-2021
12	Rolex Enterprises, Maharashtra	Used Lead Acid Battery / Plates / Ashes / Residue / Scraps	31-03-2021
13	Sankalp Enterprise, Gujarat	Zinc Skimming / Zinc Ash / Zinc Dross	31-12-2023
14	ShriShyam Ingot and Casting Pvt. Ltd., Chhattisgarh	Aluminium Dross	31-03-2021
15	ShivamMetallurgicalsPvt. Ltd., Chhattisgarh	Aluminium Dross	26-10-2021

B. Common Facility for Disposal of Hazardous Wastes

A Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF) has been established during 2010-11 at Kanchichuan, Jajpur, Odisha operated by M/s Ramky Enviro Engineers Ltd., Hyderabad with consented capacity of 75,000 T/A. During this period, 234 nos. of Industries / Mines have entered into membership agreement with Common Hazardous Waste Treatment, Storage and Disposal Facility (CHWTSDF).

The status of disposal of hazardous waste at CHWTSDF is as follows:

Hazardous waste received from various Industries/Mines by CHWTSDF -54351.32T

i. Landfill after treatment(LAT) Waste - 38489.24T
 ii. Direct Land Fill(DLF) Waste - 11230.22 T

5.6.2 Implementation of Manufacture, storage and Import of Hazardous Chemical Rules, 1989 and amendments thereof

The Board has not received any application for import of Hazardous Chemicals to the State during 2020-21.

5.6.3. Implementation of Public Liability Insurance Act, 1991

As per provisions of the Public Liability Insurance Act, 1991, the industries handling hazardous substances above the regulatory quantity are required to take insurance policy for providing immediate relief to the victims in case of chemical accidents. Efforts have been made to create awareness among the concerned industries to take such insurances. During this period 26 nos. of industries handling hazardous chemicals have renewed their insurance policies under the PLI Act, 1991.

5.6.4. Implementation of Batteries (M & H) Rule, 2001

The Board has received **82 nos.** of half yearly returns from **April' 2020 to Sep' 2020** and **139 nos.** of half yearly returns from **Oct' 2020 to March' 2021** from battery units. These returns have been received from Manufacture, Re-conditioner, Assembler, Dealer, Bulk Consumer, Auctioneer, Importer and Recycler.

5.6.5 Implementation of the Biomedical Waste Management Rules, 2016

It is the prime responsibility of every occupier of the **Health Care Establishments** (HCE) generating Biomedical Wastes (BMWs) to ensure requisite management and disposal of wastes as per the Biomedical Waste Management Rules, 2016. Biomedical wastes generated in different HCEs are required to be disposed off safely without causing any adverse impacts on the environment and human health.

5.6.5.1 Inventorisation of Health Care Establishments (HCE)

The Board has brought 3715 nos. of HCEs under the authorization administration under the Biomedical Waste Management Rules 2016 and the district wise distribution of such HCEs with respect to bed strength is given in Table-5.14.

Table- 5.14 Districtwise Distribution of Health Care Establishments

SL. No.	District	< 50 beds	50 beds and < 200 beds	200 beds and <500 beds	500 beds and above	*Other Category	Total
1	Angul	48	9	0	0	77	134
2	Balangir	37	2	1	0	56	96
3	Balasore	48	4	1	0	110	163
4	Bargarh	42	2	0	0	72	116
5	Bhadrak	23	5	1	0	56	85
6	Boudh	5	1	0	0	12	18
7	Cuttack	245	23	2	1	267	538
8	Deogarh	6	1	0	0	9	16
9	Dhenkanal	41	4	0	0	38	83
10	Gajapati	15	2	0	0	21	38
11	Ganjam	111	9	0	1	144	265
12	Jagatsinghpur	24	3	0	0	44	71
13	Jajpur	43	0	1	0	77	121
14	Jharsuguda	29	3	0	0	32	64
15	Kalahandi	31	3	0	0	96	130
16	Kandhamal	17	2	0	0	49	68
17	Kendrapara	23	1	0	0	54	78
18	Keonjhar	50	4	0	0	111	165
19	Khurda	137	16	11	5	189	358
20	Koraput	23	3	1	0	79	106
21	Malkangiri	21	1	0	0	25	47
22	Mayurbhanj	43	4	1	0	80	128
23	Nawarangpur	12	2	0	0	49	63
24	Nayagarh	31	3	1	0	57	92
25	Nuapada	12	3	0	0	17	32
26	Puri	47	1	1	0	73	122
27	Rayagada	22	3	1	0	64	90
28	Sambalpur	55	2	1	1	67	126
29	Subarnapur	11	1	0	0	21	33
30	Sundargarh	55	10	5	1	198	269
	Total	1307	127	28	9	2244	3715

- As per the provisions of the Biomedical Waste Management Rules, 2016 all the HCEs are required to treat and dispose different types of biomedical waste properly. Most of the Health Care Units in Odisha have taken up biomedical waste segregation, treatment and captive disposal method as specified in the rule.
- Three major Govt. Medical Colleges and Hospitals namely, S.C.B Medical College and Hospital (SCB MCH), Cuttack, VIMSAR, Burla, Sambalpur and M.K.C.G Medical College and Hospital (MKCG MCH), Berhampur have developed their own infrastructures such as incinerator, shredder, microwave etc. which are operated by engaging private agencies namely M/s. Medi-Aid Marketing Services, M/s. Biotech Solution & M/s. Life Line Pharma respectively. In addition, M/s. Medi-Aid Marketing Services is operating common biomedical waste management facility at Amsarang, Sundargarh and at Seragada, Ganjam.
- > Out of 3715 HCEs units 792 are utilizing the services of aforesaid common facilities.

5.6.5.3 Status of Authorisation Application of Health Care Establishments

The authorisation application status of the HCEs during 2020-21 is presented in Table-5.15

Table - 5.15 Authorisation Status of HCEs During 2020-21

Sl. No.	Status of HCEs	
1	No. of applications received during 2020-21	621
2	No. of cases carried over from year 2019-20	202
3	Total no. of applications received	823
4	No. of HCEs granted authorisation	561
5	No. of HCEs refused authorisation	01
6	Total No. of applications disposed	562
7	No. of HCEs issued show cause notices	14
8	No. of inspection conducted	482

5.6.6. Implementation of the Solid Waste Management Rules, 2016

As per the Solid Waste Management Rules, 2016 the Urban Local Bodies (ULBs) are required to take action for proper management of municipal solid wastes, seek authorization for setting up and operation of waste processing and disposal facilities from the Board and submit the annual report in Form-II every year to the State Pollution Control Board, Odisha. The Board has been pursuing this matter with all urban local bodies since the enactment of the Rules. All the ULBs have been asked to ensure compliance to the standards of the treatment and disposal of waste specified in schedule-II of the Rule. During this period one ULB has applied for authorization which is under scrutiny.

The Board has submitted the Annual Report on solid waste management for the period 2020-21 to CPCB, New Delhi.

5.6.7. Implementation of Plastic Waste Management Rules, 2016

As per the provision of Plastic Waste Management Rules, 2016, the Board has been declared as prescribed authority to issue or renew registration to manufacturers of plastic products, multilayered packaging and plastic waste recycling & processing units. Brand owners who sell their commodity/products using multilayered plastics for packaging need to obtain registration from the Board for managing the plastic waste. The Board is consistently vigilant on carry bag manufacturing units for their compliance to the statutory provisions of the Plastic Waste Management Rules. During the reporting period 08 plastic product manufacturing units (01 Importer, 01 Brand Owner, 03 Recycler & 03 producers) have been registered with the Board.

The State Pollution Control Board has instructed all Urban Local Bodies to implement the provision of Plastic Waste Management Rule, 2016. Major ULBs have also been instructed to send segregated plastic wastes to cement plants namely ACC Ltd., Bargarh, OCL Ltd. Rajgangpur, Shiva Cement, Sundergarh, Toshali Cement, Ampavali, Koraput for co-processing in cement kilns.

Cement Manufacturing units in the State (M/s ACC Cement, Bargarh, M/s OCL India Ltd., Rajgangpur, M/s Shiva Cement Ltd., Kutra, Sundergarh & M/s Toshali Cement Pvt. Ltd., Ampavally, Koraput) have been requested vide Board's letter No. 9398, dt.01.10.2020 to use segregated plastic waste from nearby ULBs in their kilns.

About 91 MT of plastic wastes have been used by M/s ACC Ltd., Bargarh for co-processing in its cement kilns during the calendar year 2020. M/s OCL India Ltd., Rajgangpur has used 11253 MT of segregated plastic waste collected from different ULBs for co-processing during January, 2020 to December, 2020.

Annual report on Plastic waste management for the period 2020-21 has been sent to CPCB, New Delhi. Action is being taken for implementation of provisions of Plastic Waste Management Rules, 2016 by Gram Panchyats of the State.

SPCB has closed down following 8 nos. of different units in the State engaged in the manufacture/production of prohibited plastic items.

(Bhubaneswar-04, Cuttack-02, Berhampur-01, Rourkela-01)

State Govt. in Forest, Environment & Climate Change Department has issued ban order vide Order No.18441, dtd. 30.09.2019 there by prohibiting sell, trade, manufacture, import, store, carry, transport, use or distribute polythene carry bags of any shape, thickness and size, PET bottles of less than 200 ml capacity and single use disposable cutleries made up of thermocol (polystyrene), polyurethane in all urban areas of the State with effect from 2nd October, 2019.

5.6.8 Implementation of the E-Waste Management Rules, 2016.

After enforcement of E-waste Management Rules, 2016 i.e. on 01.10.2016, no individual E-waste collection centre is allowed to collect E-waste. However, the captive collection centres of Producer / Dismantler/ Recycler/ Refurbishers are only allowed to collect E-waste. The Board has granted authorization to 04 E-waste Collection-cum-dismantling units during 2020-21. Annual report on E-Waste management for the period 2020-21 has been sent to CPCB, New Delhi.

5.6.9. Construction and Demolition Waste Management Rules, 2016

This Rule is applicable to every waste resulting from construction, re-modelling, repair and demolition of any civil structure of individual or organisation or authority who generates construction and demolition waste such as building materials, debris & rubble etc.

The authorities of Revenue Department, Housing & Urban Development Department, Works Department and Town Planning, Government of Odisha have been asked to take appropriate action for wide publicity of the Rules to create awareness amongst the local authorities and sensitize the general public about their responsibilities in handling such type of waste.

All the construction and demolition waste generators have been requested through public notice in Daily News Papers to go through the aforesaid Rules which is available at the SPC Board website www.ospcboard.org and Ministry website www.moef.nic.in. Furthermore, the operators of the waste processing facilities have been asked to apply for authorization from State Pollution Control Board.

Construction and Demolition Waste Processing facility is yet to be developed in Urban Local Bodies of the State. The waste collected is generally disposed at existing solid waste dump site or low lying areas.

Annual report on Construction & Demolition waste management has been sent to CPCB, New Delhi.

5.7 MONITORING NETWORK FOR WATER AND AIR QUALITY

5.7.1 National Water Quality Monitoring Programme (NWMP) Inland Surface Water

The Board is monitoring the water quality of eleven river systems viz. Mahanadi, Brahmani, Baitarani, Rushikulya, Nagavali, Subarnarekha, Budhabalanga, Kolab, Vansadhara, Indravati and Bahuda at127 stations under the CPCB assisted National Water Quality Monitoring Programme (NWMP); one station on Brahmani river and one station on Baitarani river under National river Conservation Programme (NRCP).

Board is also monitoring the water quality of other surface water bodies such as canals (Taladanda and Puri canal), ponds in Puri, Bhubaneswar, Angul and Jeypore, Lakes (Chilka, Anshupa and Tampara), Atharabanki Creek and coastal water at Puri, Gopalpur and Paradeep under NWMP. Details of monitoring stations are given in Table-5.16.

The following water quality parameters are determined on monthly basis at all stations.

- (a) Physical parameters: Temperature, pH, Alkalinity, Total suspended solids (TSS)
- (b) Indicators of Organic pollution: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Free ammonia Nitrogen, Ammonical (Ammonium + ammonia) Nitrogen, Total Kjeldahl Nitrogen (TKN)
- (c) Bacteriological parameters: Total Coliform (TC) and Fecal Coliform (FC) at all stations and Fecal streptococci (FS) at selected stations
- (d) Mineral constituents: Electrical Conductivity (EC), Total Dissolved Solids (TDS), Boron, Sodium Absorption Ratio (SAR), Percent Sodium, Total Hardness (TH), Chloride, Sulphate, Fluoride.
- (e) Nutrients: Nitrate (Nitrate + Nitrite) Nitrogen, Phosphate Phosphorous
- (f) Metals: Chromium (Cr) hexavalent, Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), Cadmium (Cd), Mercury (Hg), Lead (Pb) are determined only during lean period, that is, in the month of April or May
- (g) Biological Indices: Saprobic Index (SI) and Diversity Index (DI) are monitored at selected stations and in the months of January, April and October.

Table-5.16 Surface Water Quality Monitoring Stations conducted by the Board under NWMP and NRCP

Sl. No.	Source of monitoring	Total No. Stations	of	Sampling Station
		NWMP	NRCP	Monthly
(A)	River system			
1.	Mahanadi	55		Ib:(1) Sundargarh, (2) Jharsuguda, (3) Brajarajnagar U/s, (4) Brajarajnagar D/s; Bheden: (5) Jharsuguda; Hirakud reservoir: (6) Hirakud; Power Channel: (7) Power Channel U/s (8), Power Channel D/s; Mahanadi:(9) Sambalpur U/s, (10) Sambalpur D/s, (11) Sambalpur FD/s at Shankarmath, (12) Sambalpur FD/s at Huma, (13) Sonepur U/s, (14) Sonepur D/s, (15) Tikarpada, (16) Narasinghpur, (17) Mundali, (18) Cuttack U/s, (19) Cuttack D/s, (20) Cuttack FD/s, (21) Paradeep U/s,(22) Paradeep D/s; Ong:(23) Dharuakhaman; Tel:(24) Monmunda; Kathajodi:(25) Cuttack U/s, (26) Cuttack D/s, (27) Cuttack FD/s at Mattagajpur, (28) Cuttack FFD/s at Kamasasan; Serua:(29) Cuttack FD/s at Sankhatrasa; Kuakhai: (30) Bhubaneswar FU/s, (31)Bhubaneswar U/s; Daya:(32) Gelapur, (33) Bhubaneswar D/s, (34) Bhubaneswar FD/s, (35) Kanas; Gangua:(36) Near Rajdhani Engg. College, (37) Hanspal, (38)

1		I	1	
				Samantarpur, (39) Vadi mula;
				Birupa: (40) Choudwar D/s;
				Kushabhadra: (41) Bhingarpur, (42) Nimapara, (43) Gop;
				Bhargavi: (44) Chandanpur;
				Mangala: (45) Malatipatpur, (46) Golasahi;
				Devi: (47) Machhagaon;
				Gobari: (48) Kendrapada U/s, (49) Kendrapada D/s;
				Nuna: (50) Bijipur;
				Kusumi: (51) Tangi;
				Kansari: (52) Banapur;
				Badasankha: (53) Langaleswar;
				Sabulia: (54) Rambha; and
				Ratnachira: (55) Kumardihi
2.	Brahmani	40	1	Sankh: (1) Sankh U/s;
				Koel:(2) Koel U/s;
				Brahmani :(3) Panposh U/s, (4) Panposh D/s, (5) Rourkela D/s,
				(6) Rourkela FD/s at Attaghat, (7) Rourkela FD/s at Biritola, (8)
				Bonaigarh, (9) Rengali, (10) Samal, (11) Talcher FU/s, (12)
				Talcher U/s, (13) Mandapal, (14) Talcher D/s, (15) Talcher
				FD/s,(16) Dhenkanal U/s, (17) Dhenkanal D/s, (18) Bhuban,
				(19) Kabatabandha, (20) Dharmasala U/s, (21) Dharmasala D/s
				*,(22) Pottamundai;
				Nandira: (23) Nandira U/s, (24) Nandira D/s;
				Kisindajhor: (25) Kisindajhor;
				Kharasrota : (26) Khanditara, (27) Binjharpur, (28) Aul;
				Guradih nallah: (29) Guradih nallah;
				Badajhor: (30) Badajhor;
				Damsala: (31) Dayanabill;
3.	Baitarani	13	1	Gonda nallah: (32) Marthapur; Kundra: (1) Joda;
3.	Danaram	13	1	` ' '
				Kusei:(2) Deogaon;
				Baitarani :(3) Naigarh, (4) Unchabali, (5) Champua, (6)
				Tribindha, (7) Joda, (8) Anandpur, (9) Jajpur, (10) Chandbali
				U/s and (11) Chandbali D/s*;
				Salandi: (12) Bhadrak U/s, (13) Bhadrak D/s; and
	D 1 1 1			Dhamra: (14) Dhamra
4.	Rushikulya	6	-	Russelkunda reservoir: (1) Russelkunda;
				BadaNadi: (2) Aska;
				Rushikulya: (3) Aska, (4) Nalabanta, (5) Madhopur; and
				(6) Potagarh
5.	Nagavali	3	-	Nagavali: (1)Penta U/s, (2) Jaykaypur D/s, and (3) Rayagada
			<u> </u>	D/s
6.	Subarnarekha	1	-	Subarnarekha: (1) Rajghat
7.	Budhabalang	4	_	Budhabalanga : (1) Baripada D/s, (2) Balasore U/s, (3)
	a			Balasore D/s; and
	[~			Sone: (4) Hatigond
8.	Kolab	1	_	Kerandi : (1) Sunabeda
υ.	120100	1	_	1101 and 1 (1) Bundoud

9.	Vamsadhara	2	-	Vansadhara: (1) Muniguda, and (2) Gunupur
10.	Indravati	1	-	Indravati: (1) Nawarangpur
11.	Bahuda	1	-	Bahuda : (1) Damodarpally
	Sub Total	127	2	
(B)	Canal	9	-	Taladanda canal: (1) Jobra, (2) Ranihat, (3) Chatrabazar, (4) Nuabazar (5) Biribati, (6) Atharabanki; Puri Canal: (7) Hansapal, (8) Jagannathpur, and (9) Chandanpur
(C)	Ponds	8	-	Bhubaneswar: (1) Bindusagar; (4 bathing ghats on each side of the pond) Puri: (2) Narendra pokhari, (3) Markanda Pokhari, (4) Indradyumna tank, (5) Swetaganga, (6) Parvati sagar; Angul: (7) Raniguda; and Jeypore: (8) Jagannathsagar
(D)	Lakes	7	-	Chilka lake: (1) Rambha, (2) Satapada; Anshupa lake: (3) Kadalibari, (4) Sarandagarh, (5) Subarnapur, (6) Bishnupur; and Tampara lake: (7) Tampara lake
(E)	Sea	3	-	(1) Puri, (2) Gopalpur and (3) Paradeep
(F)	Creek	1	-	(1) Atharabanki creek
(G)	STP	3	-	(1) STP at CDABidanasi, Cuttack, (2) STP at Mangalaghat, Puri and (3) STP at Mandapal, Talcher
	Total	160		

^{*} NRCP stations

River Water Quality Monitoring

The annual average and range values of the criteria parameters such as pH, DO, BOD, TC, FC and FS obtained during the year 2020 for the river water quality monitoring stations listed under Table-5.16 are given in Table-5.18. Water quality in respect of other parameters is given in Table-4.19.

From the point of view of assessment of the river water quality on the basis of its use to which the river is put by the community, the water quality should conform to Class-C (drinking water source with conventional treatment followed by the disinfection). Comparison of the water quality has been made with respect to the tolerance limits stipulated for Class-C surface water bodies (IS: 2296-1982). Water quality data given in Table-5.18 indicate that out of the four critical parameters such as pH, DO, BOD and TC, parameters like pH and DO at most of the stations remained within the criteria limits, whereas BOD and/or TC have exceeded the criteria limits at several places. Non-compliance has been observed at 14 stations with respect to both BOD & TC, 1 station with respect to BOD alone and 4 stations with respect to TC alone(Table-5.17). The probable cause of downgrading the water quality from its desired use, are of organic origin. A major contribution towards this is from the discharge of untreated domestic water from the townships to the nearby water bodies.

Table-5.17 Water quality status of River monitoring stations during 2020

Sl.	River System	Total no. of	Conforming	Non-co	nforming st	tations
No.		Monitoring Stations	Stations	Both BOD & TC	BOD alone	TC alone
1	Mahanadi	55	42	10	-	04
2	Brahmani	41	37	04	01	
3	Baitarani	14	14			
4.	Rushikulya	06	06		-	
5.	Nagavali	03	03		ŀ	
6.	Subarnarekha	01	01		ŀ	
7.	Budhabalanga	04	04			
8	Kolab	01	01			
9.	Vansadhara	02	02			
10.	Indravati	01	01		-	
11.	Bahuda	01	01			
	Total	129	110	14	01	04

Water quality with respect to other parameters at all the monitoring stations except at Paradeep D/s, Devi at Macchagaon, Potagarh, Chandbali U/s, Chandbali D/s and Dhamra remain within the criteria limit for Class - C water quality laid down under IS: 2296-1982 (Tolerance limits for inland surface water bodies). Water quality at Paradeep D/s, Devi at Macchagaon, Potagarh, Chandbali U/s, Chandbali D/s and Dhamra are greatly influenced by the tidal effect as these stations are very close to the estuary.

Table-5.18 Annual Average and Range values of Criteria Parameters (January-December, 2020)

(A) Mahanadi River System (2020)

N SI	Sampling Location	No.			Annual average values (Range of values)	rage values (values)			Frequ (Perv	Frequency of violation (Percent of violation)	f violati violati	Print.	Existing Class	Parameters responsible for	Possible Reason
		Ops.			Parameters	eters			from (from designated criteria value	led CF	terla		downgrading the water quality	
	,		H	DO (mg/L)	BOD (mg/L)	TC (MPN/ 100 mD	FC (MPN 100 mb	NGPN/ 160 mb)	BOD	JC IC	FC.	FS		•	
	Ib river														
	Sundargar h	12	7.8	7.5	<1.0	945	240	NA	0	0	0		O		
		() ()	(6.8-8.3)	(6.4-8.2)	(<1.0-1.6)	(330-1800)	(110-490)	W-11707							
_	Tharsuguda	12	7.6	7.9	1.0	912	237	NA	0	0	0		C		
			(6,8-8,3)	(7.4-8.6)	(<1.0-1,8)	(230-2200)	(45-790)			70			-66		4.0
_	Brajarajnagar U/s	12	7.6	82	1.1	1242	375	NA	0	٥	0		O		
		1	(6.9-8.3)	(7.8-8.6)	(<1.0-1.8)	(330-3500)	(78-790)		-	1	1		,		
	Brajarajnagar D/s	12	7.6 (6.9-8.1)	(7.4-8.8)	1,2 (<1.0-1.8)	1932 (490-3500)	(130-2200)	NA	0	0	0		o		
	Bheden river														
	Tharsogoda	12	7.6 (69-8.3)	7.9	1.1 (< 1.0-1.8)	(33-3500)	318 (7.8-1700)	NA	0	0	0	•	၁		
	Hirakud reservoir														
	Hiralted reservoir	12	7.7 (6.8-8.3)	(7.4-8.8)	(< 1.0-1.5)	808 (130-2400)	144 (20-230)	NA	0	٥	0	1	O		
	Power Channel														
	Power Chamel U/s	12	7.6 (6.9-8.1)	7.5 (6.8-8.2)	<1.0 (<1.0-1.4)	324 (78-790)	92 (20-220)	NA	0	0	0		S		
	Power Chamel D/s	12	7.5	7.5 (6.8-8.0)	1.1	1003 (170-2400)	394 (20-1300)	NA	0	٥	0		၁		
	Mahanadi river														
	Sambalpur U/s	12	7.4 (6.6-8.2)	7.7 (6.6-8.6)	1.0	1025 (130-3500)	281 (45-1400)	NA	0	0	0		0		
	NA: Not agalysed														

ters Possible ble for Reason	ling the vality																												
Parameters responsible for	downgrading the water quality																												
Existing Class				C		ပ			ပ		ပ		ပ		ပ		ပ		၁		ပ		ပ		ပ		ပ		Ü
ncion ion)	iteria	ES		0	•	0			0		٥		٥		٥		0		٥		0		۰		0		٥		0
of viola	rted cr tre	2		0		0			0		0		0		0		0		0		0		0		0		0		0
Frequency of violation (Percent of violation)	from designated criteria value	2		-	8	0			0		٥		٥		۰		0		٥		0		0		0		٥		0
Freq (Per	from	8		0		0			0		٥		0		0		0		٥		0		٥		0		0		0
		FS	(MPN 100 ml)	17	(<7.8.79)	~	(2-22)		10	(<1.8.17)	9	(2-17)	13	(4-70)	17	(<1.8-49)	17	(<1.8-22)	11	(<1.8-32)	24	(<1.8-49)	21	(<1.8-70)	19	(<1.8.79)	7	(2-14)	11
		FC	(MPN/ 100 ml)	862	(130-2200)	189	(170-1700)		\$18	(130-1700)	245	(1.8-1300)	451	(20-1700)	221	(20-780)	681	(48-790)	790	(20-790)	374	(78-1300)	1026	(220-2300)	803	(130-1700)	182	(20-490)	192
nge values 'values)	eters	IC	(MPN 100 ml)	3087	(540-7000)	2841	(790-4900)		2302	(330-3500)	597	(20-3300)	196	(170-3400)	208	(78-1700)	826	(170-2800)	943	(170-2400)	1150	(230-3500)	2699	(790-4900)	2138	(330.3500)	6945	(45-1700)	999
Annual average values (Range of values)	Parameters	BOD	(mg/L)	1.6	(1.0-2.7)	12	(< 1,0-1,8)		1.0	(<1.0-1.5)	< 1.0	(< 1.0-1.5)	1,0	(< 1,0-1,9)	1,0	(<1.0-1.6)	<1.0	(<1.0-1.7)	< 1.0	(<1.0-1.4)	<1.0	(< 1.0-1.5)	1,3	(< 1.0-2.6)	1.0	(<10.1.7)	<1.0	(< 1.0-1.3)	1.3
		DO	(mg/L)	2.6	(7.0-8.4)	7.6	(6.4-8.2)		7.8	(6.8-8.4)	7.7	(8.8-8.8)	7.5	(6.2-8.8)	7.5	(5.8-10.4)	8.1	(72-92)	7.9	(7.1-8.8)	8.1	(6.8-9.4)	7.9	(6,3-8,9)	7.9	(62-8.6)	7.5	(6.4-8.6)	7.3
		Ha	•	7.7	(6.9-8.5)	7.4	(0.8-9.9)		7.7	(7.0-8.3)	7.8	(7.1-8.3)	7,8	(7.1-8.3)	9'L	(6.8-8.3)	7.9	(7.2-8.4)	7.9	(7.2-8.4)	8.0	(7,3-8.5)	1.7	(7.3-8.3)	7.7	(7.1-8.4)	7.8	(7.1-8.1)	7.7
No.	Oles.			12		12			12		12		12		12		12		12		12		12		12		12		12
Sampling Location				Sambalpur D/s		Sambalpuc	FD/s at	Shankarmath	Sambalpur	FFD/s at Huma	Sonepur U/s		Sonepur D/s		Tikarapada		Narasinghpur		Mundali		Cuttack U/s		Cuttack D/s		Cuttack FD/s		Paradeep U/s		Paradeep D/s
N S				91		ij			12.		13.		14		15,		16.		17.		18.		19,		20		21.		22

Z 2	Sampling Location	e S			Amual average values (Range of values)	age values			Freq	Frequency of violation (Percent of violation)	f violati	diameter of	Existing Class	Parameters responsible for	Possible Reason
		é			Parameters	eters			Lom	from designated criteria value	ted cri	terria		downgrading the water quality	
			Ħd	DO (mg/L)	BOD (mg/L)	TC (MPN 100 ml)	(MPN/	FS (MPN/ 108 mb)	BOD	C	FC.	22	7		
One	Ong River														
23.	Dharraskhaman	12	8.0 (7.2-8.5)	7.5 (6.4-8.6)	<1.0 (<1.0-1.3)	(20-490)	(1.8-130)	NA	0	0	0		ပ		
Tell	Tel River													-	
75	Monnunda	12	7.9 (7.0-8.3)	7.5 (6.2-8.4)	1.0 (<1.0-1.9)	246 (78-1100)	65 (20-230)	NA.	0	0	0	•	ن		
Kath	Kathajodi River														
25.	Cuttack U/s	12	8.0	8.0	<1.0	1533	735	NA	٥	0	0	0	U		
			(7.6-8.4)	(7.4-8.6)	(<1.0-1.3)	(170-3500)	(45-1700)							7	
26.	Cuttack D/s	12	8.0	7.5	23	11108	5511	27	2	90	S	-	Doesn't	BOD, TC	Waste water
			(7.5-8.5)	(6.1-8.4)	(<1.0-3.6)	(1700-	(1300-	(5-140)	(18)	(67)	(42)	@	conform to Class C		of Cuttack city
27.	Martagajpur	12	7.8	7.1	2.5	7869	2885	35	4	7	4	_	Doesn't	BOD, TC	
	(Cuttack FD/s)		(72-82)	(2.6-9.0)	(< 1.0-3.3)	(330 - 17000)	(68-7900)	(4-170)	(23)	(28)	ଥି	8	conform to Class C		
28.	Kamasasan	12	7.9	7,6	<1,0	1933	554	NA	0	0	0	0	O		ar
	(Cuttack FFD/s)		(7.4-8.2)	(62-92)	(< 1.0-1.4)	(230-4900)	(45-1700)	y e e	8	í.	ji				
Seru	Serua River														
29.	Sankhatrasa	12	7.8	7.7	2.2	10216	3593	17	-		6	0	Doesn't	BOD, TC	Waste water
	(Cottack FD/s)		(7.0-8.5)	(6.1-8.8)	(< 1.0-3.8)	(490- 54000)	(130-22000)	(8-49)	(8)	(67)	ଥି		conform to Class C	á	of Cuttack city

zi S	Sampiling Location	og No			Annual average values (Range of values)	rage values values)			Frequ	Frequency of violation (Percent of violation)	f vholar violati		Extering	Parameters responsible for	Possible Reason
		Ops.		8	Parameters	eters	0		from (from designated criteria value	ted crib	teria		downgrading the water quality	
			ЪЩ	DO (mg/L)	BOD (mg/L)	TC (MPN/ 169 ml)	FC (MPN/ 100 ml)	FS (MPN/ 100 md)	BOD	JIC	<u> </u>	22			
Kun	Kuakhai River														
30	Blubmeswir FU/s	27	7.7 (7.4-8.3)	7.5 (4.7-8.8)	1.0 (< 1.0-1.7)	1991 (490-3500)	709 14 (130-1700) (<1.8-46)	14 (<1.8-46)	0	0	0	0	ပ		
31,	Bhubaneswar U/s	12	7.7 (7.3-8.3)	7.4 (5.4-9.7)	1,2 (< 1,0-1.9)	3283 (1300- 5400)	1257 (330-2200)	13 (2-27)	0	1 8	0	٥	ပ		
Days	River											1			
32,	32, Gelapur	21	7,4 (7.0-8.3)	7,3 (4.7-9.5)	1,0 (< 1,0-1.4)	3833 (1400- 16000)	2542 (790-13000)	8 (4-17)	0	- 8	- ®	0	ပ		
33.	Blubmeswir D/s	12	7.5 (7.0-8.4)	62 (43-8.8)	3.4 (0.1-4.7)	44033 (2400- 160000)	28722 (1300-92000	51 (2-170)	9 (37)	8 (67)	01 (S)	2 (j.)	Doesn't conform to Class C	BOD, TC	Waste water of Shubaneswar
34.	Bitubaneswar FD/s	12	7.4 (7.9-8.1)	6.1 (4.1-8.9)	2.9 (1.7-4.2)	29733 (2400- 160000)	24288 (790- 160000)	61 (2-220)	8 (67)	10 (83)	03 (33)	2 (3)	Doesn't conform to Class C	BOD, TC	city
35.	Kanas	77	7.5	(5.5-8.5)	2.0 (<1.0-2.9)	10158 (1400- 35000)	3069 (450-17000)	27 (4-79)	0	8 (6)	s (42)	٥	Doesa't conform to Class C	21	Homan activities

57	. Samolino	No.			Antinal average values	cane values			Fredu	Frequency of violation	fviolat		Existino	Parameters	Possible
Z	No Location	j			(Range of values)	(values)			(Per	(Percent of violation)	violati		Class	responsible for	Reason
		Ops			Parameters	ieters			from (from designated criteria value	ted crit	teria		downgrading the water quality	
			뜅	00	BOD	TC	IC	FS	BOD	J.C	FC.	2			
			•	(mg/L)	(mg/L)	(MPN	(MPN/	(MPN/							
_						100 ml)	100 ml)	100 m])							
9	Gangua River														
ě	 Near Rajdhani 	12	7.2	2,1	6,3	154333	91222	203	12	12	12	12	Doesn't	DO*, BOD, TC	
	Engg. College		(6.9-7.9)	(0.6-3.4)	(3.3-13.3)	(92000-	(14000-	(110-280)	(100)	(100)	(100) (100) (100)	_	conform		
13	+	;	ŀ	ļ		Tonnon	TOURING	1	1	:]	7	Caldas C	mad mon mo	
m	37. Palasuni	12	7.0	1,6	7,8	151167	123889	263	12		12	12	Doesn't	DO°, BOD, TC	
			(5.9-7.8)	(0.4-2.3)	(3.8-19.9)	(54000-	-00082)	(130-920)	(100)		(100) (100) (100)		conform		Waste water
						160000)	160000)					-	to Class C		Jo
38	8. Samantraypur	12	7.0	1,5	9,1	129417	114667	194	12	12	12	Ξ	Doesn't	DO*, BOD, TC	Bhubaneswar
	!		(5.7-7.8)	(<0,3-3,2)	(5.1-13.8)	(35000-	(13000-	(79-350)	(100)	(100)	(100)(100)	8	conform		city
						160000)	160000)					_	to Class C		
39.	 Vadinula 	12	7.2	3.6	4.8	33718	14763	78	12	12	9	10	Doesn't	DO®, BOD, TC	
			(6.1-7.9)	(1.3-8.3)	(3,4-8,5)	-0062)	(2100-54000	(23-170)	(100)	(100) (83)	(83	8	conform		
						92000)						_	to Class C		
	Birupa River														
4	40. Choudwar D/s	12	7.7	7,4	1,0	3502	1011	NA	0	2	-	•	၁		
			(7.0-8.5)	(6.2-8.6)	(<1.0-1.9)	-0530-	(45-4900)			(17)	8				
K	Kushabhadra River					-									
4	41. Bhinearpur	12	7.4	7.5	1.4	4724	1666	W	0	2	2	ŀ	Ü		
			(6.6-8.2)	(5.5-11.3)	(<1.0-2.2)	(790-17000)	(330-7900)			(17)	(13)				
4	42, Nimapara	12	7.5	7.4	1,3	\$132	1764	NA	0		4	•	Doesn't	CC	Hyman
			(6.8-8.0)	(5.8-10.3)	(<1.0-2.0)	(780-	(110-4900)			જી	(33)		conform to Class C		activities

Frequency of violation for DO is 12 times (100% of total observation) ## Frequency of violation for DO is 10 times (83% of total observation)

z s	Sampling Location	No.			Annual average values (Range of values)	rage values (values)			Freq (Per	Frequency of violation (Percent of violation)	f viola violati		Existing Class	Parameters responsible for	Possible Reason
		ops S			Parameters	reters			from	from designated criteria value	ted cri	teria		downgrading the water quality	
			μd	DO (mg/L)	BOD (mg/L)	TC (MPN)	FC (MPN	FS (MPN/	BOD	TC	FC	22			
ş	-	ç		4.1	4.	100 100	TAN IIII)	TO IIII)	9	-	-	T	2	Ş.	1
3	9	77	4./	7.7	CI	8650	7007	N	0	4	đ		Doesn	-	Homein
			(6.7-8.0)	(5,3-8,6)	(<1,0-2,1)	(1300-	(700-13000)			(33)	(33)		conform to Class C		activities
Bha	Bhargavi River														
4	Chandanper	12	2.6	7,2	1,1	1663	693	NA	0	0		•	ပ		
	'		(6.2-7.9)	(6.1-8.3)	(<1.0-1.4)	(230-4900)	(78-2300)								
Man	Mangala River														
45.	Malatipatpur	12	2.6	7.0	1,1	2603	1301	NA	0	-	-	·	ပ		
	1		(6.7-8.3)	(6.1-7.8)	(<1.0-1.7)	(130-	(45-4900)			8	8				
						11000)									
46	Golasahi	12	7.6	7.4	2,6	16131	3512	70	60	2	2	-	Doesn't	BOD, TC	Hyman
			(6,8-8,3)	(4.5-15.7)	(1,3-4,6)	(490 - 160000)	(130-	(4-140)	(23)	(17)	(17)	@	conform to Class C		activities
Devi	Devi River														
47.	Machhagaon	12	7.7 (6.9-8.2)	7.1 (5.8-8.4)	1,1 (<1.0-2.1)	632 (45-3300)	290 (20-1300)	NA	0	0	0		ပ		
Gov	Govari River														
48	Kendrapara U/s	12	2.6	6,3	1,1	1467	452	NA	0	0	0	·	ပ		
			(7.0-8.2)	(52-82)	(<1.0-1.6)	(230-2800)	(20-790)								
49	Kendrapara D/s	12	7.4	6.2	1.5	2855	569	NA	0	0	0		Ü		
			(6.8-8.2)	(4.6-8.0)	(<1.0-2.4)	(470-4700)	(45-1700)								
N	Nuna River														
20.	Bilipur	12	7.5	6.9	1:1	9075	3400	NA	0	7	-		Doesn't	C	Homan
			(7.0-8.1)	(5,3-8,8)	(< 1,0-1,8)	(1700-	(110-22000)			(17)	8		conform to Class C		activities
	AND RESIDENCE AN	-		-	Constitution of the last of th	STREET, SQUARE, SQUARE	-	THE R. P. LEWIS CO., LANSING, STREET, SQUARE,		The same of the sa			The residence of the latest owners the latest ow	The same of the sa	

Sanapling No. Antronal average values	Possible r Reason	9																	h conventional	disinfection		T.	
No. Annual average values Frequency of violation Farameters Parameters Parameters Frequency of violation Parameters P	Parameters responsible for	downgrading the water quality	•																water source wit	ent followed by		Bathing Wat	
No. Antrunal aversage or values Frequency of violation	Existing Class					2		၁			ပ			၁			၁		Drinking	treatm			
No. No. Range values No. Parameters Parameters Obs. Parameters Parameters Obs. Parameters Obs. Parameters Obs. Parameters 12 7.5 7.2 1.1 3318 1248 41 100 md)		teria	S			0		·			·			0			0						
No. Antroval average values No. Parameters	f viola violati	rted cri ne	FC			0		0			٥			0			0						
No. Antronal average values Parameters	nency (designa val	2			0		0			0			0			0						
Mo. Annual average values Parameters	Freq (Per	from	BOD			0		۰			۰			٥			0						
ug No. Annual average values n Obs. Parameters pH DO BOD TC r 7,5 7,2 1,1 3318 r 7,6 7,6 1,0 100 md) r 7,6 7,6 1,1 3318 r 7,6 7,6 1,2 1654 r 7,6 7,6 1,2 1654 swar 12 7,6 7,6 1,2 1654 swar 12 7,6 7,6 1,2 2821 swar 12 7,6 7,6 1,2 2821 swar 12 7,8 7,4 1,3 3230 rini 12 7,8 7,4 1,3 3250 rini 12 7,4 6,9 1,0-1,9 (2100-4900) reria 12 7,4 6,9 1,2 1883 rini 12 7,4 6,9			RS	(MPN)				NA			NA			36	(<1.8-79)		14	(2-49)				100	
No. Annual average of Range of Rang			FC	(MPN/ 100 ml)		1248 (400-2200)		069	(230-1100)		1464	(130-2800)		1180	(330-2300)		764	(170-1700)				2500 (Maximum	Permissible)
No. Aantual ave Obs. Ph DO BOD	rage values (values)	eters	JC	(MPN/ 100 ml)		3318 (2200-4900)		1654	(400-3500)		2821	(330-4900)		3250	(2100-4900)		1883	(220-4900)	5000 or less				
ug No. pf ph DO r 12 7.5 7.2 swar 12 7.6 7.0 swar 12 7.8 7.4 swar 6.5-8.2 4 and scrip 6.5-8.5 4 and cerio 6.5-8.5 5 and carion G.S.R. above	Antiual aver (Range or	Paran	BOD	(mg/L)		1,1 (<1,0-2,0)		1,2	(< 1.0-1.9)		1,2	(<1.0-2.1)					1,2	(<1.0-1.8)	3 or less			3 or less	
14 No. of Obs. Obs. 12			DO	(mg/L)		7.2 (6.3-8.7)		7.0			6,7	(3.6-8.0)		7,4	(3.8-10.6)		6'9	(5.4-8.3)	4 and	above		5 and above	
ug n n River swar swar swar swar swar swar swar swa			Hď			7.5 (6.9-8.1)		2,6	(7.2-8.3)		7.3	(6.9-7.8)		7.8	(7.5-8.2)		7.4	(6.6-7.9)	6.5-8.5			6.5-8.5	
Lecation Lecation Lecation Lecation Lecation Laboration Laboration Langaleswar	No.	o Se				12		12			12			12			12		tty			cha S.R.	900
	Sampling Location				mi River	Tangi	ari River	Banapur		sankha River	Langaleswar		tia River	Rambha		achira River	Kumardihi		ass 'C' water qual	Criteria	(79KT-0K77-CI)	ater quality criter EF Notification G.	No. 742/R) Dr. 25.69.2666
※ 図	25 S2				Kusu	51.	Kans	32.		Bada	33		Sabu	Ž,		Radu	33.		ರೆ			W	N

The criteria of non-compliance with respect to TC for Class C rivers has been calculated on the following basis:
TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 mL(Ref : IS 2296-1982 front note) ë

(B) Brahmani River System (2020)

S S	Sampling Location	Ş y			Annual average values (Range of values)	rage values (values)			Freq (Per	Frequency of violation (Percent of violation)	f viola	l	Existing Class	Parameters responsible for	Possible Reason
		6			Parameters	neters			L Lom	from designated criteria value	ted cri	teria		downgrading the water quality	
			Hď	00	BOD	IC	EC	FS	BOD	ΙC	E.	FS			
				(mg/L)	(mg/L)	(MPN/ 160 mJ)	(MPN 166 ml)	(MPN 100 ml)							
Sa	Saukh River														
ı	Sankh U/s	12	7.6	7.4	<1.0	1951	607	NA	0	0	0	•	O		
1	J Dilena		(L,n=C,U)	(0,5-2,0)	(C'1-0'1 \)	(4/0-5/0/2)	(DACT-DIT)								
04	Roel Kiver														
7	Koel U/s	12	7.5	7.8	1.0	2977	734	NA	0	0	0		C		
			(6.7-8.1)	(6.6-8.7)	(<1.0-1.6)	(230-4900)	(110-1400)								
	Brahmani River														
67	Panposh U/s	12	7.5	7.4	1.1	2106	526	NA	0	0	0	·	C		
			(6.7-8.2)	(6.5-8.6)	(<1.0-1.6)	(170-3400)	(110-1300)								
4	Panposh D/s	12	7,3	4,8	4,6	12050	\$2\$6	19	10	10	œ	0	Doesn't	DO',BOD, TC	Waste water
			(6.6-7.9)	(2.8-7.2)	(2.8-6.3)	-000+)	(1100-	(4-30)	(83)	8	<u>(6</u>		conform		of Rowrkela
						24000)	13000)						to Class C		town and
	D. 44. D.	Ş	**	0.4	9.0	0100	2400	1.0		٥	,	<	2	OR GOD	Steel Plant
ń	Kollukeia L/S	77	7'/	2,8	3,8	8100	7667	17	34	XC	٥	0	Loesa	BOD, IC	
			(6.5-7.8)	(4.0-8.6)	(2.1-5.4)	(1100-14000)	(230-4900)	(8-49)	(73)	(67)	(20)		conform to Class C		- 0 0-
9	Rourkela FD/s	12	7,4	7,1	2,9	2933	1139	11	4	2	-	0	Doesn't	BOD, TC	
	(Attaghat)		(6.6-7.9)	(5.6-10.0)	(1.5-4.0)	(130-11000)	(78-3300)	(<1.8-22)	(33)	(17)	8		conform to Class C		-do-
<u>, '</u>	Rouckela FD/s	12	7,6	7.5	2,0	1653	969	13	-	0	0	0	Doesn't	BOD	
	(Birrhola)		(6.8-8.4)	(6.7-8.4)	(< L0-3.2)	(220-3500)	(78-1700)	(<1.8-17)	8				conform to Class C		-op-
ගේ	Bongiggrift	12	7,6	7.2	1,0	845	280	MA	0	0	0		O		
			(6.8-8.4)	(6.0-8.5)	(<1.0-1.4)	(140-2300)	(45-1300)								
	Il Dane and and all	at abalatan	4	1	Panetal alaman and	1									

Frequency of violation for DO is 5 times (42% of total observation)

Possible Reason																														
	downgrading the water quality																													
Existing Class				ပ		၁		ပ	ŀ	ပ	0	,	Ü		ပ		၁		C		Ö		ပ		Ü		ပ		ပ	
	ierra	FS															•													
f violad violatic	red crri	2		0		0		0	,	0	0	ı	-	@	0		0		0		0		0		0		0		0	
Frequency of violation (Percent of violation)	nom designated criteria value	Ľ		٥		٥		0	1	0	0		-	8	0		٥		0		0		٥		٥		0		0	
Frequ (Perc	nom 6	BOD		0		0		0	1	0	0		0		0		0		0		0		0		0		0		0	
		FS	(MPN/ 100 ml)	NA		NA		NA		N A	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
		IC	(MPN/ 166 ml)	223	(20-790)	470	(110-790)	263	(mil-0,/)	460	886	(170-2300)	914	(20-3300)	342	(23-1300)	366	(45-1300)	496	(45-2200)	543	(78-1700)	632	(130-1300)	969	(220 - 1300)	739	(270-1700)	562	(220-790)
age values values)	eters	IC	(MPN/ 100 ml)	358	(20-1700)	14.57	(220-3500)	833	(**O-2.0!At)	L284 (140-3300)	2901	(490-4900)	2213	(170-7900)	1364	(130-4900)	687	(170-2300)	1071	(78-2400)	1631	(490-3300)	1527	(330-3500)	2074	(790-3500)	2233	(1300-3500)	1801	(220-3500)
Annual average values (Range of values)	Parameters	BOD	(mg/L)	< 1.0	(<1.0-1.2)	1,0	(<1.0-L3)	<1.0	(1,1-1,1)	<1.0 (<1.0-1.1)	<1.0	(<1.0-1.6)	1.7	(<1.0-2.4)	1.2	(<1.0-L9)	< 1,0	(<1.0-1.5)	1.2	(<1,0-1,9)	1.3	(<1.0-2.4)	<1,0	(<1.0-1.6)	1.1	(<1.0-1.9)	1.2	(<1.0-1.9)	1.0	(<1.0-L8)
		00	(mg/L)	7.6	(5.8-9.4)	7.4	(5.0-8.6)	7.7	(0'6-0'n)	7.8	7.8	(6.6-9.4)	7.4	(6.2-8.8)	7.7	(6.8-8.8)	7.4	(6.4-9.0)	7.7	(5.8-10.2)	7.5	(6.2-8.6)	7.5	(6.5-8.2)	7.6	(7.2-8.0)	7.5	(7.1-7.9)	7,3	(5.8-8.3)
		Hď	•	7.6	(7.0-8.3)	7,6	(6.9-8.2)	7.6	(7'0-0'7)	7.5	7.6	(7.1-8.1)	7.5	(7.0.7)	9.7	(7.0-8.0)	7.8	(7.2-8.5)	7.8	(7.4-8.2)	7.8	(7.2-8.2)	2.6	(6.8-8.2)	7.7	(6,9-8,3)	7.6	(6.5-8.3)	7.9	(7.1-8.0)
No.	Š			27		12		12	!	71	12		12		12		12		12		17		12		12		12		12	
Sampling Location				Rengali	,	Samal		Talcher FU/s	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Talcher U/s	Mandanal		Talcher D/s		Talcher FD/s		Dhenkanal U/s		Dhenkanal D/s		Bhuban		Kabatabandha		Dharmasala U/s		DharmasalaD/s		Pottammadai	
Si Si				6		10,		10.	,	70.	13		7		15.		16,		17.		18.		19,		20.		21.		ŭ	

줐	Sampling	Š,			Antwal average values	rage values			Freq	Frequency of violation	f viola		Existing	Parameters recognition for	Possible
-		5 O			Parameters	eters			from	from designated criteria value	ted cri	terria		downgrading the	NATION OF THE PROPERTY OF THE
			Hd	DO (me/L)	BOD (me/L)	TC (MPN/	NPN.	FS	BOD	IC	IC.	22			
					(1.8.)	100 mJ)	100 ml)	100 ml)							
Z	Nandira River														
23.	Nandira U/s	12	7.9	7.9	1.1	1048	435	NA	0	0	0		၁		
	-		(7.2-8.5)	(5.8-9.4)	(<1,0-1.7)	(20-2200)	(70-790)								
77	Nandira D/s	12	7.8	7.6 (5.4-10.8)	1.5 (<1.0•1.9)	2465 (330-4900)	937 34 (45-2200) (<1.8-79)	34 (<1.8-79)	0	0	0	0	C		
K	Kistnda Jhor														
25.	Kisindajhor	12	7.8 (7.5-8.1)	7.5 (6.0-10.4)	1.3 (< 1.0-1.8)	1537 (79-3500)	348 (23-790)	NA	0	0	0		၁		
K	Kharasrota River														
92	Khanditara	12	7.5 (6.6-8.4)	7.7 (7.1-8.2)	1.0 (< 1.0-1.8)	658 (130-2100)	247 (17-790)	W	0	0	0		ပ		
27.	Binjharpor	12	7,3	7,6	<1.0	1017	388	MA	0	0	0		S		
1	+	1	(6.7-7.9)	(0.0-0.7)	(-0.1-)	(0087-077)	(110-1300)	1	,	,	4		,		
98	Aul	12	7.9 (6.9-8.2)	7.4 (5.2-9.0)	<1.0 (<1.0-1.6)	1973 (220-4300)	893 (78-1700)	¥.	0	0	0		၁		
3	Guradih mallah														
29.	Guradih nallah	12	7.5 (6.6-8.0)	3.6 (2.3-5.8)	(29-11.7)	39427 (220-92000)	14663 (170- 35000)	150 (△.8• 350)	8 (67)	11 (92)	11 (92)	3 (3)	Doesn't conform to Class C	DO",BOD, TC	Waste water of Rowrkela town and Steel Plant
Ba	Badajhor														
30.	Badajhor	12	7.8 (7.6-8.2)	7.8 (5.4-10.4)	1.0 (< 1.0-1,6)	3067 (1700-4900)	824 (270-1700)	NA	0	0	0		၁		
Pa	Danasala River														
31.	Dayanabil	12	7.5 (6.8-7.9)	7.4 (6.7-8.2)	<1.0 (<1.0-1,4)	803 (140-2200)	198 (45-640)	NA	0	0	0		၁		
క్ర	Ganda Nallah														
32,	Marchapm	12	7,3	7.1 (6.4-7.6)	1,0	1087 (49-4900)	177 (20-450)	NA	o	0	0		၁		
				100	40.00	1000	(00)								

Z SZ	Sampling Location	No.			Annual average values (Range of values)	rage values (values)			Freq (Per	Frequency of violation (Percent of violation)	f violatio		Existing Class	Parameters responsible for	Possible Reason
		Oles.			Parameters	eters			from	from designated criteria value	ted crit	eria		downgrading the water quality	
			펻	90	BOD	IC	FC	S	BOD	13	5	S		•	
			1	(mg/L)	(mg/L)	(MPN 100 ml)	(MPN/ 100 ml)	(MPN/ 100 ml)							
Ling	Lingira River														
33	Angul U/s	12	8.2	7.5	==	1378	473	NA	0	0	0		ပ		
			(79-84)	(5.6-10)	(<1.0-1.7)	(220-2400)	(78-1300)								
줐	Angul D/s	12	8.1	7.5	1.3	2616	1031	NA	0	0	0		၁		
	,		(7.8-8.5)	(5.4-9.8)	(<1.0-1.9)	(490-3500)	(130-1700)								
Ram	Ramiala River														
35.	Kamakhyanagar	12	7.5	7.4	1.2	2382	839	NA	0	0	0		၁		
			(69-8.0)	(6.4-8.8)	(<1.0-19)	(780-4900)	(330-1700)								
Barty	Banguru nallah														
36.	Banguru nallah	12	7.8	7.1	==	1584	208	17	0	0	0	0	၁		
			(7.0-8.2)	(6.0-8.8)	(<1.0-1.6)	(490-3500)	(170-1700)	(5-23)							
Sing	Singadajhor														
37.	Singadajhor	12	7.8	7.0	<1,0	1659	738	NA	0	0	0		S		
Tiki	Tikira River		(200	(21.2.2.1)	((0000 000)	(22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2								
38	Kaniha U/s	12	79	7.7	=	1450	245	W	0	0	0		ပ		
			(7.2-8.2)	(9.6-0.9)	(<1.0.14)	(220-3300)	(110-1300)								
39	Kaniha D/s	12	7.7	7.0	13	2950	1037	NA	0	0	0		ပ		
			(7.2-8.0)	(5.6-8.4)	(<1.0-1.9)	(1700-4900)	(330-2200)								
Ban	Bangurukhgada jhor														
40,	Bangurusingada	12	7.8	7,3	1,2	1903	808	NA	0	0	0		၁		
	jhor		(7.4-8.2)	(5.8-8.4)	(<1.0-2.3)	(490-3500)	(220-1700)								

						_		
Possible Reason						conventional infection		
Parameters responsible for	downgrading the water quality					Orthking water source with conventional treatment followed by disinfection	•	Bathing Water
Existing Class				၁		Drinkting treats		
	terta	SI		٠				
f viola violati	ted cri se	FC		0				
Frequency of violation (Percent of violation)	from designated criteria value	TC		0				
Frequ (Perc	from d	BOD		0				
		FS (MPN/ 100 ml)		NA				108
		FC (MPN/ 100 ml)		513	(45-1300)			2500 (Maximum Permissible)
age values (values)	eters	TC (MPN/ 100 ml)		1028	(210-2400)	5000 or less		1
Annual average values (Range of values)	Parameters	BOD (mg/L)		1.0	(< 1.0-1.8)	3 or less		3 or less
		DO (mg/L)		7.2	(6.7-8.0)	4 and above		5 and above
		Hď		7.6	(6.8 - 8.2)	6.5-8.5		6,5-8,5
No.	ops.			21		μΩ		.S.R. 2000
Sampling Location			Karo River	Barbil		Class 'C' water quality Criteria	(IS-2296-1982)	Water quality criteria MOEF Notification G.S.R No. 742(E) Dt. 25.09.2000
z S			Karo	41.		Ö		MO No.
			_	_				

The criteria of non-compliance with respect to TC for Class C rivers has been calculated on the following basis:
TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.(Ref: IS 2296-1982 toot note) NB:

(C) Baitarani River System (2020)

S S	Sampling Location	No.			Annual average values (Range of values)	age values values)			Freq. (Per	Frequency of violation (Percent of violation)	f violatio	1	Existing	Parameters responsible for	Possible Reason
		Olbs.			Parameters	eters			from	from designated criteria value	ted criti	erla		downgrading the water quality	
			Hq	DO (mg/L)	BOD (mg/L)	TC (MPN/ 100 ml)	FC (MPN/ 199 ml)	FS (MPN/ 100 ml)	BOD	TC	FC	ES			
Kum	Kundra nallah														
ı,	Joda	12	7.2	6.7	<1,0	2002	1118	NA	0	0	a		၁		
			(6.8-7.9)	(4.9-8.2)	(<1.0-1.6)	(490-4900)	(110- 3300)								
Kus	Kusei River														
7	Deogaon	77	7.7	7.3	1:1	1980	810	MA	0	0	0		ပ		
	,		(7.3-8.1)	(5.8-8.4)	(< 1.0-1.6)	(220-4900)	(130-1700)								
Bait	Baltarani River														
<i>~</i> i	Naigarh	27	7.3	69	<1.0	821	340	NA	0	0	٥		ပ		
			(6.9-7.5)	(5.9-7.9)	(<1.0-1.5)	(140-2300)	(45-1300)								
4	Unchabali	12	7.2	6.7	<1,0	1808	745	NA	0	0	0		၁		
			(6.7-7.7)	(5.8-7.6)	(<1.0-1.4)	(220-4900)	(68-1700)								
s.	Champwa	12	7.3	7.0	<1.0	1378	369	NA	0	0	0		ပ		
			(9.6-7.6)	(6,2-8,3)	(<1.0.1.8)	(140-3300)	(20-780)								
ý	Tribindha	77	7.5	7.0	<1.0	995	342	NA	0	0	0		ပ		
			(6.8-7.8)	(5.8-7.7)	(<1.0-1.6)	(78-3300)	(20-780)								
7.	Joda	12	7.4	69	<1,0	1315	551	NA	0	0	0		ပ		
		1	(0.9-8.0)	(6.0-73)	(< 1.0-1.0)	(1/0-3200)	(/8-1300)				1	+	1		
හේ	Anandpor	7	75	7.3	1.1	2038	1068	NA	0	0	0		ပ		
6	Isimir		7.6	7.4	10	1204	314	NA	0	0	e	ϯ.	2		
			(69-83)	(6.9-7.9)	(<1.0-1.3)	(130-3500)	(20-1100)	!	,	,	,		,		
10,	Chandbali U/s	12	7,3	6,7	0,1	1889	924	NA	0	0	9		ပ		
			(6.8-8.0)	(5.6-8.4)	(< 1.0-2.3)	(220-3500)	(220-2200)								
11.	Chaudball D/s	12	7.3	7.2	1.3	2822	1480	NA	0	0	0		၁		
			(6.7-7.9)	(8.0-8.8)	(< 1.0-2.4)	(270-4900)	(230- 2400)								
			And in case of females and in case of the last of the	-	-		WILL ST.	-							

Possible Reason									convention	sinfection	
Parameters responsible for downgrading the water quality									Drinking water source with conventional	treatment followed by disinfection	Bathing Water
Existing Class		ပ		S			ပ		Drinking	treath	
		•					•				
f violati violati ted cri ne FC		0		0			0				
Frequency of violation (Percent of violation) from designated criteria value SOD TC FC FS		0		0			0				
Frequence (Per from 6		0		0			0				
IS (MPN/	Im mi)	NA		NA			NA				100
FC (MPN	Ten IIM)	\$18	(130-	1584	(780-		351	(45-790)			2500 (Maximum Permissible)
rage values (values) eters TC (MPN/	Im mi)	1584	(230-2200)	3067	(<1,0-2,0) (1300-4900)		1311	(220-2400)	5000 or less		ı
Annual average values (Range of values) Parameters BOD TC (mg/L) (MPW		<1,0	(<1,0-1,4)	1.4	(<1,0-2,0)		1,3	(<1.0-1.8)	3 or less		3 or less
DO (mg/L)		7.5	(6.0-9.2)	7.6	(9'6-0'9)		7,3	(6.0-8.8)	4 and	above	5 and above
Hd		7.4	(6,5-8,1)	7.3	(6,5-8,5)		7.4	(6.7-8.0)	6.5-8.5		6.5-8.5
No. Obs.		12		12			12		ity		rhi S.R. 2000
Sampling Location	Salandi River	Bhadrak U/s		Bhadrak D/s		Dhamra River	Dhamea		Class 'C' water quality	Criteria (IS-2296-1982)	Water quality criteria MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000
% 8	Salan	12,		13.		Dhar	14		Ü		MO No.

The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref.: IS 2296-1982 foot note) NB:

(D) Rushikulya River System (2020)

Parameters Par	2 %	Sampling Location	No.			Annual average values (Range of values)	rage values (values)			Freq.	Frequency of violation (Percent of violation)	f violar		Existing Class	Parameters responsible for	Possible Reason
Phi DO BOD TC FC FS BOD TC FC FS BOD TC FC FS			Obs			Param	eters			u o. u	lesigna valu	ted cri	teria		downgrading the water quality	
Russelkunda Reservoir 12 7.6 7.9 1.2 3094 1710 NA 0 1 1 1 1 1 1 1 1 1			,	띮	DO (mg/L)	BOD (mg/L)	TC (MPN/ 100 ml)	FC (MPN/ 100 ml)	FS (MPN/ 100 ml)	BOD	IC	FC	2			
Rosselfonda 12 7.6 7.9 1.2 3094 1710 NA 0 1 1 1 1 Asha 12 7.5 7.3 (6.0-10.0) (<1.0-1.8) (330-9200) (230-5400) (230-5400) (3) (8) (8) (8) (8) Asha 12 7.3 7.4 1.2 2.53 982	R	sselkunda Reservo														
Aska	:	Russelkunda	12	7.6 (7.2-8.3)	7.9 (6.0-10.0)	1.2 (<1,0-1,8)	3094 (330-9200)	1710 (230-5400)	NA	0	- 8	- 8		၁		
Askna 12 79 72 1.1 3133 2067 NA 0 1 1 1 1	Bac	la Nadi														
Aska 12 79 74 12 2653 982 NA 0 0 0 0 Nalabanta 12 79 74 12 2653 982 NA 0 0 0 0 Nalabanta 12 8.0 7.2 < 1.0 3344 1626 NA 0 0 0 0 Madhopur 12 7.9 7.9 7.9 1.1 3417 1414 14 0 1 1 0 Potagarh 12 7.9 7.0 1.2 1900 933 16 0 0 0 0 Potagarh 12 7.9 7.0 1.2 1900 933 16 0 0 0 0 Criteria 4.5.9.5 5 and 3 or less 5000 or less 2500 100 Off 7.2.8.5 5 and 3 or less 2500 0 0 Potagrama 1.0 7.9 7.0 1.2 1900 933 16 0 0 0 0 Off 7.3.8.4 6.5.9.5 5 and 3 or less 2500 0 0 Off 7.3.8.5 5 and 3 or less 2500 0 0 Off 7.3.8.7 100 0 0 0 Off 7.3.8.8 100 0 0 0 0 Off 7.3.8 100 0 0 0 0 0 Off 7.3.8 100 0 0 0 0 0 Off 7.3.8 100 0 0 0 0 0 0 Off 7.3.8 100 0 0 0 0 0 0 Off 7.3.8 100 0 0 0 0 0 0 Off 7.3.8 100 0 0 0 0 0 0 0 0	2	Aska	12	7.9 (7.3-8.3)	7.2 (6.2-8.8)	1.1 (<1.0-1.7)	3133 (270-5400)	2067 (130-3400)	NA	0	- 8	- ®		၁		
Aska 12 79 74 12 2653 982 NA 0 0 0 0 Nalabauta 12 8.0 7.2 < 1.0 3544 1626 NA 0 0 0 0 Nalabauta 12 8.0 7.2 < 1.0 3544 1626 NA 0 0 0 0 Machopur 12 7.9 7.9 1.1 3417 1414 14 0 1 1 0 Potagarh 12 7.9 7.0 1.2 1900 933 16 0 0 0 0 Criteria 12 7.9 7.0 1.2 1900 933 16 0 0 0 0 Criteria 15.296-1982) C.1.0-2.1) (2.30-4800) (78-2100) (<1.8-70) (<1.8-70) 0 0 0 0 OFFINOISISTINATION C.5-8.5 5 and 3 or less 5000 or less 2500 100 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 0 0 Permisching G.S.R. A and 3 or less 2500 0 0 0 0 0 0 0 0 0	M	shikula River														
Nalabanta 12 8.0 7.2 <1.0-2.2) (330-4900) (230-1700)	ε,	Aska	12	7.9	7.4	1.2	2653	382	NA	0	0	0		ပ		
Nalabanta 12 8.0 7.2 <1.0 3544 1626 NA 0 0 0				(7.4-8.4)	(5.5-9.5)	(<1.0-2.2)	(330-4900)	(230-1700)								
Madhopur 12 7.9 7.9 1.1 3417 1414 14 0 1 1 0 Madhopur 12 7.9 7.9 1.1 3417 1414 14 0 1 1 0 Potagarh 12 7.9 7.0 1.2 1900 933 16 0 0 0 Class 'C' water quality 6.5-8.5 4 and 3 or less 5000 or less Criteria 4 and 3 or less 5000 or less Offaximum Offaximum G.S.R. Above Above Offaximum Offa	4	Nalabanta	12	8.0	7.2	<1,0	3544	1626	NA	0	0	0		Ü		
Madhopur 12 79 7.9 1.1 3417 1414 14 0 1 1 0 Potagarh 12 7.9 7.0 1.2 17000) 933 16 0 0 0 0 Potagarh 12 7.9 7.0 1.2 1900 933 16 0 0 0 0 Class C. water quality 6.5-8.5 4 and 3 or less 5000 or less Criteria 4 and 3 or less 5000 or less 6.5-8.5 5 and 3 or less 6.5-8.5 5 and 3 or less 6.5-8.5 6.5-8.				(6.8-8.5)	(5.2-8.6)	(<1.0-1.5)	(330-4900)	(130-2500)								
Potagarh 12 7.9 7.0 1.2 17000) (<1.8-47) (8) (8) (8)	5.	Madhopur	12	7.9	7.9	1.1	3417	1414	14	0			0	C		
Potagarh 12 7.9 7.0 1.2 1900 933 16 0 0 0 0		'		(7.1-8.5)	(6,2-9,5)	(<1.0-1.6)	(1100-	(130-4900)	(<1,8-47)		8	8				
(7,3-8,4) (6,0-9,0) (<1,0-2,1) (230-4800) (78-2100) (<1,8-70) 6,5-8,5 4 and 3 or less 5000 or less above	6.	Potagaria	12	7.9	7.0	1.2	1900	933	16	0	0	0	0	၁		
6.5-8,5 4 and 3 or less 5000 or less 6.5-8,5 5 and 3 or less - 2500 (Maximum Permissible)		,		(7.3-8.4)	(0.6-0.9)	(<1.0-2.1)	(230-4800)	(78-2100)	(<1.8-70)							
6.5-8,5 5 and 3 or less - 2500 100 (Maximum Permissible)	_	Jass 'C' water quali	lty.	6,5-8,5	4 and	3 or less	5000 or less							Drinkdng	water source with c	онуситопр
6.5-8,5 5 and 3 or less - 2500 100 (Maximum Permissible)		(IS-2296-1982)			above									treatm	ent bollowed by dist	rifection
	¥ ž	Water quality criter OEF Notification G., 7. 742(E) Dt. 25,09,2	S.R.	6,5-8,5	5 and above	3 or less	•	2500 (Maximum Permissible)	100						Bathing Water	

NB:

The criteria of non-compliance with respect to TC has been calculated on the following basis: TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref : IS 2296-1982 foot note)

(E) Nagavali River System (2020)

Possible Reason						ouventional Infection	
Parameters responsible for	downgrading the water quality	•				Drinking water source with conventional treatment followed by disinfection	Bathing Water
Existing Class			၁	၁	O	Drinking treatm	
	iteria	æ	•	0	0		
of violari	ited cri	TC FC	0	0	0		
Frequency of violation (Percent of violation)	from designated criteria value	JC TC	0	0	0	9	
Preq.	from (BOD	0	0	0	1.	
		FS (MPN/ 100 ml)	NA	15	20 (<1.8-79)		100
		FC (MPN/ 100 ml)	625	685 15	487 20 (130-1100) (<1.8-79)		2500 (Maximum Permissible)
age values 'values)	eters	TC (MPN/ 100 ml)	1808	1878	1422 (78-3500)	5000 or less	ı
Annual average values (Range of values) Parameters	Param	BOD (mg/L)	<1,0	1.5	1.0	3 or less	3 or less
		DO (mg/L)	7,1 (62-8.4)	6.5	72 (6.6-7.8)	4 and above	5 and above
		Hd	7.5	7.6	7.7 (6.8-8.5)	6,5-8,5	6.5-8.5
g g	OBs.		11	11	п	Bity	ria 1,S.R. 2000
Sampling Location			Penta U/s	J.K. Pur D/S	Rayagada D/S	Class 'C' water quality Criteria (IS-2296-1982)	Water quality criteria MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000
5 Z			1.	2	eri	Ö	MO No.

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml (Ref : IS 2296-1982 floot note) The criteria of non-compliance with respect to TC has been calculated on the following basis: 8

(F) Subarnarekha River System (2020)

2 S	Sampling Location	of No			Annual average values (Range of values)	rage values (values)			Freq (Pen	Frequency of violation (Percent of violation)	C violat	n (a	Existing Class	Parameters responsible for	Possible Reason
Š.		Ops.			Parameters	iefers			Pom	from designated criteria value	ted crit			downgrading the water quality	
			Hd	DO (mg/L)	BOD (ng/L)	TC (MPN/ 100 ml)	FC (MPN 100 ml)	FS (MPN/ 100 ml)	BOD	J.C	5	82			
Suba	Subarnarckha River					6									
1:	Rajghat	12	7.9	9.7	1,3	1830	823	NA	0	0	0		ပ		
j.	200,000		(72-8.5)	(6.0-8.8)	(1.0-1.8)	(170-3500)	(45-2400)						8		
Ü	Class 'C' water quality	Dity	6.5-8.5	4 and	3 or less	5000 or less	1000						Prinking	Drinking water source with conventional	onventional
	(IS-2296-1982)			above									treatm	treatment followed by distriction	mecnen
MO No.	Water quality criteria MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000	Cha .S.R. 2809	6.5-8.5	5 and above	3 or less	Т	2500 (Maximum Permissible)	100						Bathing Water	

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref ; IS 2296-1982 fbot note)

(G) Budhabalanga River System (2020)

Possible Reason													onventional infection	
Parameters responsible for	downgrading the water quality	•											Drinking water source with conventional treatment followed by disinfection	Baching Water
Existing Class				ပ		C		C			O		Drinking treatm	
	erra	22		0										
f violat violatik	ted crit	<u>5</u>		0		0		0			0			
Frequency of violation (Percent of violation)	from designated criteria value	JC			(8)	٥		0			0			
Frequ (Perc	from d	BOD		0		0		0			0			
		FS (MPN/ 100 ml)		30	(8-79)	NA		NA			NA			100
		IC (MPN/ 100 ml)		1310	(490- 2200)	480	(130-	1242	(220- 3500)		1148	(78-3500)		2500 (Maximum Permissible)
age values (values)	eters	TC (MPN/ 100 ml)		3200	(1300-7900)	1160	(450-2300)	3017	(2200-4300)		2168	(330-3500)	5000 or less	1
Annual average values (Range of values)	Parameters	BOD (mg/L)		1,4	(1.1-1.9)	1.0	(<1.0-1.4)	1.5	(<1,0-2,8)		1,1	(<1.0-1.5)	3 or less	3 or less
		DO (mg/L)		7,5	(6.0-8.8)	7.4	(6.0-8.8)	6.9	(6.0-8.4)		7,1	(6.4-8.4)	4 and above	5 and above
		Hď		7.7	(7.2-8.4)	7.7	(7.1-8.3)	7.5	(6.9-8.1)		7.7	(7.3-8.1)	6.5-8.5	6.5-8.5
No.	ops:			12		27		12			12		ity	S.R. 808
Sampling Location			Budhabalanga River	Baripada D/s		Balasore U/s		Balasore D/s		Some River	Hatigond		Class 'C' water quality Criteria (IS-2296-1982)	Water quality criteria MOEF Notification G.S.R. No. 742(E) Dt. 25,09,2000
25 SZ			Boodle	1;		2		6		Some	4.		ວ	MO No.
	_		_		_									

The criteria of non-compliance with respect to TC has been calculated on the following basis: .. 98

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref : IS 2296-1982 foot note)

(H) Kolab River System (2020)

of S			Annual average valu (Range of values)	Annual average values (Range of values)			Frequ (Perc	frequency of violation (Percent of violation)	l'violati riolation		Class	Parameters responsible for	Possible Reason
Obs			Parameters	ieters			D LOIN (from designated criteria value	red critic	1000		downgrading the water quality	
12	변	DO (mg/L)	BOD (mg/L)	TC (MPN/ 100 ml)	PC (MPN/ 100 ml)	PS (MPN/ 100 mL)	ВОВ	TC FC		22	-		
5 8										3			
П	7.4	7.1	<1,0	1484	418	NA	0	0	0		ပ		
	(6.9-8.0)	(6.7-7.4)	(<1.0-1.4)	(<1.0-1.4) (110-3300)	(110-790)								
Class 'C' water quality Criteria (IS-2296-1982)	6.5-8.5	4 and above	3 or less	S000 or less						D	inking v treatme	Drinking water source with conventional treatment followed by disinfection	onventional nfection
Water quality criteria MOEF Notification G.S.R. No. 742(E) Dt. 25,09,2000	6.5-8.3	5 and above	3 or less	a.	2500 (Maximum Permissible)	100						Bathing Water	

NB: The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

(Ref: IS 2296-1982 foot note)

(I) Vansadhara River System (2020)

Possible Reason								conventional
Parameters responsible for	downgrading the water quality							Drinking water source with conventional
Existing Class		cec		၁		၁		Drinking
	teria	ES.				×		
f violati violati	ted cri	FC		0		0		
Frequency of violation (Percent of violation)	from designated cr value	TC FC		0	:	0		
Frequ (Perx	from d	BOD		0		0		
		NPN/		NA		NA		
		(MPN)		139	(45-330)	966	1700)	
age values values)	eters	TC (MPN)	1	647	(130-1700)	1954	(220-4900)	5000 or less
Annual average values (Range of values)	Parameters	BOD (mg/L)		<1,0	(<1.0-1.2)	<1,0	(<1.0-1.4)	3 or less
		DO (mg/L)		7.1	(6.7-7.8)	7.2	(6.5-7.7)	4 and
		Нд		9.7	(69-82)	7.7	(6.7-8.2)	6,5-8,5
₽ %	Ops.			=		Π		AltA
Sampling Location			ansadhara River	Manigoda		Gonupur		Class 'C' water quality
2 S			Vans	1.	- 15 	7		ธี

treatment followed by disinfection	Bathing Water
	100
	2500 (Maximum Permissible)
	1
	3 or less
above	5 and above
	6,5-8,5
Criteria (IS-2296-1982)	Water quality criteria MORF Notification G.S.R. No. 742(E) Dt. 25.09.2000

The criteria of non-compliance with respect to TC has been calculated on the following basis: N.

IC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref : IS 2296-1982 foot note)

(J) Indravati River System (2020)

% S	Sampling Location	No.			Annual average values (Range of values)	rage values (values)			Freq.	Frequency of violation (Percent of violation)	f violat	non (no	Existing Class	Parameters responsible for	Possible Reason
ě		Ops.			Parameters	ieters			Prom	from designated criteria value	bed critic	erra		downgrading the water quality	
			변	DO (mg/L)	BOD (mg/L)	TC (MPN/ 100 ml)	(MPN)	FS (MPN/ 100 ml)	BOD	J.	S.	22			
Inde	ndravati River														
-:	Nawarangpur	Ξ	7,4	7,1	1,2	1677	369	NA	0	0	0	•	ပ		
			(6.8-7.8)	(6.5-7.4)	(<1.0-1.8)	(340-3500)	(170-490)								
0	Class 'C' water quality Criteria (IS-2296-1982)	jų.	6.5-8.5	4 and above	3 or less	5000 or less							Drinking treatm	Drinking water source with conventional treatment followed by disinfection	onventional infection
N W	Water quality eriteria MOEF Notification G.S.R No. 742(E) Dt. 25.09.2000	S,R.	6.5-8.5	5 and above	3 or less	т	2500 (Maximum Permissible)	100						Bathing Water	

NB:

The criteria of non-compliance with respect to TC has been calculated on the following basis:
TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/ 100 ml, (Ref : IS 2296-1982 foot note)

(K) Bahuda River System (2020)

5 Z	Sampling Location	g Se			Annual average values (Range of values)	rage values (values)			Pred (Per	Frequency of violation (Percent of violation)	f violatic		Existing Class	Parameters responsible for	Possible Reason
Ř		Ops.			Parameters	lefers			from	from designated criteria value	ted crt		8		
			Hd	DO (mg/L)	BOD (mg/L)	TC (MPN/ 100 ml)	FC (MPN/ 100 ml)	FS (MPN/ 100 ml)	BOD	TC FC		22			
Bah	Bahuda River														
l,	Damodarpally	12	8.0	7.2	1,2	2349	189	NA	0	0	0	4	၁		
B			(7.5-8.4)	(5.2-10.0)	(<1.0-1.8)	(450-3500)	(170-						35		
3	Class 'C' water quality Criteria (IS-2296-1982)	Þ	6.5-8.5	4 and above	3 or less	5000 or less							Drinking treatm	Drinking water source with conventional treatment followed by disinfection	onventions nfection
N N	Water quality criteria MORF Notification G.S.R. No. 742(E) Dt. 25,09,2000	S.R.	6.5-8.5	5 and above	3 or less	j1)	2500 (Maximum Permissible)	100						Baching Water	

NB:

The criteria of non-compliance with respect to TC has been calculated on the following basis:
TC values with more than 5% of samples abow more than 20,000 MPN/100 ml and more than 20% of the samples abow more than 5000 MPN/100 ml, (Ref : IS 2296-1982 foot note)

Table-5.19: Water Quality With Respect to Other Parameters during 2020 (January-December)
(A) Mahanadi River System (2020)

TSS Total COD NH-N Free NHt Free NHt Free NHt TKN EC SAR % Na B TBS THS TH CO SQ F	Ze Sz	Sampling Location	Phy	Physical parameters		Organic pell	Organic pellution Indicators	S.WO				Milk	Mineral constituents	ES.				
TSS Teal COD NH-N Free NH TKN EC SAR % Na B TDS TB CD SO,						99			Annual average	values (Ra	unge of valu	(3)	3	000	20.		i est	
Heart Constitute Constitu			ISS	Tetal alitai -Inity	COD	NH	Free NH ₅ -	TIKN	EC	SAR	% Na	5830	SQT.	Ш	ū	†0s	H	
Columbia St			(m)	VL)		5	12/L)		(□S/cm)					5	ng/L)		1000	
Color Sign Color	DR	her				1												
CTO SS CTO	ī.	Sundargarh	82	57 (24-	8.5	0.64	000000000000000000000000000000000000000	5.38	140	0.32	17.28	<0.5	-76)96	¥	6.7	10.47	0.251	
Hard			379)	(88)	\$ \$	405 1.12	0.014 (0-	₹ €	(66-183)	(0.11-	(623-		104)	<u>4</u> 8	\$ £	(5.5-	0.337	
C C C C C C C C C C	2	Darsuguda	43	60 (40-	9.6	0.56 (0.6-	0.005 (0-	1.96	154	0.43	21.03	Q0.5	100 (92-	57	9.1 (6-	12.82	0.234	
Color Colo	2	•	(<10- 227)	80)	\$ \$2	0.56)	0.028)	4.76	(109-204)	(0.15-	(891-		112)	8 8	12)	21.9 21.9 1.9 1.9	(402- 0.313)	
Columb C	33	Brajeajragar U/s	89	59 (32-	9.8	-9'0) 8'0	0.014 (0-	2.94	154	0.49	23.24	<0.5	112 (96-	52	9.3 (6-	13.4	0.251	
Colored Discrepage Section Colored Discrepage			315)	(88)	\$ E	1.12)	0.055)	\$6 \$6	(97-242)	(0.18-	35.84)		14)	96 52	2LI)	(8.1-	0.316)	
Columb C	4	Benjeajmagar DVs	99	61 (32-	10.5	1.16 (0.6-	0.018 (0-	3.02	172	0.54	24.11	<0.5	129 (112-	58	12.6	16.6	0.263	
1.55 65 (40- 9.7 0.91 0.0022 (0- 2.46 2.15 0.59 22.9 -0.5 1.70 (144- 72 15.5 2.3.42 1.24) 1.			288	2	-9. <u>41</u>	2.8)	0.084)	533	(102-248)	025	37.97)		152)	£.3	3.0	(10.4-	0.312)	
1.55 65 (40- 9.7) 0.91 0.002 (0- 2.46 2.15 0.59 2.29 -0.5 1.70 (144- 72 1.55 2.342) 1.68) (4-1.5- 0.109) (4.1.5- 0.104) (4.1.5- 0	Bhe	len River																
ST 14.5 14.5 1.68 14.5 1.68 14.5 1.68 14.5 1.24 1.	vi	Jharsnguda	23	65 (40-	9.7	1670	0.022 (0-	2.46	215	0.59	22.9	<0.5	170 (144-	72	15.5	23.42	0.344	
servoir 21 66 (40- 108) 9.1 0.75 (0.6- 0.008) 0.3.11 169 0.34 15.6 <u.>0.45- 120) (3.4- 1</u.>			83	100)	14.5)	1.68)	(GATTA	500	(746-771)	1.24)	39.96)		204)	98	38.5)	50.24)	0.533)	
servoir 21 66 (40- 9.1 0.75 (0.6- 0.008 (0- 3.11 169 0.34 15.6 4.5- 120 7.8- 1.12 0.036 (1.12 0.036 (1.24-215 0.10- 0.55- 120 35- 1.5- 1.04-215 0.10- 0.55- 1.20 38 18 2.6-91 sol 1.12 0.036 (1.12 0.042 1.12 0.042 1.12 0.042 1.12 0.042 1.12 0.042 0.16-195 0.19- 0.57- 112 0.042 1.18- 0.19- 0.10- 0.57- 112 0.042 0.15- 0.19- 0.05- 0.10- 0.10- 0.10- 0.10- 0.11 0.1	Hirs	knd Reservoir																
Colored Like 108 Colored Like 1.12 0.036 Colored Like 1.24-215 0.016 0.545 1.20 0.55 1.55	Ø	Hiraltud reservoir	21	-04)99	9.1	0.75 (0.6-	0.008 (0-	3.11	169	0.34	15.6	<0.5	104 (92-	71	8.0	13,31	0.286	
unnel U/s 21 67 (52- 7.2 0.96 (0.6- 0.012 (0- 3.11 172 0.32 15.57 <u.5 -="" 112)<="" th=""> 6.16 3.11 172 0.32 15.57 <u.5 -="" 112)<="" th=""> 6.16 3.11 172 0.19- (9.57- 112) 6.58 8.4 14.35 64) 11.5) 11.5) 6.16) 6.16) 6.16 0.042) 17.8 0.19- (9.57- 112) 6.6 5.8- (7.1- 64) 11.5) 6.16) 6.16) 6.16 17.8 0.31 14.9 <u.5 (104-<="" -="" 100="" td=""> 72 9.8 14.84 amound D/s 17 6.16- 0.010 (0- 4.26 17.8 0.31 14.9 <u.5 -="" 112)<="" td=""> 6.4- 7.2- 9.8 14.84 c(-10- 92) (6- 1.12) 0.025) (<u.15-< td=""> (0.19- (9.72- 112) (6.4- 7.2- 9.8 14) 23.33) 72) 13.7) 13.73 7.84) 0.42) <</u.15-<></u.5></u.5></u.5></u.5>			\$ 8 8	108)	(6-12)	1.12)	0.036)	7.8€	(124-215)	(0.10-	35.98)		120)	(52 88)	\$\empty \empty \	26.91)	0.34	
Colored Lile Colo	Pow	er Channel				0.0000000000000000000000000000000000000			200				3					
Convex Channel Dis C<10- 96 C<5- 1.12 0.042 (1.68- (146-195) (0.19- (9.57- 112) (56- (5.8- (7.1-112) (1.68- (1.68-195) (1.61-195)	7	Power Channel U/s	21	67 (52-	7.2	0.96(0.6-	0.012 (0-	3.11	172	0.32	15.57	<0.5	104 (96-	89	8.4	14.35	0.288	
Power Channel D/s 17 68 (36- 9.9 0.74 (0.6- 0.010 (0- 4.26 1.78 0.31 14.9 <0.5 100 (104- 72 9.8 14.84 (7.7- (9.4- 72) 13.7)			\$ \$	E	\$ F	1.12)	0.042)	(1.68-	(146-195)	(0.19-	(9.57-		112)	\$ (\$6	(5.8-	(7.1-	0.383)	
92) (6- 1.12) 0.025) (<1.5- (143-208) (0.19- (9.72- 112) (54- (7.7- (9.4- 13.7)	œ	Power Channel D/s	17	-96)89	66	0.74 (0.6-	0.010 (0-	4.26	178	0.31	14.9	<0.5	100 (104-	72	8.6	14.84	0.287	
The state of the s			\$ £3	92)	13.7	1.12)	0.025)	₹ \$	(143-208)	0.17	(9.72-	- 15	112)	₹ %	£ (£	23.33)	0374)	

% S	Sampling Location	Phy	Physical parameters	ō	Organic pollution Indicators	tion Indica	iters				Mineral	Mineral constituents	spi			
							A	Annual average values	_	(Range of values)	(San		000		4	
		TSS	Total alkai -inity	COD	NHN	Free NHN	TKN	EC	122	% Na	В	TDS	TH.	ם	,00v	H
		(m)	(mg/L)		(M)	(mg/L)		(DS/cm)					III)	(mg/L)		
Mal	Mahanadi River	75 AND TO SEE			000								2009	100000000000000000000000000000000000000		0.00000
6	Sambalper U/s	19	67 (40-	8.3	0.63	800.0	3.28	181	0.52	20.88	<0.5	130	2.9	14.29	15.96	0.305
ij.		•16	93)	\$	-9'0)	9	<u> </u>	(143-299)	(0,24-	(11,92		62-	(36)	ė	7.3-	(<0,2•
		(19		14.8)	1.12)	0.039)	6.72)		1.77)	45.94)		196	£	45.2)	23.21)	0.422)
10	Sambalpur D/s	18	-44-	14.1	0.87	0.016	4.45	207	19.0	22.62	<0.5	143	75	16.8	18.44	0.304
	iii M	-0[∨)	(88	9	4.0	9	< <u>\</u>	(157-342)	(0.18-	(9.55-		(II2-	8	(و	(11.2-	(40.2-
		33)	2	21.2)	2.24)	0.067)	10.07)	8 7	1.64)	43.15)		204)	9	(6.13)	32.35)	0.408)
11.	Sambalpur FD/s at	ន	76 (44-	12.6	0.65	0.000	3.64	209	0.47	20.25	<0.5	127	74	12.14	19.71	0.374
	Shankarmath	• (V)	128)	(7.5-	4.0>)	9	<u>√</u> >	(140-288)	(0,24-	(13,11-		(112-	8	(02-9)	-970	(0,206-
		18)	113	18.9)	1.12)	0.034)	(91.9)	- 10	0.75)	25.85)		140)	108)		25.98)	0.538)
12	Sundergarth	16	69 (40-	9.2	0.56	0.011	3.61	179	0.38	17.9	<0.5	110	0/	10.79	15.24	0.329
		-0I>	Ź	ŝ	-4.0>)	9	\ \	(140-206)	(0.21-	-96-01)		-88)	4	-1.7	-6.8)	(<0.2-
		58)		0.71	1.12)	0,034)	5,88)		09'0	25,06)		120)	8	(91	23,45)	0.51)
13,	Sonepur U/s	14	70 (36-	7,2	0.5	0,013	2,46	178	0,33	15,62	<0,5	125	20	8,55	15,05	0,319
		-0I≥)	100	ģ	4.0≥)	9	\	(128-255)	(0.19	(10.21-		8	-8+)	ھ	-/.8)	(<0.2-
- 3		55)		11.1)	0.84)	0.036)	3.92)		0.48)	21.59)		156)	104)	12.5)	25.48)	0.412)
14.	Sonepur D/s	17	81 (40-	6.6	0.65	0.025	2.6	202	0.36	15.77	<0.5	139	22	9.63	15.5	0.342
9		•0I>)	124)	Ó	-0.4	9	<u>√</u> >	(147.287)	(0.18-	(8,19		[6	<u>4</u>	(5.8-	(6,2-	(0,204
		22)		19.2)	1.12)	0.090)	5.6)	A CONTRACTOR OF THE CONTRACTOR	0.56)	20.77)		172)	110	15.4)	27.14)	0.428)
15.	Tikarapada	*	76 (48-	8.2	0.62	0.011	2.97	191	0.49	19.18	<0.5	133	17	13.06	14.48	0.291
		(< 0 >	120)	Ś	4.0≻	9	< <u>\</u>	(145-272)	-91.0)	6.05		를	<u>%</u>	9	-9.9)	(<0.2-
		130)		13.7)	1.12)	0.067)	8.4)		1,94)	\$0,9)		180)	90	57.7)	30,48)	0,354)
16.	Narasinghpur	30	72 (36-	8.1	9.0	0.027	4.17	183	0.54	22.26	<0.5	115	19	13.66	10.66	0.315
		• (×)	92)	ģ	<0.4	9	₹ >)	(146-225)	(0,21-	(10.8-		8	4	(92-9)	(6,3-	(40.2-
		72)	30 5	11.6	1.12)	0.105)	(8.91		1.41)	49.56)		132)	(08		22.02)	0.393)
17.	Munduli	4	68 (34-	4.0	0.62	0.029	3.53	179	0.35	16.37	<0.5	115	22	11.15	13.08	0.304
		(<10-	Æ	Ś	4.00	9	(< 5	(142-212)	(0.17-	-86.8)		형	<u>\$</u>	(8-14)	(5.9-	(0.2-
		173)		15.5)	1,68)	0,109)	(8'91		0,50	22,97)		120)	(08		29.7)	0,399)
18	Cuttack U/s	31	59 (20-	8,2	0.5	0.026	2,69	163	0.36	17.62	<0.5	901	99	10.69	13.07	0,302
		(<10-	Æ	ģ	-4.0>)	9	(<1.5	(82-209)	(0.15-	(8.16-		.	4	ģ	(62-	(<0.2-
		107)		14.7	1.12)	0.087)	(91.9)		0.48)	29.09)		124)	92)	189	22.14)	0.441)

% %	Sampling Location	Phy. paran	Physical parameters	ō	ganic poll	Organic pollution Indicators	aters				Minera	Mineral constituents	spire			
							A	Annual average values	_	Range of values)	nes)					
		TSS	Total alkai -inity	00D	NHN	Free NH-N	TKN	EC	SAR	% Na	Ø	SOI	TH	D CI	°05	EL
		Sim)	(mg/L)			(mg/L)		(DS/cm)						(mg/L)		2 0 0 0
19	Cuttack D/s	35	-96) (9	11.6	0.65	0.021	2.46	130	0.44	18.86	<0.5	125	72	14.75	16.24	0.257
) 1		•I>)	(88	\$	4.0>	9		(135-230)	(0.13-	(7.16-		-9II)	\$	9	<u>.</u>	(<0,2•
		104)	8	[9]	1.4)	0.056)	3.36)	8	0.88)	32.8)		132)	(88)	19.2)	41.43)	0.383)
20	Cuttack FD/s	36	67 (32-	7.7	0.62	0.024	2.63	173	0.41	18.78	<0.5	==	65	7.6	14.39	0.291
		(<10-	(88)	Ś	-4.0>	9	<u>⟨</u>	(124-212)	(0.16-	(8.81-		%	48	Ş	7.1-	(<0.2-
		116)	8	13)	2.24)	0.070)	4.48)	3 70	0.72)	31.73)		128)	84	15.4)	26.55)	0.399)
21.	Paradeep U/s	37	73 (36-	8.6	0.74	0.014	336	1630	4.22	35.64	<0.5	-	56 (52-	303.43	68.99	0.32
	徒	• (≥)	96	Ŷ	4.0>	9	(1,68 <u>-</u>	(146-7746)	(0,21-	:		83	540)	<u>•</u>	. (6,8 .	(<0.2•
		127)	11.)	29.1)	1.12)	0.045)	9.52)	11)	22.28)	82.28)		2948)		1534.5)	223.81)	0.512)
2	Paradeep D/s	25	118	21.1	0.84	0.031	4.87	13368	30.96	69.51	1.558	7509	1145	20.089	385.14	0.541
		-0!∨)	(9	Ş	(<0.4	9	(2.24-	-262)	(1.67-	(46.1-	-618.0)	(1960-	(8)	(48-	(15.6-	(0.273-
		237)	192)	38.8)	2.24)	0,280)	10,64)	42560)	116,62)	(89'16	2,036)	18600)	2200)	19986)	(0001	0.868)
ō	Ong River			200						0.00						
23	Dharuakhamma	18	97 (48-	œ	19'0	0,017	2,88	230	0,64	22,38	<0,5	146	81	12,59	11,73	0,416
3		< < < <	148)	ģ	-9.0)	9	\	(127-318)	(0.19	(8.46-		\$	-94)	(6-26)	Ş	(0.216-
-3	-	91)		11.8	0.84)	0.087)	4.48)		2.22)	53.43)		184)	120)		22.02)	0.625)
Tel	River															0.000000
24.	Monmonda	37	71 (40-	8.6	0.47	0.016	2.8	167	0.43	20.43	<0.5	-89) 66	63	16.6	8.29	0.268
		(<16	(911	<u>و</u> و	4.00	98	√. V. V.	(105-218)	0.18-	-8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -		130)	4 8	6.58	\$ €	(<0.2-
Kat	Kathalodi River	(0,00		100	0.00	0.000	0.40)		A.1.0	20.00			2	-	100.00	0.0100
25	Cuttack U/s	36	66 (40-	9.3	0.64	0,023	2,88	173	0,37	16.95	<0.5	108	70	9.63	14.97	0,306
0,		-0[>)	(88)	Ś	4.0>)	9	(<1.5	(136-225)	(0.12-	-6.67-	3	62	Se	(6-14)	(6.1-	(<0.2-
		112)		14)	1.12)	0.070)	6.72)		0.75)	32.09)		130	92)		29.12)	0.476)
26.	Cuttack D/s	48	72 (36-	15.4	1.06	0.056	3.3	205	0.45	19.79	<0.5	139	74	13.13	17.13	0.295
		• (V)	<u>8</u>	ė	(<0.4	9	\ >	(162-318)	(0.18-	(9.13-		9	4	<u>.</u>	(9.2-	(0.215-
	-	154)		21.4)	1,68)	0.174)	5.6)	8	0.82)	32,18)		184)	108)	25.9)	34,41)	0.393)
27.	_	Z	83 (36-	17.5	1,24	0,045	3.7	240	0,71	25.03	<0.5	131 (0-	5	21.35	14,63	0,238
	Mattagajpur)	(V)	104)	.	4.05	9	(1.68-	(147-334)	(0.33	(15.35-		204)	96	26	(8.1-	(40.2
		(1)		31,2	4,0)	0,102)	3,049		1,17	40,07			The	23,03	20,637	V,51,

% %	Sampling Location	Phy	Physical parameters	ō	Organic pollution Indicators	rtion Indic.	ators				Minera	Mineral constituents	suts			
								Annual average values (Range of values)	values (R	ange of val	nes)					
		TSS	Total alkal -inity	@ 00	NH,N	Free NHN	TKN	IC	SAR	% Na	g	TDS	Ħ	D	708	Ŧ
	A STATE OF THE STA	(m)	(mg/L)		m)	(mg/L)	1000000	(DS/cm)					Ü	(mg/L)		
28.		41	74 (44-	00	0.74	0.024	2.77	195	19.0	22.51	<0.5	130		13.95	13.35	0.286
	Kamasasan	-0 V 0 V	10g	\$ ₹	(\$ -1.5	-0°0 0°73	∑. \$ §	(130-287)	(0.15- 7.13-	6.44		5 5 5	4€	6 6 8 8	(8.1- 22.8)	(<0,2-
Serua	ua River	(=,:			(====	10100	600						(2)		60:00	4.100
શં	Cuttack FFD/s at	20	75 (52-	16.2	124	0.044	3.61	12	0.54	20.77	<0.5	135	73	13.72	14.82	0.329
	Sankhatarasa	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100)	7.7	(<0.4-	9 69	(A.5-	(128-301)	(0.16-	(8.5-		(112-	88	9 6	52-	(<0.2- 0.71A)
Kus	Kuakhai River	Tools.		(0)			600		-	100000			6.5	1000	6000	1
30	Blmbaneswar FU/s	8	71 (28-	6	0.74	0.011	3.11	183	0.51	21.96	<0.5	122	63	11.63	13.16	0.254
		\$	(911	Ś	4.0	ė	<u>\$</u>	(113-251)	(0.23-	(13,69-		-96)	-96	Ş	(7.4	(<0.2-
-3		200)	-20	16.6)	1.12)	0.045)	8.4)		1.06)	41.24)	-113	160)	84)	20.2)	22.14)	0.341)
31.	Bimbaneswar U/s	51	73 (36-	10.9	86.0	0.022	2.86	198	0.52	22.13	<0.5	126	8	13.54	14.22	0.231
		Ş 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120)	\$ 5	-9:01	9	\$ \$ \$ \$	(141-258)	(0.29-	(15.19-		-8 5	4 8	9,6	7.1-	(40.2-
Day	Dava River	100		1000	1,000	n'ana	n'in		Corin	(0)		(Lot	(00)	(4100	(popular	Original of
32.	Gelapur	63	74 (48-	11.2	16'0	0.010	3.27	208	0.55	22.37	<0.5	128	70	15.44	14.38	0.29
	0	√ 0√	110)	\$	-9:0)	9	₹	(151-346)	-61.0)	(10.29-		(92-	(25-	Ş	(8.5-	(<0.2-
		361)		19.1)	1.68)	0.038)	6.16)		1.16	36.03)		164)	80)	25.9)	21.43)	0.41)
33.	Bhubaneswar D/s	53	71 (36-	22.1	1.54	0.012	4.42	306	1.08	34.24	<0.5	193	75	33.93	21.34	0.378
		0 ₹	911	Ė	(0.6-2.8)	હ	₹	(152-391)	.44	(20.06		100	4	ė	(5.8-	(<0.2-
2.4	Diserbancement CD/a	132)	357.02	35.5)	1 22	0.035)	0.10)	27.4	1.80)	45.91)	200	757)	100)	26.03	30.24)	0.049)
ř,		900	124)	7.3-	0.06	0-0	\ \ \ \ \	(148-402)	0.42	71 07-	0.7	(84-	3 5		(0)	(<0.2-
		(861		33)	2.24)	0.067)	5.06)		1.79)	44.64)		236)	ଛ	9	39.048	0.579)
35.	Kamas	27	74 (52-	12.4	89.0	0.008	3.15	727	86.0	30.65	<0.5	175	70	23.68	19.59	0.306
		(40 74)	108)	\$ 2	0.6-	-(0)-	\$ \$ \$ €	(162-430)	2.70	(16,23-		240)	\$ 8	55.8	38.33)	(<0.2-

S.	L. Samoline	Phys	Physical	Ö	Oreanic pellution Indicators	tion Indica	tfors				Mineral	Mineral constituents	mis			
Z	No. Location	paran	parameters	i												
							A	Annual average values		(Range of values)	les)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
_		TSS	Total alkal -inity	COD	NH+N	Free NHN	TKN	EC	SAR	% Na	В	TDS	TH.	ຜ	80°	Es.
	0.000	(m)	(mg/L)		(m)	(mg/L)		(US/em)						(mg/L)		
9	Gangua River		1000									20.000000000000000000000000000000000000				200000000000000000000000000000000000000
36.		37	67 (34-	32.2	2.39	0.015	5.13	274	1.20	37.16	<0.5	185	77	34.87	19.95	0.238
_	Engg, College	\$	<u>8</u>	49.5	6.6-	-6 128	(224-7)	(186-391)	187)	5139		g 3	ģ <u>Ē</u>	<u> </u>	(5.1- 62.3%)	0.497
è	37. Palasuni	8	67 (40-	38.7	3,36	0,021	6.5	366	1.76	42	<0,5	256	22	57,43	27.95	0,743
		-61)	124)	47.4	-1:0	6	(4.48-	(180-642)	(0.65	(24.26-		90g 2	<u>\$</u>	في في	(H3-	(0.26-
٩	+	337)	727 200	(8.8)	£.7	0.164)	9.24)	0100 7 620	2.93)	50.5	200	316)	152)	(6.67)	67.62)	1.45)
38	8. Samantrapur	£ ,	100	45.2	3.08	0.010	5.75	357.6 (212-	1.36	39.54	<0.0	96	100	52.43	30.06	0.485
To the		413	(911	68.6	(0.6-8.4)	0.067)	3.36-	5II)	(8,7) 1,98	47.19)		28 E	- 62 20 20 20 20 20 20 20 20 20 20 20 20 20	1062)	73.69)	(40.2-
en	39. Vadhaula	121	68 (52-	27.6	1.4 (0.6-	6000	4.2	308	1.38	37.52	<0.5	218	74	42.93	23.65	0.386
		\$ >	626	(11.9-	2.24)	ę	₹	(175-401)	(0.44-	-1661)		-961)	. 99)	(36-	605-	(⊴0.2-
_		437)		49.5)		0.067)	(80,01		2.27)	54.02)		240)	(88)	67.3)	54.52)	0,941)
A	Birupa River			8						0.00	(2)	8		3		
4	40. Choudwar D/s	89	75 (54-	8,4	96'0	0,031	3,75	187	0,41	18,09	€,0>	120	71	10,01	15,32	0,299
		-01 	96	\$	-9:0·	9	(△.5-	(121-226)	(0.16-	6.82-		-91D	4 8	(6-18)	4.65	(<0.2-
N N	Kushabhadra River	20%)		(9.11	1.12)	0.174)	(7.78)		0.599)	39.73)		137)	88)		70.47)	0.412)
4	41. Bhingsepur	20	82 (52-	10	0.92	0.007	2.8	250	0.71	25.92	<0.5	164	79	18.34	17.35	0.22
Ü		\$ ₹	124)	9.7	2.24)	-0.00 (522)	S. 65 8.08.	(172-359)	(0.30-	(13.35-46.88)		<u> </u>	(26- 108)	(11.5-	32.5	(<0.2- 0.314)
42,	2, Nimapara	34	87 (60-	10,2	0,64	0,007	3,15	245	0.76	19'92	<0,5	155	11	18,61	15.58	<0,2
_		-01V	184)	ģ	- 1 .(○)	6	₹	(166-401)	(0.24-	(12.96-	8	(120-	-96)	9	-8.7)	(<0.2-
		6		19.1)	1.12)	0.025)	8.4)	8	1.62)	49.64)		172)	14)	37.5)	22.14)	0.247)
43.	3. Gop	30	87 (64-	10.4	1.04	0.010	3.92	239	0.82	29.86	<0.5	156	73	20.21	16.39	0.228
	©.	(₹	124)	\$	(0.6-2.8)	9	⟨₹₹	(148-318)	(0.31-	(15.44-		(132-	44	36	(8.1-	(<0.2-
\perp		140)		17.1)		0.045)	12.32)	7	1.41)	46.08)		<u>\$</u>	102)	3	25.7)	0.377)
B	Bhargavi River															
4	44. Chandanpur	47	87 (56-	10.5	0.56	0.010	2.52	340	1.63	33.21	<0.5	34	83	56.45	19.53	0.242

		(<10- 178)	148)	14.7)	0.56	(0-	(<1.5- 4.48)	(148-1100)	(0.32- 5.18)	(15.31-64.86)		(164-	(52-168)	(8-	(6.8-	(<0.2- 0.416)
No.	Sampling Location	Physical parameters	sical seters	Orga	ganic poli	nic poliution Indicators	ators				Minera	Mineral constituents				
							A	Annual average values (Range of values)	values (R	ange of val	nes)	2008			*0.0	
		ISS	Total alkal	0 00	NB-N	Free NH ₂ -N	TKN	DI I	SAR	% Na	g	ZOZ	目	5	,0S	æ
		(mg/L)	(L)		(H)	(mg/L)		(US/cm)						(mg/L)		
Man	Mangala River	20 CO				2000		Through Spanish and the								
45,	Malatipatapur	48	82 (44-	9,3	16'0	0,013	2,99	480	1,64	26,9	<0,5	723	116	105,3	39,03	0,227
		\$ \$ \$ \$ \$	140)	\$ 6	(0.6-	0.039	(<1.5	(128-3286)	(0.22-10.96)	(12.07-	(40.5-	(132- 2480)	500)	7 (6-	(5.2-	(<0.2-0.395)
46.	Golasalti	19		22.7	1.3 (0.6-	6100	4.2	5487	14.70	51.52	1.08	5892	999	1716.3	207.27	0.286
		(40 130	\$ (S	(11.9-	1.68)	0.090)	7.28)	(163-	(0.23- 46,01)	(8.18-	(<0.5- 1.62)	(3720-	1000	1 (10- 5765.2)	(5.7-444.1)	(<0.2- 0.528)
Devi	Devi River															
47.	Machhagaon	40	99 (48-	16,2	0,93	0,017	3,67	6154	23,27	48.7	0.794	10380	358	2183,3	106,93	0,348
		-51)	196)	4.7)	-9:0)	6	(1.68-	(147-	(0.3-	(13.59-	(<0.5-	(5560-			\$	(<0.2-
		10g		37.4)	1.68)	0.134)	9.52)	24960)	83.71)	93.03)	1.699)	16460)	1680)	9418.8)	291.67)	0.518)
Gob	Gohari River															
48.	Kendrapada U/s	31	87 (44-	7.6	1.17	0.025	2.69	411	1.57	33.37	40.5	418		83.01	28.72	0.225
		9 6	128)	<u>.</u>	-9.6	6	Ş. Ş.	(110-1644)	(0.23-	(12.75		(160-996)	228)	હ	(e. 8-	(40.2
	,	(¥)		6	7.74)	0.179)	0.10)		0.00)	00.00			+	490.1	28.34)	0.2/1)
49.	Kendrapada D/s	38	44	12,8	0,89	0,021	4.48	226	2,62	40,1	0.5		117	143,42	30,58	0.241
		\$ <u>\$</u>	100)	22.2)	-0.6 1.68)	0.134) (P	20.16	(178-1645)	(0.54 10.23	74.09)		-9/11	(64-272)	534.6	(9.2-	0.361)
Num	Nuna River															
20.	Bijipur	22	-89) 16	6.6	0.92	0.013	4.9	366	0.77	27.67	<0.5	183	78	17.25	14.73	0.269
		915)	4	9 5	(0.6 1.73	(P) 0.073	(≤.5 1.78	(141-446)	(0,31-	19.35		76 (104 26 (104	<u>\$</u> €	8 % 5	\$ 8	(40.2-
Kus	Kusumi River															
51.	Tangi	43	65 (44-	10.6	1.17	0.018	5.16	195	0.75	29.7	<0.5	118	36	13.64	15.84	0.202
	2500	• ∀ ∀	100)	\$	-9.0	ę	\$	(125-273)	(0.42-	(18.32-		.	<u>‡</u>	9	ģ	(△0.2-
		108)		19.3)	1.68)	0.109)	12.32)	20	1.37)	45.27)		140)	80)	19.2)	45.24)	0.322)
Kan	Kansari River															
\$2,	Banapur	20	91 (52-	11,3	1,06	0,013	4,48	225	0,83	28.87	<0,5	162	11	17.72	14,62	0,219
	80	-0 ¹ >	120)	Ċ	-9:0)	8	(1.68-	(166-290)	(0.37-	(14.3-		44-	-8+	و	\$	(<0.2-
		(9¢1		15.4)	1.68)	0.005)	14)		1.82)	33.43)		(081	(%)	26.9)	41.19)	0.449)

TSS To	parameters	5	Organic pollution Indicators	rtion Indic	tors				Minera	Mineral constituents	ents			
TSS					A	Annual average values (Range of values)	values (R	ange of val	nes)					
Cangaleswar 18 Calonagaleswar 18 Calonagaleswar Calonagaleswar	Total alkal -inity	(CO)	NH-N	Free NHN	TKN	EC	SAR	% Na	æ	SŒ .	E	ວ	⁷ 08	Est.
Langaleswar 18 (<10- 48)	g/L)		1.0	(mg/L)		(CS/cm)						(mg/L)		
Langaleswar 18 (<10- Rambha 21 (<10- Rambha 21 (<10- Runardihi 28 (<10- Chase (C) (<10- Color														
(<10- Rambha 21 (<10- 80) 80) (<10- 80) (<10- Kamardihi 28 (<10- 67) (<10- 67) (67) (143	14.1	1.07	0.013	4.12	483	2.11	42.44	<0.5	313	Ξ	58.99	21.39	0.398
1 48 48 48 48 48 48 49 49	96	رو.	-8.0)	ද	<u>.</u> .	(315-877)	.07.0	(22,65-		788	(\$6-	(20-	(9.7-	(0,324
Rambha 21 (<10- 80)	196)	(0.94	1.12)	0.039)	16.24)	8	4.54)	(19:89		348)	164)	101.9)	47.86)	0.504)
Rambha 21 (<10- 80) 80) 80) 80 80) 80 80														
(<10- 80) Knmardihi 28 (<10- 67)	129	14.5	0.93	610.0	6.72	513	1.85	38.51	<0.5	262	128	84.03		0.503
Kamardihi 28 (<10- (<10- 67)	8	-6.8)	-9:0)	6	₹	(298-818)	(0.47-	(16.72-		-912)	%	8	(62-	(0.267
Kamardihi 28 (<10-67)	212)	23.1)	1.68)	0.001)	18.48)	8	5.29)	63.81)		288)	200)	226.9)		0.651)
Kumardihi 28 (<10- (<10- (<1) (<1) (<10- (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)														
(S)	_	12.3	1.47	0.013	4.26	352	1.69	38.53	<0.5	214	82	55.86		0.273
(2)	148)	હ	-9'0)	ද	\ <u>\</u>	(173-627)	(0,53-	(21,77-		(116-	(\$6-	(10-		(<0.2-
		15.2)	2.24)	0.090)	7.28)		3.98)	(96'09)		288)	128)	149.9)	27.50)	0.405)
_					•					1500		009		1.5
♦ Class E:					•	2250		36	2.0	2100		009	1000	•

Tolerance limit for Inland Surface water bodies (IS-2296-1982)
 Class 'C' : Drinking water source with conventional treatment followed by disinfection

Class 'E' :Irrigation water quality

(A) Contrd...

is	Sampling Location	Nutr	Nutrients					Heavy metals	ils		
No.							Annual Aver	age values (1 2		
		Nitrate as NOs	P04*-P	Cr(VI)**	Pe	N.	*	Zugg	*5	Hg	Pb®
		w)	(mg/L)					(mg/L)			
Ib River							1	1			
T,	Sundergarh	5,617	<0.05	<0,002	0,247	6,005	0,005	0,012	0,0024	0,00032	0,004
		(0.767-32.922)	(<0.05-0.061)								
2	Tharsuguda	2.269	<0.05	<0.002	0.289	0.007	0.003	0.013	90000	0.00038	0.007
		(0.25-4.055)	(<0.05-0.090)								
<i></i>	Brajarajnagar U/S	2.175 0.778.3 \$16	<0.05	<0.002	0.513	0.007	0.005	0.003	0.0007	0.00032	0.005
		(0,1,10-3,210)	(711'0-CN'0-)								
4.	Brajarajnagar D/S	2,12 (0.824-4.171)	<0.05-0.106)	<0.002	0,293	0,020	0,004	0,009	0,0013	0,00032	900'0
Bheden River	River										
5	Bheden	1.994	<0.05	<0.002	690.0	8100	0.004	0.127	0.0007	0.00057	0.005
		(0.824-4.39)	(<0.05-0.111)		;						
Hirakud	Hirakud reservoir										
9	Hirsland	765 C	900	<0.000	0.452	0 008	0000	9000	0.0031	0.00038	0100
;		(0.866-5.379)	(<0.05-0.234)			2000		2000	10000		
Power Channel	Thannel										
7.	Power Channel U/s	2.668	0.05	<0.002	1.094	0.011	0.018	900'0	0.0036	900000	0.004
		(1,015-5,211)	(<0.05-0.255)		***************************************			200000000000000000000000000000000000000			
oc.	Power Channel D/s	2,783	<0,05	<0,002	0,083	600'0	900'0	0,004	0,0033	0,00044	0,004
Mahana	Mahanadi River	100000	1								
9.	Sambalpur U/s	2.112	<0.05	<0.002	0.073	9.004	9000	9000	0.0026	0.00019	0.005
10.	Sambalpur D/s	2.678	<0.05	<0.002	0.034	0.012	0.010	9000	0.0046	0.00025	0.002
		(0,623-7,951)	(<0,05-0,145)								
11,	Sambalpur FD/s at	2,482	<0,05	<0.002	1,625	00'0	0,008	0,004	0,0031	0,00019	0.004
	Shankarmath	(0.785-5.703)	(<0.05-0.121)								
12	Sambalpur FFD/s Huma	(0.784-4.481)	<0.05	<0.002	0.348	0.010	0.010	0.009	0.0029	0.00025	0.002
13.	Sonepur U/s	2.733	<0.05	<0.002	0.056	0.003	0.008	0.040	0.0026	0.00032	0.003
		(0.724-5.667)	(<0.05-0.129)								

15	Sampling Location	Nutr	Nutrients				****	Heavy metals	S		
No.		50 700				2000	nnual Aver	age values (Annual Average values (Range of values)	SSEC.	
		Nitrate as NO ₅	PO4*-P	Cr(VI)**	Fe	NF**	Cu [®]	Zu		Hg**	Ph
- 1	7/	W)	(mg/L)					(mg/L)			
14.	Sonepur D/s	3.079 (0.971-9.862)	<0.05 (<0.05-0.083)	<0.002	0.184	0.003	9000	0.002	0.0027	0.00013	9000
15.	Tikarapada	2.861	<0.05	<0.002	0.149	0.001	0.001	0.017	0.0006	0.00057	9000
16.	Narasinghpur	1.969	<0.05 (<0.05-0.112)	<0.002	0.307	9000	0.004	0.004	0.0012	900000	0.004
17.	Mandali	2,812 (0.724-10.688)	<0.05	<0.002	0,958	600'0	900'0	0,003	0,0011	0,00057	0.005
18.	Cuttack U/S	2.233 (0.614-7.163)	0.07 (<0.05-0.195)	<0.002	0.064	0.003	0.004	0.012	0.0011	0.00019	0.003
19.	Cuttack D/S	2.982 (0,76-8,811)	0.08 (<0,05-0,208)	<0.002	0.035	0.004	0.002	0.003	0.0013	0.00032	0.002
20.	Cuttack FD/s	3,084 (0.473-7.058)	0.07	<0,002	0,083	0,002	0,004	0,021	0,0014	900000	0,004
21.	Paradeep U/s	2.068 (0.569-4.653)	0.07 (<0.05-0.143)	<0.002	0.055	610.0	9000	0.010	0.0026	0.00013	9000
22	Paradeep D/s	2.697 (0.784-9.437)	0.16 (<0.05-0.451)	<0.002	0.036	0.014	0.039	0.027	0.0023	0.00032	0.003
Ong river	er.										
23.	Dharuakhamma	2.253 (0,666-5,703)	<0.05 (<0,05-0.09)	<0.002	0.026	0.005	9000	0.003	0.0031	0.00038	0.007
Tel River	er.										
24.	Monnundal	2,033 (0.748-3.204)	<0.05 (<0.05-0.075)	<0,002	0,024	0,002	900'0	0,002	0,0033	0,00038	0,004
Kathaje	Kathajedi River										
25.	Cuttack U/s	2.626 (0.668-6.227)	0.07 (<0.05-0.350)	<0.002	0.035	0.005	0.003	0.004	0.0017	900000	0.004
26.	Cuttack D/s	3.115 (0.669-10.268)	0.07	<0.002	0.304	0.001	9.005	9.005	0.0012	0.00057	0.003
27.	Cuttack FD/9 Mattagatjpur	4,085 (0.705-9.219)	0.07 (<0.05-0.182)	<0.002	0,149	0,002	0,004	0,010	0,0011	0,00019	0,003
28.	Kamasasan (Curack FFD/s)	2,749	0.05	<0.002	0,534	0,002	0.004	0,052	0,0012	0,00038	0,005
					,						

15	Sampling Location	Nutrients	ients					Heavy metals	s)		
No.						1 47	nnual Aver	age values (Annual Average values (Range of values)	943	
		Nitrate as NO ₃ :	PO+*-P	Cr(VI)**	Fe ⁸⁸	NI ⁴⁶	CIL	Zn*6	Cd*	Hg ⁶⁶	Ph
		NI)	(mg/L)					(mg/L)			
Serua River	diver diver										
29.	Cuttack FD/s Sankhatrasa	3.546	0.05	<0.002	0.081	0000	0.007	0.005	0.0013	0.00006	900'0
Kuakh	Kuakhai River										
30.	Bhubaneswar FU/s	1.909	(<0.05-0.247)	<0.002	0.023	0.002	0.001	0.004	0.0012	0.00057	0.003
31.	Bhubaneswar U/s	1.907	(<0.05-0.227)	<0.002	0.064	0.002	0.004	0.007	0.0013	0.00095	0.003
Daya River	fver										
32	Gelapur	2,74 (1.382-5.739)	0,12 (<0.05-0.321)	<0,002	999'0	0,002	0,004	\$00.0	0,0014	0,00013	0.004
33.	Bhubaneswar D/s	10.913 (1.364-36.092)	0.17 (<0.05-0.478)	<0.002	0.564	0.005	0.011	0.016	0.0013	0.00064	0.005
%	Bhubaneswar FD/s	11.157 (1,303-40,946)	0.17 (<0,05-0,536)	<0.002	0.140	0.005	0.001	0.003	0.0019	0.00070	0.004
33,	Kpnas	3,831 (0.778-15.499)	0,07 (<0.05-0.224)	<0,002	0,445	0,015	900'0	0,145	0,0028	0,00070	0,004
Gangua River	River										
36.	Near Rajdhani Engg. College	10.998	(<0.05-0.893)	<0.002	0.058	0.002	0.003	900'0	0.0015	0.00025	0.005
37.	Palasuni	13.449 (1.539-40.094)	(0.1-0.794)	<0.002	0.154	0.007	0.005	0.003	0.0015	0.00006	0.004
38.	Samanbapur	14.417 (0,93-52,62)	0.52 (0.1-0.944)	<0.002	1.225	0.004	0.004	0.004	0.0011	0.00006	9.005
39.	Vadimula	13,347 (1.088-42.025)	0,32 (0.1-0.829)	<0.002	0,785	0,010	0,017	0,004	0,0012	0,00019	0,005
Biruga River	River										
40.	Chondwar D/s	2.247 (0.565-6.289)	<0.05 (<0.05-0.087)	<0.002	0.426	0.002	0.010	0.003	0.0014	0.00006	0.002
Kushal	Kushabhadra River										
41.	Bhingarpur	4.431 (0.315-24.984)	0.08 (<0.05-0.212)	<0.002	0.403	0.014	0.007	890.0	0.0027	0.00051	0.004
42.	Nimapara	4,286 (1.385-16.137)	0.06 (<0.05-0.207)	<0,002	0,279	0.005	0.004	0.020	0,0022	0.00025	0.008

15	Sampling Location	Nutrients	ients					Heavy metals	S		
No.						5.42	unual Aver	age values ()	Annual Average values (Range of values)	923	
		Nitrate as NO ₃	PO+*-P	Cr(VI)**	Fe ⁴⁸	NF ⁶⁶	CII.	Zu ^{#6}	Cdi	Hge	Philip
1	37	(Ing/L)	(L)					(mg/L)			
43.	Gop	5.596 (1.38-27.417)	0.06 (<0.05-0.192)	<0.002	0.223	910:0	0.004	0.014	0.0021	0.00032	600'0
Bhargavi River	i River			- W							
44.	Bhargavi at Chandanpur	4.041 (1.003-9.935)	0.05 (<0.05-0.112)	<0.002	0.070	0.002	9000	0.010	0.0026	0.00038	800.0
Mangala River	River										
45.	Malstipatpur	3.075 (1,21-6,192)	0.06 (<0.05-0.131)	<0.002	0.821	0.007	0.011	9000	0.0033	0.00025	0.007
46,	Golasahi	9,442 (1.167-37.905)	0.17 (<0.05-0.612)	<0,002	0,109	0,016	0,027	0,114	0,0028	0,00032	600'0
Devi River	će,										
47.	Devi at Machhagaon	2.152 (0.743-5.685)	0.09 (<0.05-0.218)	<0.002	1250	0.008	0.022	0.023	0.0026	0.00025	0.004
Gohari River	River					3					
48.	Kendrapada U/s	2.386 (0,638-8,519)	<0.05	<0.002	0.730	0.011	0.006	9000	0.0024	6100070	0.002
49.	Kendrapada D/s	3,179 (1.07-8.65)	(<0.05-0.296)	<0,002	0,793	0,010	900'0	0,068	0,0017	0,00025	500'0
Nuna River	vêr'										
50.	Bijipur	2.424 (0.473-6.439)	(<0.05-0.204)	<0.002	0.207	9000	0.009	0.018	6900.0	0.00038	0.004
Kusumi River	River		0.50.50.50.50.50.50.50.50.50.50.50.50.50						6		
51.	Tangi	2.013 (0.253-4.566)	<0.05 (<0.05-0.119)	<0.002	1.034	0.005	0.004	0.013	0.0013	0.00051	0.004
Kansari River	River										
52	Banapur	1.914 (0.572-3.516)	0.12 (<0.05-0.315)	<0.002	0.485	9000	9000	9000	0.001	0.00057	0.002
Badasan	Badasankha River										
53.	Langaleswar	1.786 (0.572-2.913)	0.05 (<0.05-0.161)	<0.002	0.007	0.002	0.002	100.0	0.0010	0.00019	0.004
Sabulia River	River										
¥	Rambha	1.877 (0.572-3.114)	0.08 (<0.05-0.154)	<0.002	0.064	0.004	0.001	0.010	0.0008	0.00032	6000

15	Sampling Location	Nutrient	ients					Heavy metals	8		
No.						A	unual Aver	age values (I	Annual Average values (Range of values)	(8)	
		Nitrate as NO ₃ :	PO+*-P	Cr(VI)**	Fe ^{an}	NI _{ee}	CIL	Zn*6	Cdi	Hg ⁶⁸	Philip
	- T	luu)	(mg/L)					(mg/L)			
Ratnaci	atnachira River										
55.	Knusardhi	4.196	90.0	<0.002	0.494	0.007	600.0	9000	0.0024	0.00038	6000
		(0.93-15.945)	(<0.05-0.286)								
	Class 'C'	50		0.02	20		1.5	15.0	0.01		0.10
	♦ Class 'E'	•	•	•	,	,	•		4	7	•

Class 'C': Drinking water source with conventional treatment followed by disinfection Class 'E': Irrigation water quality

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Data for the period April, 2020

(B) Brahmani River System (2020)

N. S.	Sampling Location	Phy	Physical parameters	ő	Organic pollution Indicators	ıtion İndic	ators				Miner	Mineral constituents	icints			
							4	Annual average values (Range of values)	e values (1	tange of va	lues)	0.000	4 25	00000		
		TSS	Total alkal -inity	Q O)	NHeN	Free NH5-N	TIKN	BC	SAR	% Na	A	SQI	田	٥	70s	I
		(m)	(mg/L)		(III)	(mg/L)		(US/cm)					Ĭ	(mg/L)		
San	Sankh river	200														
-:	Senith U/s	æ	60 (24-	4.	89.0	0.005	3.73	155	0.35	17.09	<0.5	120	29	96	6666	0.224
		\$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$	92)	\$ £	(40.4 0.8d)	-0) 0 017	₹ 25 25 25 25 25 25 25 25 25 25 25 25 25	(91-272)	(8.1- 0.78)	(5.63-		(92- 164)	¥8	\$ <u>E</u>	(5.69-	0326
Kee	Koel River	(200		1110	1000		(======		6000	/			(0.0	(21)	10000	00000
7	Koel U/s	8	69 (32-	8.6	0.92	0.007	2.96	166	0.28	13.91	<0.5	125	65	7.1	11.438	0.229
		\$ 6	92)	\$ 5	(0) 4 (1)	9)	^ \\ \$ \\ \}	(103-257)	-60.00	(5.87-		96.	<u>%</u> %	\$ 2	(6.08-	(<0.2
Reg	Realistant Dirac	2117		11:17	1.12/	0.000	(1.0.1)		0.21)	12.90)		101	600	12.0)	20.12)	V.772)
2	Dannord 11/6	00	62.03	0.3	37.0	20.00	93.0	191	0.00	14.70	200	107	29	10	16.701	0.254
ń	ranjusii Ora	7 V	100	3	607	0000	5,00 5	101	(0.12	77.17	7	(0)	3	2 5	10.70	(<0.5)
		383	ĺ	28	22	0.017	9	(617-62)	0.50	22.87)		130	38	12.5	34.048	0369
4	Pamposh D/S	2/2	62(12-	27.8	1.3	910'0	4.88	262	0.62	22.42	<0.5	171	茲	18.1	34.831	0.525
Î		-0I>	116)	611)	-96-0)	9	(1.68-	(168-379)	(0.2-	(9.23-		(120-	99	95)	(16.47-	(0.226-
		280)		. ;	224)	0.090)	8.4)		133)	35.41)		220)	112)	37.5)	57.858)	1.02)
				38,1)					0.000				0			
s,	Rouricela D/S	20 5	ė.	21,5	1,08	0,005	3,98	183	0,39	17.69	©.5	121	8 5	10,9 (6-	20,838	0,317
		369	ĝ	96	1.12	0.025)	1 96.8 2 96.8	(170-743)	(0.0)	(8.38 -		<u>k</u> 8	<u>\$</u> £	(91	32.858)	6990
6	Attaghat	28	61 (28-	16	8.0	0.005	2.8	163	0.36	17.59	<0.5	107	62	6	17.87	0.362
	M.	\$	140)	6	(<0.4-	ė	₹ ₹	(101-240)	(0.13-	(8.54-		8	-8-	9	(6.47-	(02
		333)		23,2)	1,12)	0,017)	(96)		0,06)	30,03)		140)	£	18,3)	31,429)	0,604)
ŗ.	Rourkela FD/s	8	54 (24-	12,3	1.07	0,005	2,92	191	0,37	17,96	0,5	011	27	90 90	17,723	0,273
	(Biritola)	\$	8	Ş	4.0	ද	<u>√</u>	(95-227)	(0.12-	(7.13-		-88)	Š	Š	(8.14-	(⊲)2-
10		343)		18.3)	2.8)	0.035)	8.4)	.0	0.72)	31.01)	12	128)	(88	15.4)	30.98)	0.502)
œ	Bonaigarh	S	54 (28-	2'6	89'0	0,007	3,3	150	0.20	17.1	<0,5	99 (92-	36	8,3	13,262	0,273
		1 €	(9/	Ø 5	4.5	9	₹ 5 5 5 6 7	(94-220)	(0.12-	7.83-		112)	\$ §	\$ <u>5</u>	7.619-	(402) 2403-
		200		14.1)	1.12)	0.034)	10.04)		0.42)	70.70			600	(6.7)	707.77	0.422)

Ę.	_	THE .	Land.	<	Illustration and Illustration	dian Ladia	ala.es				A Britan	January L	a-squ			
No.	Location	paran	parameters	5	OTSAIRV POINTION MARKETS	MINIT THANK	STORE				MINICI	ATTIKE AT CONSTANTED IN	cillis			
							¥	Annual average values		(Range of values)	lues)					
		TSS	Total alkal inife	COD	NH-N	Free NH3-N	TKN	EC	SAR	% Na	£	TDS	TH	D	70S	Ŧ
		(me	(me/L)) J	(me/L)		(DS/cm)						(me/L)		
6	Rengali	2.1	46 (32-	00	0.7	0.010	2.27	119	0.29	15.72	<0.5	74 (64-	1	7.2	10.053	0.228
1		. (0) (√)	- SS	Ŷ	4.0>	ė	\$	(93-169)	-60'0)	(6,44-		80)	628	(<5-12)	Ŷ	(<0,2•
		82)		(11	1.68)	0.059)	3.36)		0.45)	22.9)			£		15.238)	0.288)
10.	Samal	78	51 (36-	9.1	0.88	60000	2.02	129	0.26	14.4	<0.5	81 (72-	22	9.7	11.176	0.247
		∂ 8	(72)	Ý:	÷0.	9	₹.	(94-183)	-2000	(4.54-		93)	4 (\$;	(5.62-	Ç (\$0.5 (\$0
=	Telcher FII/c	33	48 (36.	7.1	1.05	0.034)	3.28	135	0.41)	17.4	>0>	87 /80-	§ 7	(5.11	13.680	0.362)
		3 🖔	3	. ◊	6.0	6	\$ \frac{1}{2}	(103-184)	-91.0	(9.72	3	96	4	} ◊	7.143	(Q) 2
		.84)	`	îî	2.24)	0.078)	8.4)		0.45)	24.64)		,	(4)	9.6	17.75)	0.356)
12	Talcher U/s	24	50 (40-	8.3	1.12	0.030	2.94	139	0.41	19.77	<0.5	91 (84-	55	7	14.094	0.234
		• V	Æ	Ś	-4.0>)	9	₹.	(111-205)	(0.27-	(13.06-		100)	-04)	(5.8-	(7.024-	(<0.2-
		8		11.5	2,52)	0,164)	8,4)		0,66	31,27)			76	9.6	18,33)	0,298)
13,	Mandapal	50	49 (40-	6	0,93	910'0	1,9	145	0,28	15,47	<0,5	94 (84-	35	8'9	15,816	0,241
		-01 √	Ŧ	ý	-4:0>)	9	₹.	(113-199)	(0.12-	(7.62-		112)	4	ý	-982-9)	(⊲)2-
		93)		15.4)	2.24)	0.045)	4.76)		0.41)	21.54)			<u>@</u>	9.6	31.905)	0.354)
14	Talcher D/s	27	54 (44-	13.8	1.15	0.018	3.28	164	0.41	19.77	<0.5	107	63	9.6	17.965	0.287
		9	89	7.4-	95'0)	ę	(1,68-	(115-241)	(0.27-	(I3,06-		- 88)	6	ۈ	(9,91 -	(⊲).2-
		102)		19.3)	2.24)	0.090)	5.88)		0.00	31.27)		120)	88)	13.5)	30.83)	0.4)
15.	Talcher FD/s	34	62 (44-	10.2	0.72	910.0	2.38	165	0.31	15.44	<0.5	102	65	7.7	17.875	0.312
		<u>•</u>	138	Ś	-4.0>)	6	₹	(129-215)	(0.12-	(7.01-		2	44	(5.8-	(11.19-	(<0.2-
	-	88		14.7)	1,12)	0.045)	5,32)		0,44)	23,63)		120)	98	<u>(</u>	27.738)	0,421)
16,	Dhenkanal U/s	56	51 (32-	4,	0.7	0,012	2,74	143	0,37	19,34	0,5	92 (76-	32	6,0	13,72	0,303
		9	8	ψ,	4.0>	6	•• ∀	(113-187)	(0,26	(13,81-		104)	8	3.8	(8,57	(⊘)
	+	\$		(9:11	1.12)	0.036)	6.4)		0.54)	26.07)			609	13.5)	20.715)	0.422)
17.	Dhenkanal D/s	36	55 (36-	11.6	0.81	9.014	2.38	151	0.36	18.18	<0.5	100	8	8.6	16.254	0.269
		. ∑	2	ý	0.5	9	₹.	(111-213)	(0.2-	6.82-		<u>*</u>	6	(5.8-	-69.8)	(S)
		(08)		17.4)	1,68)	0.045)	3,36)		0.53)	23,9)		112)	76	12.5)	28,05)	0.397)
90	Bhuban	31	54 (40-	10,1	9'0	600'0	1,99	151	0,49	21,83	<0,5	99 (92-	37	10.7 (6-	13,349	0,282
		÷ 8	(2)	Ý.	4.05	900	(√	(112-191)	(0.11-	(6.68-		104)	8	<u>8</u>	(6.85-	(40.2
		20)		10.47	0.04)	DOM:	3.04		1.000	40.0			(4)		500	U.J.La)

	- 1															
% %	Sampling Location	Phy	Physical parameters	ō	Organic pollution Indicators	ntion Indic	ators				Miner	Mineral constituents	ents			
							4	Annual average values	_	(Range of values)	lines)					
		TSS	Total alkal -inity	Q00	NH-N	Free NH3-N	TKN	BC	SAR	% Na	Д	TDS	TH	a	70 S	H
		(m)	(mg/L)]	(mg/L)		(□S/cm)						(mg/L)		
16	Kabatabandha	57	51 (40-	7.3	0.98	0.011	3.24	146	0.42	20.38	<0.5	98 (92-	ı	10.2	15.709	0.245
		9 ∑	(2)	ý	0>	6	\ <u>\</u>	(114-181)	-91.0)	(8,38		108)	4	6.5	-88-6)	(⊲);5-
		194)		11.3)	2.24)	0.000)	5.6)	,	0.64)	28.62)			74)	19.2)	26.38)	0.347)
8	Dharmasala U/s	42	58 (40-	8.1	0.65	0.009	2.89	158	0.43	19.4	<0.5	119	62	11.5	14.004	0.235
		-0 ∑	88	(5.7-	(<0.4-	6	(<	(119-246)	(0.1-	(5.91-		- 89	(38-	\$	(8.09-	(<0,2-
		118)		11.5)	0.84)	0.045)	5.6)		0.87)	32.35)		144)	(9/	23.1)	22.619)	0.265)
21.	Dharmasala D/s	9	60 (32-	6	28.0	0.007	1.71	155	0.33	16.7	<0.5	117	8	00.	15.388	0.26
		<u>.</u>	82	9.0	9	ė	. . ∇	(116-216)	-81.0	(10.07		(112-	-8 -	<u>.</u>	(8,43	(0.215
	;	121)		13	1.12)	0.025)	2.52)		0.49)	24.4)		124)	£	11.5	23.69)	0.298)
Si	Pottammdai	46	66 (32-	7.7	0.93	0.015	4.14	210	0.83	26.15	<0.5	143	71	30.9 (6-	13.514	0.271
		\$	88	Ý.	(0.4 -	ė	√	(123-477)	(0.24-	(10.92-		.	-8+	130.8)	ċ	(√0.5
		218)		(9'11	1,68)	0,067)	12,6)		3,07)	\$6,16)		208)	8		21,43)	0,373)
Nan	Nandira River															
23	Nandira U/s	24	127	6'6	0,92	0.027	2,71	463	1,06	28,85	£'0>	267	136	41,6	47,462	1,421
		-0[V)	-8+)	(5.9-	4.0>)	6	₹.	(244-623)	(0.47-	(14.45-		-9/1)	-88)	-80	(26.96-	(0.251 -
		83	192)	15.4)	1.12)	0.109)	5.04)		1.72)	40.17)		344)	200)	63.5)	73.692)	2.58)
7,	Nandira D/s	22	130	13.6	1.12	0.034	4.11	483	1.03	27.18	<0.5	301	154	39 (20-	58.491	1.641
		\$ €	3 9 <u>5</u>	809	0.56	9	(2,24-	(348-585)	(0.57-	(16,84-		(240 273	(H2	Ŕ	-19'62)	(0.207-
Kisi	Kisindajhor	(3)	(2/2)	100	1	0.407)	(E) .V		1000	(0)		(m)	1		00000	(LO)
ধ	Kisindhajhor	17	128	11.7	0.88	0.020	3.73	421	98.0	24.87	<0.5	264	142	30.6	44.709	2.24
		\$	4 §	-9.2	(<0.4- €	9	₹\	(246-597)	0.39	(14.54-		204	- - - - - - - - - - - - - - - - - - -	(12-56)	(19.43-	(<0.2
		8	188)	15.4)	1.08)	0.050)	3.32)		1.52)	55.38)		30%)	(027		(5.092)	4.83)
Kha	Kharasrota River															
36	Khanditara	49	-96) 55	9.8	0.93	0.007	3.86	144	0.31	15.93	<0.5	98 (84-	28	7.7	13.43	0.238
		9 ∑	90	(5.8	-00>	9	<u>√</u>	(113-203)	(0.15	6,88		124)	4	8.0	(7.26	(<0)2
		210)		(S)	1,68)	0,038)	8,96)		0.57)	24.2)			72)	15.4)	19.52)	0,294)
27.	Binjhanpur	9	57 (36-	7,8	0,75	0.007	4.24	130	0,33	16,67	<0°2	<u>1</u>	88	80	12,7	0,203
		<u>}</u>	6 88	-0.9)	(S)	6	<u>√</u>	(102-209)	(0.17-	(9.23-		\$	\$	9	(6.76-	(<0.5
		=		11,3)	1,12)	0,039)	9,52)		0,88)	35,06)		120)	92	21,1)	16.548)	0.252)

S. No.	Sampling Location	Phys	Physical parameters	ō	ganic poll	Organic pollution Indicators	stors				Miner	Mineral constituents	ents			
						- 1	7	Annual average values	-	(Range of values)	lues)					
		TSS	Total alkal -inity	Q 00	NH-N	Free NHN	TIKN	EC	144	% Na	g	TDS	H	¤	70s	B4
		Œ,	(mg/L)			(mg/L)		(□S/cm)						(mg/L)		
88	Aul	46	56 (44-	9.1	0.84	0.014	2.49	198	6.0	25.83	<0.5	186	P	24.9 (6-	15.238	0.264
		\$	(9/	Ý,	(<0,4	ද	√	(115-506)	(0,23	(13,56-		65-	48-	103,8)	-161)	(€)
S	Guradih nallah	145)		19.4)	1.12)	0.045)	5.04)		4.03)	(8.3%)		236)	(72)		38.1)	0.367)
8	Guradhi Nallah	20	78 (28-	40.7	5.64	0.082	12.48	426	0.83	25.57	<0.5	249	125	27.3	76.834	1.107
		(I)		(14.9-	-89.1)	9	82	(222-698)	(0.54-	-91)		-891)	Ċ	(12-	(27.35-	(<0.2-
		141)		65,0	22,4)	0,336)	29.4)	g g	1,33)	36,64)		312)	180)	37.5)	(8'091	1,62)
Bad	Badajhor															
30,	Badhajhor	21	86 (28-	5'6	0,64	0,013	2,8	263	0.77	26,45	\$0\$	149	88	24,3	15,088	0,267
		-0 ∑	124)	(5.7-	4.0>)	6	<u>√</u>	(167-410)	(0.36-	(14.4-		(100-	8	(16-36)	(7.52-	(⊴0,5-
		8		19.3)	1.12)	0.036)	5.6)		1.55)	45.6)		180)	116		24.762)	0.351)
Dam	Damsala River										1000					
31,	Dayanabil	300	62 (32-	7.4	0,7	0000	2,24	163	0,25	13,05	0.5	110	62	7,5	12,54	07
ģ		\ <u>\</u>	(98	Ŷ	4.0>)	9	₹	(91-346)	(0.11-	-16'9)		(92-	\$	(6-9.6)	(3.14	(<0,5-
		157)		11.3)	1.12)	0.045)	6.72)		0.45)	21.08)		124)	84)		26.786)	0.312)
Gem	Gonda nallah															
32,	Marthapur	78	72 (20-	10,2	86'0	600'0	4,42	300	68'0	26,09	<0,5	253	94	25,3 (6-	41,033	0,834
Ŀ		\$	10 4	9	4.0>	9	₹.	(77-586)	(0.14-	(9.27-		(120-	49	53.8)	(8.09-	(<0.2-
		274)		15.4)	1.68)	0.034)	8.12)		1.89)	45.42)		330)	188		116.193)	1.83)
Ling	Lingira River															
33.	Lingira U/s	27	133	10.2	9.0	0.023	2.86	335	0.82	25.1	<0.5	186	118	26.3	17.816	0.516
	Y C	900	(52-	65)	4.0	ė	√ .	(222-453)	(0,42	(13,93-		(128-	9.	(12-66)	(6,072-	(0,5
1	,	99	(96)	15.4)	0.84)	0.070)	5.0)		1.57)	39.41)		250)	160)		74.52)	0.884)
¥,	Lingina D/s	14	23	13	960	0.048	5.82	355	9.0	24.18	<0.5	\$	2	26.1	21.875	0.494
		\$	ģ,	629-	4.0	9	(1.68-	(228-437)	(0.45-	(13.83-		(132-	9/	(10-68)	(11.17-	(<0,5
		62	216)	19.3)	1.68)	0.140)	5.04)		1.46)	36.27)		268)	176		37.62)	0.871)
Ram	Ramiala River															
33,	Kamakhyanagar	38	-04) 09	9,2	95'0	0,010	3,08	149	0,38	18,29	<0,5	102	62	10,5 (6-	10,865	0,208
		\$	80)	Ý.	4.0	9	₹5	(107-183)	(0.11-	(6.45-		\$	4 5	20)	ý	(<0.2-
		[9]		15.9)	0.56)	0.022)	8.96)		0.72)	32.13)		(911	84)		20.953)	0.376)

TSS Total COD NH+N Free TKN EC SAR %Na salial Light Light COD NH+N Free TKN EC SAR %Na SAR %Na Light COD NH+N NH-N COS C	% %	Sampling Location	Phy	Physical parameters	5	rganic pell	Organic pollution Indicators	ators				Miner	Mineral constituents	rents			
TSS Total COD NH-N Free TKN EC SAR % Na I-lity I-lity CIGSCom) CIGSCom CIGSCom I-lity CIGSCom								7	Annual averag	5000	Range of va	lues)					
Singaru nallah			TSS	Total alkal -inity	QO)	NH-N	Free NH-N		EC	1 - 4 -	% Na	я	ZQI	TH	D	70s	F
Bangartu nallah			(m)	(T)		5	ng/L)		(DS/cm)						(mg/L)		
Bangentu naliah 40 89 (28 127 0.56 0.0007 2.89 592 0.73 19.31 Singada jilor 34 104 104 10.7 0.56 0.0029 4.72) 3.19-980) (0.22 - 7.56 - 7.56 - 7.56 - 7.56 1.23) 1.23) 1.25 1.56 1.54 1.12 0.045 6.72 1.73 18.73 18.73 Inalia U/s 72 69 (40 8.7 0.88 0.026 2.43 188 0.44 17.85 Kanila D/s 67 83 (32 - 12.2 1.0 0.017 2.58 2.53 0.43 17.82 Barbil 25 63 (40 7.8 0.04 0.057 8.48) 0.059 8.4) 0.059 0.059 0.059 Barbil 25 63 (40 7.8 0.04 0.057 0.059 8.4) 0.059 0.059 0.059 Barbil 25 63 (40 7.8 0.04 0.059 8.4) 0.059 0.059 0.059 Barbil 25 63 (40 7.8 0.04 0.059 8.4) 0.059 0.059 0.059 Barbil 25 63 (40 7.8 0.04 0.059 0.059 0.059 0.059 0.059 Barbil 25 63 (40 7.8 0.04 0.059 0.059 0.059 0.059 0.059 0.059 Barbil 25 63 (40 7.8 0.04 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.055 0.059 0.059 0.055 0.059 0.055 0.059 0.055 0.0	B	iguru nallah												6			
123	36.	-	8 × ×	89 (28-	12.7	0.56	0.007	2.89	592	0.73	19.31	<0.5	329	208	24.5 (8-	132.505	0.473
Singack floor 34 104 10.7 0.76 0.012 3.11 307 0.51 18.73 1.15 1.12 0.045 6.72 (173-485 0.22- 7.54- 7.54 1.15 1.12 0.045 6.72 (173-485 0.22- 7.54- 7.54 1.15 1.15 0.045 6.72 (173-485 0.22- 7.54- 7.54 1.15 1.15 1.15 0.045 6.72 1.15 0.045 6.72 1.15 0.045 0.15 1.			<u> </u>	(ta)	27.8	0.50	0,028)	4 25	(nocacte)	1.7	35.92)		512	38	40'4)	238.1)	0.784)
Singacka jhor 34 104 10.7 0.76 0.012 3.11 307 0.51 18.73 18.73 16.54 10.5 15.6 15.4 11.12 0.045 6.72 (173-485) 0.22 (7.54 7.54 7.54 7.54 1.12 0.045 6.72 (173-485) 0.22 (7.54 7.54 7.54 7.54 1.12 0.045 6.72 (173-485) 0.22 (7.54 7.54	15	gada jhor															
C<10- (44- (68- (<0.4- (0- (<1.5- (173-485) (0.22- (7.54- (7.54- (173-485) (0.22- (7.54- (1	37.	Singada Jhor	34	19	10.7	0.76	0.012	3.11	307	0.51	18.73	<0.5	153	120	1	32.411	0.366
Familia U/s 72 69 (40 - 8.7 0.88 0.026 2.43 188 0.4 17.85 18.85			\$ €	<u>4</u> 8	(6.8- 14.0	-40 -40 -51	98	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(173-485)	620	7.54		104-	(48-	99	(1451-	0.239
Kamiha U/s 72 69 (40- 8.7 0.88 0.026 2.43 188 0.4 17.85 17	僧	ira River	CALL	(oct	10,01	1,14	(cro'n	0,149		0,27	-70,14)		CAND.	(may	1	14,00	(Land
Carolina Dis Carolina Dispinis Dispini	99		27	69 (40-	8.7	0.88	0.026	2.43	188	9.4	17.85	<0.5	122	72	11.1 (6-	17.419	0.283
Kamiha D/s 67 83 (32- 12.2 1.0 0.017 2.58 253 0.43 17.82 (<10- 108) (<5- (<0.4+ (0- (<1.5- (186-464) 0.24- (11.13- (339 €	(%) (%)	6.59	9	0.112 0.1123	^ A 4.48	(149-250)	(0,19- 0,66)	(10,15-		1 1 1 1 1 1 1	<u>4</u> 8	16)	\$ 8 9.00	(<0,2 0.376)
Carrollog Carr	03	Kaniha D/s	29	83 (32-	12,2	1.0	0.017	2,58	253	0,43	17,82	<0,5	132	8	181	27,699	0,603
Bangurusingada jhor 20 121 10.1 0.72 0.011 3.17 291 0.44 16.21 (48- (5.7- (<0.4- (0.6- (<1.5- (185-409) 0.82) 29.46) (185-409) (0.14- (5.91- (3.91- (<0.4- (0.6- (<1.5- (185-409) 0.82) 29.46) (1.85-409) (1.85-4			430 330 330 330 330 330 330 330 330 330	108)	\$ £	4.05	-0)	448)	(186-464)	0.24-	(11.13-		(112-	46 126	-9.6	(7.024-	(\$) 135-
Bangurusingada Jior 20 121 10.1 0.72 0.011 3.17 291 0.44 16.21 16.21 (16.24 0.01) 1.15 (1.65 409) 8.4) (0.14 (3.91 0.05) 8.4) 8.4) (0.14 0.01) 2.9.46) 8.4) (0.14 0.05) 8.4) (0.	Ba	gurusingada jhor	-		1000	(cont	0000	(ata)		6000	-		/		(0)		1
Color (48 (5.7 (<0.04 (0 (<1.5 (185409) (0.14 (5.91 (5.91 (3.91	9	Bangurusingada jhor		121	10.1	0.72	0.011	3.17	167	0.44	16.21	<0.5	157	119	162 (6-	22.301	0.492
Barbil 25 63 (40- 7.8 0.96 0.013 3.22 170 0.59 20.09 (<10- 88) (<5- (<0.4- (0- (<1.5- (109-282) (0.14- (8.39- 99) 18.5) 1.68) 0.055) 6.72) 3.08) 63.38)			₹	48 172 173	(5.7-	(40.4 1.68	0000	∑ 4. €	(185-409)	(0.14- 0.82)	29.46)		(112-	& <u>@</u>	(%)	(5.83-	(<0.2 0.864)
Barbil 25 63 (40-7.8) 0.96 0.013 3.22 170 0.59 20.09 (<10-88)	S	'9 River															
(<10- 88) (<5- (<0.4- (0- (<1.5- (109-282) (0.14- (8.39- (3.38) 6.3.38) 6.3.38) 6.3.38) (0.14- (8.39- (3.38) 6.3.38) 6.3.38)	=	Barbil	25	63 (40-	7.8	96:0	0.013	3.22	170	0.59	20.09	<0.5	111	19	17.8	8.627	<0.2
Chass C			\$ \$	(88)	\$ 8	(<0.4- 1.68)	0.055)	₹ (₹ 22)	(109-282)	3.08)	(8.39-		5 188 188	∯ 116	\$ 8 8	\$ \$ \$	(40.2- 0.222)
20 miles				٠	•			•					1500		009	400	1,5
		♦ Class E	٠		٠				2250		36	2.0	2100		009	1000	

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C'; Drinking water source with conventional treatment followed by disinfection Class 'E'; Irrigation water quality

(B) Countd...

S.	Sampling Location	Nutrient	ients					Heavy metals	S		
No.						•	unnual Aver	age values (l	Range of valu	(8)	
		Nitrate as NOs-	PO.*-P	Cr(VI)#	Fe**	"IN	CIL#	Za	Cu* Zu* Cd**	Hgd	Pb#
		im)	(mg/L)					(mg/L)			
Sankh River	River										
<u>.</u>	Sankh U/s	2.796 (0.68-9.306)	<0.05 (<0.050)	<0.002	0.252	0.002	0.001	0.003	0.0020	0.00044	0.005
Koel River	ver										
2	Koel U/s	2.606 (0,643-4,95)	<0.05 (<0.05)	<0.002	1.511	0.007	0.007	0.018	0.0021	0.00013	0.007
Brahma	Brahmani River										
3,	Panposh U/S	2,256 (0.428-5.37)	<0.05 0.055)	<0,002	0,671	900'0	0,004	0,034	0,0023	0,00025	0,007
4	Panposh D/S	16.054 (3.187-54.887)	0.062 (<0.05-0.166)	<0.002	0.586	0.013	0.004	0.177	0.0016	0.00044	900.0
5.	Rourkella D/S	9.066 (1.155-22,753)	0.065	<0.002	0.747	9000	0.001	0.008	0.0015	0.00019	0.004
.0	Attaghat	5,035 (1.326-9.68)	0,06 (<0.05-0.309)	<0,002	0,324	0,003	0,003	0,005	0,0011	0,00038	0,005
7.	Rourkela FD/s (Biritola)	4.525 (1.198-8.172)	0.05 (<0.05-0.23)	<0.002	0.570	0.003	0.004	0.011	0.0018	0.00013	0.005
oci	Bonaigarh	6.595 (1,544-30,457)	<0.05 (<0.05-0.237)	<0.002	0.139	9000	0.003	0.005	0.0011	0.00025	0.004
.6	Rengali	1,962 (0.955-3.376)	<0.05 (40.05 -0.078)	<0,002	0,223	0,002	0,001	0,011	0,0015	0,00064	0,007
10.	Samal	1.792 (0.549-3.236)	<0.05 (40.05-0.091)	<0.002	0.007	0.004	0.001	0.001	0.0004	0.00083	0.002
11	Talcher FU/s	1.654 (0.55-3,324)	<0.05 (40.05-0.126)	<0.002	0.155	9000	0.001	0.046	0.0009	0.00064	0.010
12,	Talcher U/S	1,814 (0,534-3,394)	0,05 (<0,05-0,174)	<0,002	0.056	0,003	0,002	0,064	0,0011	90000'0	0,008
13,	Mandapal	1,646 (0.824-2.956)	0,051 (<0.05-0.138)	<0,002	0,454	900'0	0,002	0,002	60000	0,00064	0,005
14.	Talcher D/S	2.438 (0,399-8,432)	0.058 (<0,05-0,208)	<0.002	0.033	0.003	0.002	90.00	0.0004	0.00083	0.007

Nine	25	Sampling Location	Nutrients	ieats					Heavy metals	ş		
Nitrate as NOs PO\$-P Ca(VI)*** Fe*** NW***	No.						0.00	Annual Aver	age values (Range of valu	(Sa	
Control Cont			Nitrate as NOs		Cr(VI)**	Feff		## C	Zuge	Cd#	Hg th	Ph
Colored Color			(m)						(mg/L)			
Control Cont	15.	Talcher FD/s	2.266 (0.979-4.143)	0.072 (<0.05-0.239)	<0.002	0.035	0.005	0.005	800.0	0.0008	0.00076	0.00
Compact Comp	16.	Dhenkanal U/s	2.159 (0.888-4.828)	<0.05 (40.05-0.154)	<0.002	0.028	600.0	0.005	0.023	0.0023	0.00038	0.007
1.712	17.	Dhenkanal D/s	2.069 (0.334-5.558)	0.05 (<0.05-0.169)	<0.002	0.281	9000	0.002	0.008	0.0008	0.00032	0.010
abendila 3.187 0.082 <-0.002 0.254 0.005 0.002 0.002 0.002 ansala U/s (0.728-6.236) (<0.05-0.469) <-0.002 0.0418 0.010 0.005 0.006 0	18,	Bhutban	1,712 (0.912-3.219)	0,076 (<0.05-0.316)	<0,002	0,304	0.007	0.004	0.016	6100'0	0,00025	0.011
1.000000000000000000000000000000000000	19.	Kabatabandha	3.187 (0.728-6.236)	0.082	<0.002	0.254	0.005	0.002	0.002	0.0008	0.00051	900.0
Decision Continue	20.	Dharmasala U/s	3.164 (0,664-5,143)	<0.05 (40,05-0,068)	<0.002	0.418	0.010	0.005	900.0	6100.0	0.00013	0.007
ra U/s 3.197	21,	Dharmasala D/s	2,592 (0,562-4,741)	<0.05 (0.073)	<0,002	0,368	0,010	0,004	0,009	0,0010	0,00019	0,004
ra U/s 3.197 0.06 <0.002 0.111 0.002 0.003 0.019 ra D/s (0.824-9.0256) (<0.05-0.237) <0.0070 <0.002 0.174 0.009 0.009 0.005 ra D/s (0.779-11.405) (<0.05-0.247) <0.002 0.174 0.009 0.008 0.005 flaghor 9.252 0.056-0.276 <0.002 0.108 0.009 0.005 0.004 er 3.807 <0.05-0.276 <0.002 0.108 0.008 0.005 0.007 tibata 1.871 <0.05-0.204 <0.002 0.201 0.018 0.009 0.003 0.003 tibata 1.871 <0.05-0.204 <0.002 0.767 0.003 0.003 0.003 0.003 tibata 21.296 0.011 <0.002 0.767 0.003 0.003 0.003 0.003 tibata 0.015 0.015 0.015 0.003 0.003 0.003 0.003	n	Potrammdai	1.885 (1.076-4.408)	<0.05 (0.135)	<0.002	1.317	0.009	0.030	0.151	0.0016	0.00025	0.002
ra U/s (0.824-9.026) (<0.05-0.237) (<0.002 0.111 0.002 0.003 0.019 (<0.0824-9.026) (<0.05-0.237) (<0.002 0.114 0.009 0.008 0.005 0.005 (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.247) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.005-0.244) (<0.00	Nandira	ı Jhor			60							
ra D/s 3.953 0.0770 <0.002 0.174 0.009 0.008 0.005 flagilor 9,252 0,058 <0.002 0,108 0,009 0,005 0,024 er er er er er er er er er er 3.807 <0.05-0.276) <0.002 0,108 0,009 0,005 0,024 filara (1.38-10.251) (<0.05-0.078) <0.002 0.664 0.018 0.009 0.007 0.007 inpur 2.897 (1.052- <0.05-0.028) <0.002 0.291 0.010 0.003 0.003 1.871 <0.05-0.128) <0.002 0.767 0.003 0.003 0.003 1.871 <0.05-0.204) <0.002 0.767 0.003 0.003 0.003 1.871 <0.05-0.204) <0.002 0.767 0.003 0.003 0.003 1.871 <0.05-0.204) <0.002 0.577 0.015 0.003	23.	Nandira U/s	3.197 (0.824-9.026)	0.06 (<0.05-0.237)	<0.002	0.111	0.002	0.003	0.019	0.0017	0.00019	0.010
flaginor 9,252 0,058 <0,002 0,108 0,009 0,005 0,024 er 3.807 <0.05-0.276 <0.002 0,064 0.018 0.009 0,003 0,007 lifatra 3.807 <0.05-0.078 <0.002 0.064 0.018 0.009 0.007 inpur 2.897 (1.052- <0.05-0.078 <0.002 0.291 0.010 0.003 <0.001 inpur 2.897 (1.052- <0.05-0.128 <0.002 0.291 0.010 0.003 <0.001 inpur 4.776 <0.05-0.128 <0.002 0.767 0.003 0.003 0.003 in Nallah 21.296 0.11 <0.002 0.577 0.015 0.031 in Nallah 21.296 0.11 <0.002 0.577 0.015 0.007 0.031	24.	Nandira D/s	3.953 (0.779-11,405)	0.0770 (<0.05-0.247)	<0.002	0.174	0.009	0.008	0.005	0.0017	0.00064	0.007
thaginor 9,252 0,058 <0,002 0,108 0,009 0,005 0,024 er er 3,807 <0,05-0,276 <0,002 0,664 0,018 0,009 0,007 itlana 3,807 <0,05-0,078 <0,002 0,064 0,018 0,009 0,007 inpur 2,897 (1,052- <0,05-0,128 <0,002 0,291 0,019 0,003 <0,001 inpur 2,897 (1,052- <0,05-0,128 <0,002 0,003 0,003 0,003 0,003 <0,001 inpur 4,776 <0,05-0,128 <0,002 0,767 0,003 0,003 0,003 in Nallah 21,296 0,11 <0,002 0,577 0,015 0,031 0,031	Kisinda	hor										5.20
err 3.807 <0.05 -0.078 <0.0664 0.018 0.009 0.007 lithara 1.38-10.251 (<0.05-0.078) <0.002 0.664 0.018 0.009 0.007 upour 2.897 (1.052- <0.05-0.128) <0.002 0.291 0.010 0.003 <0.001 1.871 <0.05-0.204 <0.002 0.767 0.003 0.003 0.032 hi Nallah 21.296 0.11 <0.002 0.577 0.015 0.031 A.146-44.898) (0.054-0.177) <0.007 0.015 0.031	25.	Kisindhajhor	9,252 (0.824-37.073)	0.058	<0,002	0,108	600'0	0,003	0,024	0,0051	900000	0,007
Hara 3.807 <0.05 <0.002 0.664 0.018 0.009 0.007 (1.38-10.251) (<0.05-0.078) <0.002 0.291 0.018 0.009 0.007 (1.38-10.251) (<0.05-0.078) <0.002 0.291 0.010 0.003 <0.001 (<0.05-0.128) (<0.05-0.204) <0.002 0.767 0.003 0.005 0.032 (0.302-4.758) (<0.05-0.204) <0.002 0.577 0.015 0.007 0.031 (2.146-44.898) (0.054-0.177) (0.002 0.577 0.015 0.007 0.031	Kharası	rota River										
upour 2.897 (1.052- 4.776) <0.05 (<0.05-0.128) <0.002 0.062 0.291 0.767 0.010 0.003 0.003 0.003 <0.003 0.032 In Nallah 21.296 2.146-44.898) 0.11 0.054-0.177 <0.002 0.577 0.015 0.015 0.007 0.015 0.001 0.015 0.001 0.015 0.001 0.015 0.001 0.015 0.001 0.015	26.	Khanditara	3.807 (1.38-10.251)	<0.05 (<0.05-0.078)	<0.002	0.664	0.018	6000	0.007	0.0010	0.00013	0.004
1.871 <0.05-0.204) <0.002 0.767 0.003 0.005 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.031 0.046-44.898) 0.054-0.177 0.054 0.077 0.031	27.	Binjhapur	2.897 (1.052-4.776)	<0.05 (40,05-0,128)	<0.002	0.291	0.010	0.003	<0.001	0.0011	0.00013	0.007
hi Nallah 21.296 0.11 <0.002 0.577 0.015 0.007 0.031 (2.146-44.898) (0.054-0.177)	28.	Anl	1.871 (0.302-4.758)	<0,05 (<0.05)	<0.002	0,767	0,003	0,005	0,032	0,0007	0,00057	0,004
Guradhi Nallah 21.296 0.11 <0.002 0.577 0.015 0.007 0.031 (2.146-44.898) (0.054-0.177)	Guradi	h nallah										
	130	Guradhi Nallah	21.296 (2.146-44.898)	0.11	<0.002	0.577	0.015	0.007	0.031	0.0017	0.00006	0.004

S.	Sampling Location	Nutri	Nutrients					Heavy metals	ls.		10
No.						-4	Annual Aver	age values (Range of valu	(sa	
		Nitrate as NO ₃ -	PO4*-P	Cr(VI)#	Feff	NI.	CII#	Zuite	Cut* Zn* Cut*	Hg ⁶⁵	Pb**
		in)	(mg/L)					(mg/L)			
Badajher	N.										
30.	Badhajhor	2.57 (0.824-5.484)	<0.05 (<0.05-0.197)	<0.002	0.296	0.011	0.003	0.005	0.0015	0.00013	0.011
Damsala River	a River										
31.	Dayanabil	3.862 (0.93-8.202)	<0.05 (<0.05-0.188)	0.016	0.498	0.011	0.004	0.011	0.0011	0.00019	0.008
Gonda nallah	nallah										
32	Marthapur	15.232 (1,003-60,661)	<0.05 0.051)	<0.002	0.162	0.015	0.005	0.007	0.0010	0.00025	0.007
Lingira River	River									. 9	
33,	Lingira U/s	1,626 (0.824-2.764)	0.052 (<0.05-0.184)	<0,002	0,171	0,007	0,002	0,004	0,0013	0,00019	0,009
ž.	Lingira D/s	1.6 (0.71-2.974)	0.061	<0.002	0.132	0.011	0.003	0.030	6100.0	0.00057	0.017
Ramiala River	a River										
35.	Ramiala near Kamakhyanagar	(0,46.2,748)	<0.05 (<0,05-0.08)	<0.002	0.617	910:0	0.003	0.014	60000	0.00006	0.012
Bangurunallah	mallah							45			
36,	Banguranallah	4,007	<0.05 (<0.09)	<0,002	0,742	0,718	0,010	0,020	0,0092	0,00013	0,011
Singadajhor	jhor										950
37.	Singadajhor	1.675 (0.657-4.481)	<0.05 (<0.05-0.091)	<0.002	0.324	0.016	0.004	0.020	0.0031	0.00019	0.009
Tikira River	Tiver.			8		0					25
38.	Kaniha U/s	1.811 (0.477-5.956)	<0.05 (<0.05-0.104)	<0.002	0.211	0.024	0.004	0.028	60000	0.00032	0.006
39.	Kaniha D/s	1.536 (0.824-2.785)	0.065 (<0,05-0.164)	<0.002	0.344	0.017	0.003	0.024	0.0026	0.00044	0.011
Bangur	Bangurusingada jher										
40.	Bengarusingada jhor	1.668 (0.824-3.058)	<0.05-0.096)	<0.002	0.140	0.013	0.002	0.015	0.0013	0.00064	0.010

	Sampling Location	Nutrient	ients					Heavy metals	8		
No.						-	unual Aver	age values (I	Range of value	(Sa	
		Nitrate as NO ₃	PO.*-P	Cr(VI)#	Fe ⁵⁶	NI.	##J	Zuite	Cu ^{#6} Zu ^{#6} Cu ^{#4}	Hg	Phi
		im)	(mg/L)					(mg/L)			
Saro River	iver										
	Karo river at Barbil	2.282	0.053	<0.002	0.182	0.004	0.002	0.007	0.0008	0.00013	0.004
		(0.564-7.417)	(<0.05-0.166)				3!		1		
	♦ Class 'C'	50	•	90.0	20		1.5	15.0	0.01		0.10
	♦ Class 'L'	•				,	() (d)	•	•	á	•

Tolerance limit far Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E'; Irrigation water quality

(C) Baitarani river system (2020)

25 2	Sampling	Phy	Physical	ō	Organic polls	nic pellution Indicators	ators				Miner	Mineral constituents	ents			
-gar	TOCHION	para	e lecter s					municipal arrespondent		(Dantas of radiaco	(own)					
		200		-		,	<u> </u>	CHIMMAL AVERAGE VALIDES		ARHIGO DE VA		200		4	000	,
		2	alkal Inity	3	NH-N	NH-N	IKN	3	SAK	% N3	2 4	â	Ē	5	700	*
		(M)	(Mg/L)		n)	(mg/L)		(□S/cm)					٦	(mg/L)		
Kim	Kundra Nallah												1			
-:	Joda	46	50 (28-	97.	0.89	9000	3.44	22	0.34	18.6	40.5	90 (64-	49	9.6	6.2	0.117
		<10 210 210	<u></u>	\$ 11.6	(0.56- 1.68)	0.022)	(<1.5- 12.88)	(88-221)	(0.08-	(5.67-		132)	원 3	(4.8- 12.5)	(<\$- 15.83)	(0.087-0.168)
Kus	Kusei River															
7	Deogaon	42	78 (48-	7.7	0.72	0.016	3.72	180	0.41	18.48	<0.5	126	71	12.3	11.52	0.18
	ı	3 <u>₹</u>	136)	\$	(0.56- 1.12)	0,073)	(<15- 15,68)	(108-280)	0.74)	(8.15-27.95)		-9/2 160)	49 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	(6.0-	3, € 14, 14,	0.254)
Baits	Baitarani River															
33	Naigath	132	34 (20-	7.2	0.72	9000	2.66	901	0.34	19	<0.5	72 (48-	40	5.9	15.54	0.097
ķ.		√ 0∑	Ŧ	ģ	-95-0)	ද	< <u><</u> I>>	(68-159)	-60.0)	(6.83-		10g	-92	-8.6)	Ş	(0.075-
		(21)		11.2)	1.12)	0.022)	(2.72)		1:1)	51.05)			92	8.0)	46.00)	0.126)
4.	Unchabali	121	33 (20-	6.4	8.0	0.007	3.84	801	0.28	16.13	40.5	68 (48-	43	\$.5	15.29	0.181
		\$	Ŧ	Ś	.0.26	ද	(< >)	(64-171)	-80.09	-16'9)		ଝ	\$	3.8	Ó	-680'0)
		515)	3	11.2)	1.12)	0.017)	7.28)		0.86)	39.15)			73	24.0)	48.5)	0.71)
5.	Champua	49	49 (32-	7.1	0.64	0.005	2.6	132	0.4	19.17	40.5	95 (72-	49	7.6	13.33	0.156
		\$	Ē	\$ 1	(8 Se	600	(<15- 673)	(105-196)	(0.17	-44-84 -44-34		128)	9 8	4.8- 8-8-	2 (S	0.109
9	Tribindha	19	60 (36-	8,1	96'0	0,009	3,42	142	0,31	16,63	40,5	-88) 66	36	7.6	11,23	0,142
		-01>)	10%)	Ś	(0.56-	ද	(<15-	(107-212)	-91.0)	(7.53-		128)	-96)	(4.0-	Ś	(0.103-
		236)		18.5)	1.68)	0.039)	7.28)		0.49)	24.48)			8	14.0)	19.41)	0.211)
7.	Joda	88	47 (28-	00	8.0	0.00	3.64	127	0.4	20.42	<0.5	87 (80-	46	9.6	11.36	0.116
		\ \ 	8	Š	-95'(0)	ද	⟨₹ }	(90-153)	(0.17-	(9.3-		8	36	(3.8-	Ś	870.0)
		202)		(6.11	1.12)	0.034)	14.56)		0.95)	38.86)	- 1		9	26.0)	24.51)	0.155)
œ	Anandpur	44	24 (44	9.4	0.7	0.008	3.92	139	0.34	18.2	Ø.5	-9/) #8	S	90,00	11.06	0.164
		9 V S S	89	80°	97.0	දේ	</! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </! </td <td>(117-166)</td> <td>0.16</td> <td>200</td> <td></td> <td>83</td> <td>4 8</td> <td>99</td> <td>\$ 5</td> <td>(0,103-</td>	(117-166)	0.16	200		83	4 8	99	\$ 5	(0,103-
		199)		14.6)	1.12)	0.020)	10.04)		0.32)	70.17			600	10.0)	70.0)	0.717)

No.	Sampling Location	Phy	Physical parameters	ō	rganic poll	Organic pollution Indicators	ators				Miner	Mineral constituents	ents			
						165	A	Annual average values	250	(Range of values)	lnes)		0.00			
		TSS	Total alkal -inity	Q 00	NH4-N	Free NH-N	TKN	IC	Ad:	% Na	м	TDS	E	ರ	705	A
		(m)	(mg/L)		II)	(mg/L)		(□S/cm)	1000000				П	(mg/L)		
9.	Jajpur	57	73 (36-	6	8.0	0.009	4.66	178	0.34	16.83	<0.5	100		8.5	17.11	0.235
9		10 10 10	124)	(6,0-	(0,56-	ද	<u>₹</u>	(111-269)	(0,17-	(9,55-		형	-44	-0'9)	(8.57-	(0,134-
		150)		(9'11	1.68)	0.039)	13.44)	6	0.53)	27,13)		911	144)	12)	45.36)	0.467)
10.	Chandbali U/s	148	80 (40-	11.8	0.73	0.002	2,1	1226	4.05	45,83	<0.5	1541	191	286,5	76.08	0,213
		9	130	-0.0	(0.56-	6	<\\	(139-6210)	(0.43	(18.18-		-922	44	(12.0-	(9.2-	(0.114-
		483)		19,1)	0,84)	0,013)	3,92)		17.4)	71.62)		4260)	(098	2111.4)	473.8)	0,403)
111	Chandbali D/s	163	-8) (8:	15,6	68'0	0,005	2,99	1449	4,63	45,24	€0,5	2045	861	396,4	83,51	0,208
		-06)	156	-0.0	(0.56-	9	(1.68-	(142-7980)	(0.47-	(19.94-		-96+)	1	(16.0-	7.84	(0.12-
—10 —10		461)		32.1)	1.12)	0.034)	5.6)	-8	22.18)	73.02)	12	5912)	1080)	3072.9)	502.4)	0.341)
Sala	Salandi River															
12	Bhadrak U/s	24	54 (28-	9.4	0.76	9000	2.83	150	0.46	22.25	<0.5	113	¥	10.4	11.05	0.238
		(<10-	89	7.2-	-95'0)	ද	(<1.5	(85-224)	(0,22-	(14,23-		(2)	(32-	-0'9)	Ş	(0,123-
-		81)		17.9)	1.68)	0.028)	8.96)		1.04)	36.52)		140)	84)	18.0)	19.52)	0.67)
13.	Bhadrak D/s	25	54 (16-	12.1	1.08	0.019	3.73	1160	0.51	23.46	40.5	135	26	14.8	33.45	0.232
ğ		\$ ₹	1 080	7.7	.0.56	9	(<15•	(81-12100)	(0.24-	(15.93-		<u>.</u>	36-	(6.0	\$ \$	(0.116
Dive	Dhanes Ricor	20)		11,2)	1,009	0,174)	1,04)		U,11)	47,444)		100)	TOO	20,23	410,329	(0764)
14	Diomes	121	1.36	19.9	0.03	0.00000	267	12232	40 77	1014	2 238	17766	1002	46216	414 27	0.38
Ę	Barrilland	\ <u>\</u>	(25	Š	0.56	0.039)	-89-1	(115-	802	(43.76-	0.237-	(13292		(62.0-	(5.95-	(0.118-
		379)	280)	39.3)	1.12)		9.52)	34510)	117.69)	91.98)	2.462)	26860)	3400)	15564.6)	_	0.596)
	Class 'C'		•	*		3 . ()					*1	1500		009	400	1.5
	♦ Class 'E'	ě	5				e	2250		36	2.0	2100		009	1000	62
	& Taloran	on limit fo	Talorance limit for Inland Surface	Surface) P	water bodies (18-2796-1982)	1082)									

A Telerance limit for Inland. Surface water bodies (IS-2296-1982)
Cass 'C': Drinking water source with conventional treatment followed by disinfection

Class 'L' : Irrigation water quality

(C) Contd..

iš.	Sampling Location	Nutrients	8)				9261	Heavy metals	lls		
No.							Annual Aver) age values (Annual Average values (Range of values)		
		Nitrate as NO3	PO. P	Cr(VI)#	Fe**	N	Cliff	Zn#	CI.	Hg ^{dil}	Pb*
		(mg/L)			20 20 20 20 20 20 20 20 20 20 20 20 20 2			(mg/L)			
Kundra	Kundra Nallah										
-:	Joda	2.300 (0.778-5.484)	<0.05 (<0.05 0.05	<0.002	0.154	0.004	0.002	0.012	0.0010	0.00006	0.004
Kusei River	liver		-0,09)								
7	Deogaon	(0.763-3.778)	<0.05 (<0.05 -0.212)	<0.002	0,389	0,005	0,002	0,002	8000'0	61000'0	0.004
Baitara	Baitarani River										
mi	Nalgarh	2.372 (0,633-5,895)	0.06 (<0.05	<0.002	0.256	0.005	0.002	40.001	0.0009	0.00006	0.005
4	Unchabali	2.319 (0.743-4.933)	<0.05 (<0.05 -0.085)	<0.002	0.845	9.005	0.003	<0.001	0.0018	0.00000	0.002
ri.	Champua	2,855 (1.102-6.192)	<0.05 (<0.05 -0.114)	<0,002	0,535	900'0	0,002	0,002	0,0012	900000	900'0
9	Tribindha	2.654 (0,366-8,204)	<0.05 (<0.05 0.072)	<0.002	0.128	0.004	0.002	0.001	90000	0.00025	0.005
7.	Joda	2.647 (0.831-6.956)	<0.05 (<0.05 -0.132)	<0.002	0.195	0.004	0.003	0.002	0.0008	0.00013	0.003
oci	Anandpur	2.289 (0.27-7.017)	0.069 (<0.05 -0.272)	<0.002	0.138	9000	0.003	0.005	0.0006	0.00019	9000
6	Jajpur	2,963 (0.833-8.271	<0.05 (<0.05 -0.093)	<0,002	0,265	0.010	0,003	0.001	0,0014	0,00013	800.0

31	Sampling Location	Nutrients	nts					Heavy metals	36		, , ; ;
No.		2				A	nnual Aver	age values (l	Annual Average values (Range of values)	(R)	
		Nitrate as NO3	PO+ - P	Cr(VI)**	Fe**	NI.	Call	Zn"	2	Hg ^a	Pb#
		(mg/L)	(1)					(mg/L)			in A
10.	Chandbali U/s	2200 (1.003-4.015)	<0.05 (<0.05 0.153)	<0.002	0.094	0.014	610:0	0.027	0.0015	0.00038	0.003
ï	Chandbali D/s	2,262 (1,07-4,39)	0.05 (<0.05	<0,002	1,163	0,022	0,015	0,048	0,0018	0,00057	0,002
Salandi River	River										
12.	Bhadrak U/s	2.198 (0.612-6.348)	0.06 (<0.05 -0,195)	<0.002	0.427	0.021	0.020	0.069	0.0016	61000'0	0.004
13,	Bhadrak D/s	2,058 (0.687-4.214)	<0.05 (<0.05 0.104)	<0,002	0,791	0,015	510'0	0,037	0,0017	0,00006	0,004
Dhamra River	River		88								
14.	Dhanra	2.727 (0,961-8,125)	0.054 (<0.05 -0.225)	<0.002	1.065	0.019	0.013	0.038	0.0015	0.00019	0.004
	♦ Class 'C'	50		90.0	20		1.5	15.0	10.0	·	0.10
	♦ Class T.		aa*	•	•					•	

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C'; Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality ## Data for the period April, 2020

(D) Rushikulya River System (2020)

Russelkunda Reservoir 1. Russelkunda Bada Nadi 2. Aska 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	Marail	Parameters	ŏ	ganic poll	Organie pollution Indicators	ttors				Miner	Mineral constituents	ents			
Russelkunda Reservoir 1. Russelkunda 2 Aska 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh						7	Annual average values		(Range of values)	lnes)					
Russelkunda Reservoir 1. Russelkunda 2. Aska 2. Aska 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	TSS	Total	000	NH-N	Free	TKN	DC.		% Na	æ	TDS	HI	ರ	70%	A
Russelkunda Reservoir 1. Russelkunda 2 Aska 2 Aska 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh		alkal -inity			NH3-N	•									
1. Russelkunda 2. Aska 2. Aska 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	(m)	(mg/L)		u)	(mg/L)		(□S/cm)						(mg/L)		
병 행															
Bada Nadi 2 Aska Rushlikulya River 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	20	70 (44-	10.4	0.56	0.004	1.62	225	0.88	29.8	<0.5	151	73	27.2	15.4	0.233
Bada Nadi 2 Aska Rushlkulya Rheer 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	∂ ∇	96	(5.9-	(0,56-	ද	\	(148-328)	(0,45-	(18,41-		(112-	(48-	(6.0-	-9'5)	(<0,2
Bada Nadi 2 Aska Rushlkulya Rheer 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	250)	8	14.8)	0.56)	0.017)	3.64)	8	2.68)	(20.02)		190	ଚ୍ଚ	(69.2)	48.3)	0.353)
2 Aska Rushikulya River 3, Aska 4. Nalabanta 5. Madhopur 6, Potagarh															
Rushikulya River 3. Aska 4. Nalabanta 5. Madhopur 6. Potagarh	102	83 (48-	9.4	0.7	0.014	2.18	219	19.0	26.22	<0.5	120	73	18.8	11.9	0.236
8. Aska Aska Aska A. Nalabanta S. Madhopur 6. Potagarh	\$ \(\nabla \)	132)	(5.9	(0.56	ė	(<15	(133-298)	(0.32	(16.67		8	(46-	-9.6	(2.7	(<0.2
S. Aska Aska A. Nalabanta S. Madhopur 6. Potagarh	233)		15.2)	1.12)	0.045)	3.92)		(96'0	35.81)		168)	108)	33.1)	21.9)	0.309)
2 2 2															
	16	98 (52-	10,3	19'0	0,012	1,34	235	29'0	25,24	<0,5	142	81	17,2	10,4	0,249
	\$	148)	-9.5)	(0.56-	9	\ \	(144-309)	(0.44-	(19.37-		(120-	-95	(8.0	4.1)	(0.204-
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	245)	0.000	15.1)	0.84)	0.070)	1.96)		0.87)	32.22)		172)	112)	28.8)	16.9)	0.296)
	96	103	9.5	0.7	0.030	2.52	286	99'0	23.53	<0.5	197	96	21.1	17.7	0.245
	. ∑	99	3.8-	\$.	ද	< <	(194-676)	(0.5	(19.15-		(136-	-95)	(14.0-	(1.3-	(<0.2•
	(222)	148)	14.8)	1.12)	0.130)	3.92)		0.83)	29.88)		320)	208)	42.3)	88.1)	0.279)
	980	104	9,3	1,03	0.017	2,08	404	1,44	29,43	<0.5	468	113	86,3	13.9	0,259
	√	<u>\$</u>	3.8-	.0.56-	ද	<	(173-2050)	(0.56-	(2023-	6	(132-	-95)	(8.0-	(4.9-	(<0.2
	266)	152)	15.1)	3,36)	0.087)	3,92)		8,21)	(6,57)		1412)	376)	765.3)	56.8)	0,368)
	117	130	14,4	0,84	910'0	1.74	6869	21,16	53,54	0,917	12755	495	2818	110,3	0,334
	- √ V	65	(5.9-	(0.56	ද	(<15-	(255-	-0.62	(21.92-	(⊴0.5-	-009)	\$	-0.91)	(4.4-	(0.235-
	348)	230)	28.1)	1.68)	0.070)	3.08)	35300)	86.03)	88.95)	2.262)	27120)	2200)	16149.3)	297.6)	0.512)
Class 'C'			-								1500	•	009	400	1.5
♦ Class 'E'		•	•				2250	36		2.0	2100	•	009	1000	

Telerance limit for Inland Surface water bedies (IS-2296-1982)
 Class 'C' : Brinking water source with conventional treatment followed by disinfection
 Class 'E' : Irrigation water quality

(D) Contd.,

Nitrate as NOs (mg/ (mg/ (mg/ (mg/ (mg/ (mg/ (mg/ (mg/	Sampling Location	Nutrients	ents				their	Heavy metals	Is		
Nitrate as NOs- Inage			8			¥	nnual Aver	age values (Annual Average values (Range of values)	(83)	
Colored Colo		Nitrate as NOs-	PO. P	Cr(VI)#	Fe**	N.	#E	Zn**	""PO	Hg	Ph.
1.740 Russelkunda 1.740 Russelkunda 1.740 Russelkunda 1.740 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.883 1.884 1.883 1.884 1.883 1.883 1.884 1.883 1.883 1.884 1.883 1.833 1.		Suu)	(L)					(mg/L)			
Russelkunda 1.740 (0.888-3.481) (0.888-3.481) (0.888-3.481) (0.663-5.720) (0.663-5.720) (0.663-5.720) (0.691-5.615) (0.691											
Aska 1.883 1.883		1.740	0.091	<0.002	0.268	0.002	0.002	0.003	0.0011	0.00006	0.003
Aska 1.883 1.883										s 39	
Aska 2.005		1.883	0.079 (<0.05-0.469)	<0.002	0.327	0.002	0.003	0.002	0.0012	0.00051	0.005
Aska 2.005 Nalabanta 2.184 (0.499-6.245) Madhopur (0.499-6.245) Potagani (0.569-3.953)									2	200000000000000000000000000000000000000	
Nalabanta 2,184 Nachopur (0.499-6.245) Machopur (0.569-3.953) Potagani (0.772-4.741) C. Class 'C' 50		2.005	0.063 (<0,05-0,227)	<0.002	0.079	0.002	0.001	0.001	0.0013	0.00038	0.005
Madhopur 1.653 (0.569-3.953) Potagath (0.772-4.741)		2,184	0,042 (<0.05-0.084)	<0,002	680'0	0,002	0,001	0,002	0,0010	0,00019	0,005
Potagarth 1.778 (0.772-4.741)		1.653 0.569-3.953)	0.042 (<0.05-0.115)	<0.002	0.145	0.003	0.002	0.002	0.0018	0.0006	0.006
Class 'C'		0.772-4.741)	<0.05 (<0,05-0.071)	<0.002	0.214	0.002	0.001	0.004	0.0023	0.00038	0.003
A Chamber	Fv	99	•	9.02	20	٠	1,5	15.0	10'0		01'0
			•	•	ě			•			

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality

Data for the period April, 2020 推

(E) Nagavall river System (2020)

SI. No.	Sampling Location	Phy	Physical parameters	5	rganic pollt	Organic pollution Indicators	aters				Minera	Mineral constituents	SII.			
							A	Annual average values (Range of values)	values (R.	ange of valu	les)				1	
		ISS		COD	Total COD NHs-N alkal -inity	Free NH3-N	TKN	DT.	SAR	% Na	A	SQI	Ħ	D	⁷ OS	ā
		(m)	(mg/L)	3		(mg/L)		(□S/cm)					=	(mg/L)		
Naga	Nagavali river															
1.	Penta	100	72 (46	7.6	1,04	0,012	2,17	189	0,51	21.7	<0.5	126	29	12,2	14,4	0,214
		4 ∨	100)	(4.5-	-96(0)	9	(< 5	(136-279)	(0.17-	(8,3-		(112-	(-0.4)	4.0	(40.2-
		498)			1.68)	0.067)	2.80)		1.24)	47.1)		168)	(88)	39.9)	27.9)	0.324)
2	Jaykaypur D/s	126	83 (52-		1.03	0.011	4.52	727	0.59	22.7	<0.5	157	9/	15.0	16.4	<0.2
	:	(< 0 >)	108)		(0.56-	6	(<15-	(166-393)	-61.0)	-1.6)		(128-	(48-	-0.9)	(6.3-	(402-
		894)	10	20.6)	1,12)	0,039)	6.72)		1,51)	41.7		224)	100	48.1)	40,2)	0,281
33	Rayagada D/s	113	82 (56-	10,2	0.580	0,014	3,22	212	0,46	18,6	<0.5	148	82	12,5	16,9	<0,2
		-0 V)	104)	(6.0-	0.56	9	<	(160-319)	(0.22-	(10.3-		(112-	(54-	-8.5)	ý	(40.2-
		713)		12.3)	1.68)	0.056)	5.04)		0.88)	29.6)		188)	100)	28.8)	34.2)	0.256)
	☼ Chass 'C'		•	-				1 NEW 1			5	1500		009	400	1.5
	♦ Class T.			,		-99		2250	26	•	2.0	2100		009	1000	

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection Class 'E': Irrigation water quality

(E) Contd...

5	Sampling Location	Nutricats	cards				1.02A	Heavy metals	S		
No.			6		2.0	A	unual Aver	age values (Annual Average values (Range of values)	es)	000
		Nitrate as NOs-	PO, P	Cr(VI)#	Fe ⁴⁶	N.W.	CI.	Zu	*LO	Hga	Pb**
0		(mg/L)	(T)					(mg/L)			
Nagavali river	li river										
l.	Penta	4.408	0.099	<0.002	0.304	0.004	0.002	0.004	0.0013	0.00025	0.005
		(0,824-18,656)	(<0.05-0.445)								
2,	Jaykaypur D/s	2,721	0,146	<0,002	0,352	0,005	0,004	500'0	0,0014	0,00013	900'0
		(0.824-8.160)	(<0.05-0.728)		organization of		110000000000000000000000000000000000000	5 Victorian 2		000000000000000000000000000000000000000	
mi	Rayagada D/s	2.777	0.127	<0.002	0.185	0.001	0.005	0.005	0.0017	0.00025	0.004
		(0.824-7.811)	(<0.05-0.378)			100000000000000000000000000000000000000	STEERING OF				2000 OLG
	Class 'C'	50		50.0	20	•	1.5	15.0	0.01	•	0.10
	Class 'I.'	٠			*	÷.					

Tolerance limit for Inland Surface water hodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality

(F) Subarnarekha river system (2020)

SI. No.	Sampling Location	Phy	Physical parameters	ō	Organic polli	nic pollution Indicator	rters				Mineral	Mineral constituents	ants			
							A	Annual average values (Range of values	values (Ro	inge of val	(san					
		TSS	Total alkal -inity	COD	NH+N	Free NH ₂ -N	TKN)I	SAR	% Na	В	ZOL	ТН	ם	*0s	F
		(III)	(mg/L)		II)	(mg/L)		(□S/cm)					ت	(mg/L)		
Suba	ubarnarekha river															
1.	Rajghat	30	75 (52	_	0.78	0,014	3,02	239	0,9 (0,2-	27.0	€0>	162	77	21.2	16.7	0,362
ė.		<10-	108)	- 33	(0.56-	ė	₹	(134-391)	3.8)	-9701)	(<0.5-	(120-	(28-	-0.8	ġ	(<0.2
		<u>6</u>		14.6)	1.12)	0.073)	7.28)	96 95	8	(0.99	0.70)	232)	100	35,36)	40.5)	0.644)
	⇔ Class 'C	•	•		•		100	•		2000 2000 2000 2000	•	1500		009	400	1.5
	♦ Class 'E'	•	•		•		: 10	2250	36	×	2.0	2100	ī	009	1000	

SI	Sampling Location	Nutrients	ants					Heavy metals	35		
Ne.						¥	unnual Aver	age values (I	Range of valu	(S)	
		Nitrate as NO ₅ -	PO4'-P	Cr(VI)*6	Fe**	NF.,	Cul	Zu**	, E	Hg ⁶⁰	Plo**
		(mg/L)	C)					(mg/L)	(mg/L)		
Subarm	ubarnarekha river										
1.	Raighat	4.752	0,11	<0,002	0,432	0,017	0,002	810'0	0,002	0,00025	0.004
		(0.623-20.929)	(<0.05-0.73)								
	Class 'C'	20	876	90.0	20	•	1.5	15.0	0.01		0.10
,,	♦ Class E;				٠,	•	•	•	•	*	

Tolerance limit for Inland. Surface water bodies (IS-2296-1982)

Class 'C' : Drinking water source with conventional treatment followed by disinfection

Class 'E' : Irrigation water quality Data for the period April, 2020

粜

(G) Budhabalanga River System (2020)

No.	Sampling Location	Phy	Physical parameters	ō	Organic pollution Indicators	ition Indica	fors				Minera	Mineral constituents	ants			
							Aı	Annual average values (Range of values)	values (Ra	inge of valu	(Sa)		0.00000	3000	1	
		ISS	Total alkal -Inity	COD	NH-N	Free NH ₂ -N	TKN	DC.	SAR	% Na	Ð	SQI	田	ಶ	30°	in the
		(m)	(mg/L)		(m)	(mg/L)		(□S/cm)					=	(mg/L)		
Bud	Budhabalanga river															
-	Barripada D/s	27	94 (48-	11.2	101	0.010	2,52	259	99'0	24.27	€(0>	146	98	20,5		0,245
		\$	130)	7.1-	4(0)	ද	<\<\>\	(131-403)	(0,20-	698-		(104	-44	-0'8)		(<0,2-
		92	9%	18.5)	2.24)	0.034)	(917)		1.14)	42.55)		220)	120)	38.0)	27.62)	0.324)
ci	Balasore U/s	34	67 (40-	8.3	8.29	0.017	1.7	167	0.41	19.37	<0.5	106	63	9.95		<0.2
		₽	8	(5.97-	4.0	9	<5.	(110-252)	(0.20-	(12.30-		-9/)	96	-0'9)		(<0,2-
- 51		96		6.11	14.72)	0,118)	3.92)		(89)	34,50)	- 11	128)	608	14.4)	()	0.271)
eñ.	Balasore D/s	29	77 (42-	11,2	1,12	0,014	2,2	220	190	24,55	0,516	130	73	20,9		0,222
		40 ₽	1049	7.7-	4.0>)	9	⟨△.5-	(149-313)	(0.23-	(11.47-	<0,5	707	-8+)	(10.0-	-9/.9)	(<0,5-
		8		14.8)	2.24)	0.055)	4.48)		(101)	34.48)	(108.1)	156)	(001	38.0)	0.00	0.322)
Some	Sone River															
4	Hatigond	74	68 (44-	8.8	12	0.019	9.1	185	0.49	20.79	<0.5	129	99	14.8	11.75	0.233
		. ∑	100)	(5.7	4.(₽)	ę	<u>\$</u>	(118-255)	.91'0)	-98'6)	\$(©)	(116 -	4	-0'9)	(5,2-	(<0,2
	0.000	340)	i Kong	11.7)	2.24)	0.050)	3.92)		060	36.96)	1.741)	136)	1049	24.9)	18.21)	0.378)
	♦ Class 'C'					•		,				1500		009	400	1.5
	♦ Class 'E'	•				•		2250	36		2.0	2100		009	1000	•

(G) Contd..

8	Sampling Location	Nutrients	cuts					Heavy metals	ls		
6			8	0.470	28	W	unnual Aver	age values (Annual Average values (Range of values)	(84)	250
		Nttrate as NOs-	PO. ³ -P	Cr(VI)#	Fe ⁶⁸	N.	Cl.	Zn	L Col	Hg th	Pb#
		iw)	(mgL)					(mg/L)			
Budhal	Budhahalanga river										
I.	Baripada D/s	2.738	980.0	<0.002	0.882	0.004	9000	901.0	0.0012	900000	9000
		(1,058-6,913)	(<0.05-0.490)								
2,	Balasore U/s	1,873	0.054	<0,002	690'0	900'0	0.007	0,014	0,0011	0,00087	0,005
		(1.064-3.324)	(<0.05-0.201)		0.0000000000000000000000000000000000000		100000000000000000000000000000000000000		5		
m.	Balasore D/s	3.555	0.097	<0.002	0.203	0.011	6000	610.0	0.0017	0.00025	0.004
6 6		(1.070-11.443)	(<0.05-0.314)		0.000.000.000		V				
Some River	iver	70 - CONTRACTOR -			2000000	0.0000000000000000000000000000000000000					
4.	Hatigond	1.512	690'0	<0.002	0.229	0.002	0.003	0.001	0.0015	0.00013	9000
8		(0.522-2.590)	(<0.05-0.329)						A 14 15 15 15 15 15 15 15 15 15 15 15 15 15	70,00,000 Publication	1000000
	& Class C:	920	•	90.0	20		1.5	15.0	10.0		0.10
	♦ Class 'E'	(•)			•			•	*		
10	& Toloroneo lini	Tolowanan linest far Inland Surface water hading /IC 2706, 1987.	a water hadies (IS	17961 ABCC :							

Class 'C'; Drinking water source with conventional treatment followed by disinfection Class 'E'; Irrigation water quality

88 Data for the period April, 2020

(H) Kolab river system (2020)

Si. No.	Sampling Location	Phy	Physical parameters	ō	rganic pel	Organic pellation Indicators	ators				Minera	Mineral constituents	ents			
							A	Annual average values (Range of values)	values (R	unge of valu	(Sel					
		TSS		COD	Total COD NH ₂ -N alkal -inity	Free NH ₅ -N	TKN	м	SAR	% Na	g	ZOZ	HI	CG 80	łos	
		(m)	(mg/L)		(1)	(mg/L)		(□S/cm)					ū	(mg/L)		
Čera	Cerandi river															
ì.	Sunabeda	31	38	8,3	0,84	910'0	3,15	144	0,82	34,9	<0,5	113	33	15,6	15,6	<0,2
		<10-	8	(3.0-	4.(6)	ę	<1.5	(70-278)	-60:0)	-69)		635-	8	(\$50	(6.1-	
3		Ĵ	48)	15.4)	1.68)	0.028)	5.04)		2.05)	62.8)	- 100	(091	20)	(61.5)	31.3)	
	♦ Class 'C'	6	•	2	600		•	E.				1500	-	009	400	1.5
	& Clave 'E'							2250	96		2.0	2100		009	1000	

(H) Contd.

	SI	Sampling Location	Nutrien	ents				*****	Heavy metals	8		
166	No.		=		11		¥	nnual Aver	age values (I	Range of valu	es)	
_			Nitrate as NOs-	PO P	Cr(VI)**	Fe ^{#9}	N.	"AC	Zu**	, Jo	Hg ^{##}	Plo**
			(mg/L)	(T)					(mg/L)	(mg/L)		
1000	Kerandi river	river										
_		Sunabeda	2.279	0.134	<0.002	0.617	900'0	9000	900'0	0.0017	0.00025	0.004
_			(0.824-5.120)	(<0.05-0.490)								
		♦ Class 'C'	30	e	0.05	30	6	1,5	15,0	0,01		0,10
		♦ Class E		00					3 .			21

Telerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C' : Drinking water source with conventional treatment followed by disinfection

Class 'E' :Irrigation water quality

(I) Vansadhara river system (2020)

SI.	Sampling Location	Phy	Physical parameters	ō	ganic pell	Organic pellution Indicators	iters				Minera	Mineral constituents	spi			
							A	Annual average values (Range of values)	e values (Ri	tage of val	nes)					
		ISS	Total alkal -inity	COD	NBN	Free NH3-N	TKN) IRC	SAR	% Na	В	TDS	ΉL	a	30°	I
		(m)	(mg/L)		u)	(mg/L)		(□S/cm)					Û	(mg/L)		
Vans	Vansadhara river															
1.	Muniguda	¥	72 (60-		0,76	0.008	3,47	981	0.4 (0.2-	19,4	€05	911	99	11,2	12,2	<0,2
	1	(<10-	23		4(0)	අ		(151-279)	1.0	(8,0-		(92-	(36-	-0'9)	3.9	(40,2-
		244)	63	13.3)	1.12)	0.036)	5.04)	93 93	66	42.1)		156)	Ŧ	24.9)	28.83	0.286)
2	Guttubur.	108	70 (46-		0.76	0.010	3.19	184	0.4 (0.1-		<0.5	127	65	9.5	13.2	<0.2
		V	23		0.56	9	<5≥	(109-270)	0.0)			(104 104	-04)	Ş	ý	(<0.2-
		684			1,12)	0,034)	5,6					160)	8	19.2)	33,1)	0,259)
	♦ Class 'C'	-			100		-	-83				1500	10000	009	400	1.5
	♦ Class 'E'		•	•				2250	36		2.0	2100		009	1000	•

(I) Countd.

痰;	Sampling Lecation	Nutrient	ents					Heavy metals	50		
Ne.			2290000			¥	minal Aver	age values ()	Annual Average values (Range of values)	8	
		Nitrate as NOs-	PO. ² -P	Cr(VI)**	Fe**	Ni*	**************************************	Zu*	, B	Hg**	Plo**
		Sur)	(mg/L)					(mg/L)			
Vansad	sadhara river										200000000000000000000000000000000000000
1.	Muniguda	2.846	0.086	<0.002	0.025	0.001	0.004	9.005	0.0014	0,00032	0.004
6	Gunupur	2,639 (0.824-4.128)	0,079 (<0.05-0.209)	<0,002	0,052	0,015	900'0	0,007	0,0014	0.00038	0,004
	Class 'C'	20		0.05	20		1.5	15.0	10.0		0.10
	Class 'E'	4	•		•		٠		2,000		

Tolerance limit for Inland. Surface water bodies (IS-2296-1982)

Class 'C' : Drinking water source with conventional treatment followed by disinfection

Class 'E': Irrigation water quality # Date for the period April, 2020

(J) Indravati river system (2020)

SI. No.	Sampling Location	Phy	Physical parameters	6	rganic pell	Organic pollution Indicators	ttors				Minera	Mineral constituents	ents			
			54			15	A	Annual average values (Range of values)	values (R:	inge of vali	(sau					
		TSS	Total alkal -inity	COD	NH4-N	Free NHN	TKN	Œ	SAR	% Na	æ	TDS	TH	α	7OS	F
	0.000	GENN)	(mg/L)			(mg/L)		(US/cm)					0	(mg/L)		
Indra	dravati river	0.000								C 000 - 000				100000000000000000000000000000000000000		
	Nawarangpur	67	46 (20-	8.6	0.76	800.0	3.26	168	_	30.4	<0.5	98 (48-	46	17.2	14.0	<0.2
0;		<u><</u> 10.	\$	ý	0.56	ė	(1,12	(85-258)	(6'1	(6)		144)	å	.8.5	(5.2	9000
		420)	e#	11.8)	1.12)	0.022)	5.04)	8		52.8)		0	608	38.0)	28.1)	
	⇔ Class C		٠	•								1500		009	400	1.5
	◆ Class 'E'				*		•	2250	36		0.0	2100	•	009	1000	

S.	Sampling Location	Nutrients	arts					Heavy metals	ls.		
No.				000		*	unnual Aver	age values (Range of valu	ics)	
		Nitrate as NO ₃ -	PO.*-P	Cr(VI)***	Fc ^{ff}	N.	Cu#	Zum	Cu" Zu" Cu"	Hg**	Ph*
		(mg/L)	T)					(mg/L)			
Indrav	indravati river										
-1	Nawarangpur	2.022	0.109	<0.002	0.617	900'0	900'0	900'0	0.0017	0.00025	0.004
٤,		(0.824-3.988)	(<0.05-0.490)		1000						
	Class 'C'	20	•	90.0	50		1.5	15.0	10:0		0.10
	♦ Class T.				*					×	•
			. 1 1 40 40 44 40 4	4467 40045							

Telerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection Class 'E': Irrigation water quality

(K) Bahuda river system (2020)

No.	Sampling Lecation	Phys	Physical parameters	6	rganic poll	Organic pollution Indicators	ators				Minera	Mineral constituents	spira			
							A	Annual average values (Range of values)	values (Ro	unge of valu	(san					
		TSS	Total alkal -Inity	COD	NH-N	Free NH ₃ -N	TKN	EC	SAR	% Na	В	TDS	HI	១	30.	Resp.
		(m)	(mg/L)		11)	(mg/L)		(□S/cm)	34				٦	(mg/L)		
Bahn	ahnda river															
1.	Damodarpally	*	139	0'6	0,595	0,032	2,427	356	0.77	22.1	50⊳	307	128	32	16,8	0,32
		\ <u>\</u>	95	4.7)	(<0.4	6	₹∑	(175-859)	(0,31-	(13.7-		(220-	争	9	-8'9)	0
		157)	212)	12.0)	1.120)	0.000)	4.20)	60 50	2.59)	43.7)		520)	240)	169)	43.2)	0.436)
	Class C							•				1500		009	400	1.5
	c Cass T.			•				2250	26		2.0	2100		009	1000	•

(K) Contd.

SI,	Sampling Location	Nutrients	lents	54.53				Heavy metals	lls		
Ne.						A	nnual Aver	age values (Range of valu	es)	
		Nitrate as NOs-	PO. P	Cr(VI)**	Fe**	N.W.	**************************************	Zu	Cur* Zn* Cur*	Hg®	Pi0***
		(mg/L	ØF)			-		(mg/L)			
	Damodarpally	1.670	<0.05 (<0.05	<0,002	860'0	0,003	0,001	0.001	0,0007	0,00032	0.007
		(0.621-4.478)	0.062)								-
	♦ Class 'C'	20	9	90.0	20	(0)	1.5	15.0	10,0	•	01.0
	♦ Class 'E'					•				*	
	7 10 10 10 1		- 1 10 AD 4447 - 004	4447 40041							

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

Class 'C': Drinking water source with conventional treatment followed by disinfection Class 'E': Irrigation water quality

(A) Canal Water Quality Monitoring

Board regularly monitors the water quality of Taladanda canal at six stations and of Puri canal at three stations.

Taladanda canal originates from Mahanadi river at Jobra of Cuttack, passes through the city and finally culminates at Paradeep after covering a distance of 82 Km. The canal was constructed for the purpose of navigation and/or irrigation of a part of Mahanadi delta of Cuttack and Jagatsinghpur districts. Besides this, the canal is also a source of fresh water for industries and the port at Paradeep. The canal water is also used for bathing and other domestic activities all along its stretch.

Board monitors the water quality of Taldanda canal within Cuttack city at five locations viz. Jobra, Ranihat, Chhatrabazar, Nuabazar, Biribati and one station at Atharabanki of Paradeep. The water quality data at these five stations with respect to critical parameters such as pH, DO, BOD, TC, FC, EC, SAR and B during 2020 are given in Table-5.20 and compared with the tolerance limits for Bathing water quality prescribed under E (P) Rule, 1986 and Class B (Outdoor bathing) and Class E (Irrigation) Inland surface water quality prescribed by Bureau of Indian Standards (IS: 2296-1982). The water quality of Taladanda canal at these locations remained well within the tolerance limit prescribed for Class-E inland surface water bodies. However, frequent deviations in the TC and FC values at Jobra, Ranihat, Chhatrabazar, Nuabazar, Biribati in Cuttack and DO, BOD, TC and FC values at Atharabanki in Paradeep, from the tolerance limits stipulated for other beneficial uses such as Class-B and Class-C surface water bodies have been observed.

Puri canal originates from Mahanadi river near Munduli barrage of Cuttack. The 42 Km long canal was constructed for the purpose of irrigation of Puri district and a part of Khordha district. The canal water is also used for bathing and other domestic activities all along its stretch. Board monitors the water quality of Puri canal at three locations viz. Hansapal, Jagannathpur and Chandanpur. The water quality of Puri canal at these locations remained well within the tolerance limit prescribed for Class-E inland surface water bodies. However, so far the bathing water quality is concerned, total coliform organisms remain above the prescribed limit for Class-B at all the monitoring stations most of the time during the period of study in 2020.

Water quality for other parameters in Taladanda canal and Puri canal, given in Table-5.21 (a) and (b), remain well within the tolerance limit for Class - C water quality.

Table-5.20 Water Quality of Canals with respect to Criteria parameters during 2020 (January-December)

% S	Sampling Location	Na. of Obs.			Annual average values (Range of values)	alnes		Frequ	ency of vi	Frequency of violation (Percent of violation) from designated criteria	ercent of I criteria	Existing	Parameters responsible for	Posstble Reason
					Parameters				*	value			dewngrading th	
			Hd	DO (mg/L)	BOD (mg/L)	TC (MPN/100 ml)	FC (MPN100 ml)	00	BOD	J.C	FC		water quality	
Tala	Taladanda canal													
. i	John	90	8.0	8.2	4.0	4313	1648	0	0	853	-	Does not	TC,FC	Homon
			(7.6-8.4)	(7.5-9.2)	(<1.0-1.3)	(2200-7900)	(490-3300)			(F) % (S)	(13)	confron to Class B,C		activities
2	Raudhat	90	7.7	7.7.8.0	1.8	71988 (1400-	66525	٥	0	87 8	9 E	Does not	TC,FC	Human activities and
				fan m)	(1)	formar	former mer)			(100) 8*(i)		Class B & C		waste water of Cuttack
€;	Chatrabazar*	00	7.9	7.3	1.4	66463 (2700-	54373	0	0	æ	4		TC,FC	fown.
			(7.3-8.5)	(6.1-8.4)	(<1.0-2.7)	160000)	(780-160000)			98 98 98 98	(20)			
4	Nusbezzer*	00	7.7	7.2	1.5	39860 (3500-	15475 (1700-	0	0	84	9	Does not	TC,FC	
			(7.2-8.2)	(5.4-8.0)	(1.0-2.8)	160600)	24000)			(36) (100)	(73)	conform to		
uri	Biribati	90	9.7	7.6	1.3	7224	2633	0	0	ij,	2		TC,FC	
			(7.2-8.0)	(7.0-9.0)	(<1.0-2.4)	(490-28000)	(130-11000)			® ¥ ®	(2)			
9	Atharabanki	12	7.3	5.6	1.7	15950 (1100-	14213	28	1	11\$	_	Does not	DO, BOD,	Human
			(6.8-7.8)	(3.0-7.9)	(<1.0-3.7)	160000)	(220-160000)	(E) & (E)	©	<u> </u>	<u>e</u>	class B & C	TC,FC	activities
	**Class (C)		6.5-8.5	4 and above	3 or less	5000 or less		ă	nking wa	fer soure	e with con	ventional treatm	Drinking water source with conventional treatment followed by distrifection	shreetion
	PPClass 'B'		6.5-8.5	5 and above	3 or less	500 or less					ō	Outdoor batking		
W	Water quality criteria for bathing water	ia for	6.5-8.5	5 and above	3 or less		2500 (Maximum Permissible)		Ø	Wat GOEF No	er use for tification	Water use for organised outdoor batting F Notification G.S.R. No. 742(E) Dt. 25.09	Water use for organised outdoor battling (MOEF Notification G.S.R. No. 742(E) Dt. 25.89,2000)	

Data for the period excluding January, February, July and December, 2020
 Tolerance limits for Inland. Surface water bodies (IS-2296-1982)³ for Class C and ³³ for Class B

				1
				3
!	1			
1	1			
		ŝ		
1	į	ľ	۰	1
,	۰	٠	۱	,

TC FC DO BOD TC FC the waster (MPrw (MPrw (MPrw)) 100 mJ) 100 mJ) 100 mJ	zi Ś	Sampling Location	Na. of Obs.			Annual average values (Range of values)	alues es)		Freque	Frequency of violation (Percent of violation) from designated enterta	olattion (P lesignates	ercent of Leviteria	Existing Class	Parameters responsible for	Possible Reason
Part canal Pa						rarameters				4				an management	
Puri canal 12 7.6				Hď	00 00	1000	IC	FC	<u>00</u>	BOD	Ω	EC		the water	
Puri canal 12 7.6					(mg/L)	(mg/L)	(MPN/ 100 ml)	(MPN 100 ml)						quality	
Hansapal 12 7.6 7.5 1.1 5367 2348 0 0 2 ⁵ 2 Does not TC	a	Puri canal													
Total Tota	⊢ i	Hansapal	12	9.7	7.6	1:1	5367	2348	٥	0	28	2	Does not	IC	Human
Jaganualipe 12 7.5 7.3 1.5 4217 1174 0 0 25 0 Does not Does No		'		(7,2-8,1)	(6.4-8.9)	(0,2-1,7)	(1700-17000)	(490-11000)			£	E	conform to		activities
Jaganuatilipn 12 7.5 7.3 1.5 4217 1174 0 0 2 ⁵ 0 Does not TC Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 0 Chandonpur 12 7.5 7.4 1.4 2310 1056 0 0 0 0 Chandonpur 12 7.5 3 and above 3 or less 500											(100)		Cellino		
T	ત્યં	Jagannathpu	17	7.5	7.3	1.5	4217	1174	0	0	82	0	Does not	C	Human
Chandengur 12 7.5 7.4 1.4 2310 1056 0 ***Class 'C* (6,3-8,0) (3,7-9,6) (0,9-2,5) (140-4600) (78-2200) (78-2200) ***Class 'C* 6.5-8.5 4 and above 3 or less 500 or less (Maximum Permissible) ***Class 'B* 6.5-8.5 5 and above 3 or less 500 or less (Maximum Permissible)				(7.1-8.2)	(5.9-8.9)	(0.6-2.5)	(2200-11000)	(330-2300)			9		conform to		activities
Chandangur 12 7.5 7.4 1.4 2310 1056 0 (6,5-8,0) (5,7-9,6) (0,9-2,5) (140-4600) (78-2200) ***Class 'C**											(100)		Class B		
(6.5-8.0) (5.7-9.6) (0.9-2.5) (140-4600) (78-2200) 6.5-8.5 4 and above 3 or less 500 or less 6.5-8.5 5 and above 3 or less (Maximum Permissible)	mi	Chandanpur	12	7.5	7.4	1.4	2310	1056	۰	0	ø	0	Does not	DO, TC	
6.5-8.5 4 and above 3 or less 5006 or less 6.5-8.5 5 and above 3 or less 500 or less (6.5-8.5 5 and above 3 or less (Maximum Permissible)				(6.5-8.0)	(5.7-9.6)	(0.9-2.5)	(140-4600)	(78-2200)					conform to		
6.5-8.5 4 and above 3 or less 500 or less 6.5-8.5 5 and above 3 or less 500 or less (6.5-8.5 5 and above 3 or less (Maximum Permissible)											(35)		Class B, C		
6.5-8.5 5 and above 3 or less 500 or less 2500 (Maximum Pernissible)		**Class *C*		6.5-8.5	4 and above	3 or less	5000 or less		Ā	nking wa	ter source	e with conv	ventional treatn	nent followed by di	stnfeetion
6.5-8.5 5 and above 3 or less 2500 (Maximum Perulesible)		**Class B'		6.5-8.5	5 and above	3 or less	500 or less					Ð	ddoor bathing		
	À.	iter quality criter. bathing water	la for	6.5-8.5	5 and above	3 or less		2509 (Maximum Permissible)		8	Wat #OEF No	er use for e tification (organised eutile 3.S.R. No. 742(oor ba thing E) Dt. 25.09.2000)	

S for Class C and 38 for Class B

NB:The criteria of non-compliance with respect to TC has been calculated on the following basis: (Ref : IS 2296-1982 foot note)

For Class B: TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml.

For Class C : TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml.

z S	Sampling Location	e No		Annual av (Range o	Annual average value (Range of values)		Frequ (Perc	Frequency of violation (Percent of violation)	iolatien dation)	Existing Class	Parameters responsible for	Possible Reason
		Ops.		Parai	Parameters		from d	from designated criteria value	d critteria		dewngrading the water	
			Hd	EC	SAR	g	2	SAR	9		quality	
				(microSiemens		(mg/L)						
3				(CIII)								
(E)	(a) Taladanda canal											
-;	John	œ	8,0 77,6,8,40	172	0.42 @ 16.0 6.0	<0.5	0	0	θ	Conform to		
c	Demillant	٥	27	121	0.46	300	9	6	9			
7	Kaninar	0	(7.2-8.4)	(146-212)	(0.2-1.22)	C:n>	•	>	A			
εń	Chatrabazar*	000	7.9	180	0.5	<0.5	•	0	•			
			(7.3-8.5)	(148-226)	(0.2-1.37)							
4	Nusbazar*	000	7.7	184	0.48	<0,5	•	0	0			
			(7.2-8.2)	(145-211)	(0.16-1.16)							
5	Biribati*	00	9.2	178	0.41	<0.5	0	0	0			
			(7.2-8.0)	(140-215)	(0.16-1.01)							
ó,	Atharabanki	12	7,3	226	0,57	<0.5	0	0	0			
			(6.8-7.8)	(143-546)	(0.26 - 0.95)							
Pur	Puri Canal											
	Hansapal	12	97.	500	0.48	<0.5	Φ	٥	Φ	Conform to		
			(72-8.1)	(146-285)	(0.26-0.79)					Class E		
7	Jagamathpur	12	7.5	229	19'0	<0,5	0	0	0			
			(7.1-8.2)	(142-487)	(0.27-1.36)							
eri	Chandanpur	21	7.5	188	9.0	<0.5	0	0	0			
			(6.5-8.0)	(126-298)	(0.22-1.79)							
	**Class 'L'		6.0-8.5	2250 or less	26 or less	2.0 or less		Irrigat	ion, indust	rial cooling, contra	Irrigation, industrial cooling, controlled waste disposal	II.

Data for the period excluding January, February, July and December, 2020
 Tolerance limits for Inland Surface water bodies (IS-2296-1982)

Table-5.21(a) Water Quality of Taladanda Canal with respect to other parameters during 2020 (January-December)

z,	Sampling	Physical p	Physical parameters		Organic pollution Indicators	ion Indicator	96			Mil	Mineral constituents	nents	
No.	Location					Annual	Annual average values (Range of values)	(Range of	values)				
		ISS	Tetal alkalinity	(CO)	NH-N	Free NH ₃ -N	TIKN	% Na	SOI	置	D	[†] OS	E4
		m)	(mg/L)		(mgT)	(T)					(mg/L)	(T)	
_	Jobra*	34	69	7.0	68.0	0.045	3.08(1.96-	11.61	801	99	124	12.9	0.289
		(<10-53)	(46-84)	(</td <td>(0.56-1.12)</td> <td>(0-0.140)</td> <td>5.6)</td> <td>(8.97-</td> <td>(104-</td> <td>(46-80)</td> <td>(8-22)</td> <td>(7-22.86)</td> <td>(<0.2-0.339)</td>	(0.56-1.12)	(0-0.140)	5.6)	(8.97-	(104-	(46-80)	(8-22)	(7-22.86)	(<0.2-0.339)
2	Rangiat	38	99	12.5	1.07	0.048	4.08(<1.5-	20.32	124	79	10.21	13.41	0.294
		(<10-97)	(26-76)	(7.1-18,4)	(0,56-1,68)	(0-0,210)	5,6)	(10,21-45.77)	(116-	(44-72)	(6-13.5)	(6,2-22.5)	(<0,2-0,379)
33	Chhatrabazar*	29	99	6.6	1.03	0.062	5.48 (1.96-	21.58	124	19	8.54	14.05	0.297
		(<10-39)	(48-92)	(7.3-12.0)	(0.56-1.12)	(0-0,174)	7,28)	92	-211)	(32-84)	(6-10.6)	(5.6-25,24)	(<0.2-0.353)
					-57			37.32)	130)				1
4	Nuabazar*	25	73	12.6	126	0.042	5.24 (1.68-	20.62	128	89	11.81	13.52	0.285
63		(4041)	(60-84)	(8.0-19.3)	(0.56-1.68)	(0-0.134)	7.84)	(8.49- 44.1)	(128-	(48-80)	(6-28)	(6.3-23.45)	(<02-0.41)
	Biribeti*	22	74	10.7	1.63	0.044	4.2	18.78	114	33	9.23	11.41	0.299
;		(<10-56)	(60-84)	(7.3-14.7)	(0.84-2.24)	(0-0,112)	1,96-7,28)	(8.66-40.96)	(112-	(44-84)	(6-13.5)	(5.7-19.29)	(<0,2-0,402)
9	Atharabanki	91	98	13,9	68'0	900'0	3,98(<1,5-	22,51	175	æ	19,05	14,86	0,34
		(<10-76)	(44-224)	(7.4-24)	(0.56-1.12)	(0-0.034)	12.04)	(13.27-	8	(48-214)	(6-59.6)	(6.4-29.29)	(0.202-0.556)
- 53		- TEOLOGIC - 107 CO					100000000000000000000000000000000000000	30.45)	340)				
- 70	**Class 'C'	•	8 SES 0	2						1500	009	400	1.5
s=	**Class 'E'		•			•				2100	009	1000	*

Data for the period excluding January, February, July and December, 2020
 Tolerance limits for Inland Surface water bodies (IS-2296-1982)

Contd....

S	Sampling Location	Nutr	Nutrients				Hear	Heavy metals			
No.	•				Annual	average va	Annual average values (Range of values)	(values)			
		NO3-	PO.3-P	Cr(VI)**	Fe#	Ni ^{##}	Ctr"	Zn^{th}	"PO	Hg#	₽Ъ∰
		(m)	(mg/L)				(III)	(mg/L)			
	Jobra*	1,463	<0.05	<0,002	0,112	0,010	0.010	900'0	0,0013	0,00019	0.005
;		(0.523-	(⊲0.05								
		2.846)	0.087)								
2	Ranihat	2,026	<0.05	<0,002	0,121	900'0	0,012	090'0	0,0011	0.00025	0,004
i		(0.499-	(<0.0>								
		5,253)	0.065)								
~	Chhatrabazar*	2.513	<0.0>	<0.002	0.114	0.003	0.010	900'0	0.0011	6800000	0.005
ī		(0.474-	-S0 (Þ)								
		4.391)	0.054)								
4	Nuabazar*	2,26	60'0	<0.002	860'0	0,011	900'0	900'0	0,0013	0,00019	0.004
:		(1.022-	(⊲0.05								
		4.98)	0.314)								
~	Biribati*	2.35	0.05	<0.002	0.215	0.004	0.012	0.001	0.0017	0.00038	0.004
'		(1,277-	(<0,0>								
		3,359)	0,091)								
.9	Atharabanki	3.465	<0.0>	<0.002	969.0	0.004	0.003	900'0	8000.0	6.00019	0.004
i		(0,388-	(⊲0.05								
		19.452)	0.076)								
	**Class 'C'	30	•	0.05	30		1,5	15,0	0,01		0.10
	**Class 'E'		•		,	-		-			

* Data for the period excluding January, February, July and December, 2020 ## Data for the period April, 2020 ** Tolerance limits for Inland Surface water bodies (IS-2296-1982)

Table-5.21(b) Water Quality of Puri Canal with respect to other parameters during 2020 (January-December)

No	Sampling	Physical p	Physical parameters		Organic pollution Indicators	ion Indicator	50		- 6	Mil	Mineral constituents	wents	
100	Location		30			Ammal	Amnual average values (Range of values)	(Range of	values)	0.000		0.000	
		TSS	Total alkalinity	(COD	NH-N	Free NH3-N	TIKN	% Na	SOI	H	a	108	H
		m)	(mg/L)		(mgT)	(T)					(mg/L)	(L)	
	Hansapel	32	18	8.7	97.0	0.013	3.19 (<1.5-	20.05	130	22	13.33	14.79	0.276
		(<10-70)	(44-112)	(<11.7)	(0.56-1.12)	(0-0.026)	5.6)	(12.86-	(15 15 15 15	(90-108)	(6-28)	(7.7.25.6)	(<02-0.415)
	Jagannathpur	33	11	9,3	1,02	910'0	4,1	22,51	153	28	25.19	16,25	0,282
		(<10-95)	(52-128)	(<-15.4)	(0.56-2.24)	(0-0.045)	(2.24-6.16)	(12.09-	-911)	(48-144)	(98-9)	(5.8-30)	(40.2-0.462)
								36.85)	264)				
	Chandanpur	32	75	11.7	0.77	0.010			137	65	13,35	10,95	0,274
	ų.	(<10-73)	(40-104)	(2.0-15.6)	(0.56-1.12)	(0-0'020)	3,92)	(10,26-48.78)	8 2	(36-92)	(6-36,5)	(<5-24.52)	(<0,2-0,493)
	Cass C			**	= 1	÷1				5	009	400	1.5
	**Class 'E'										009	1000	

	1	
1		
1	1	
1		
	ı	
1 1		
1-3	ч	
18		
100		
-		

SI,	Sampling Location	Nutr	Nutrients				Hea	Heavy metals			
No.					Annu	al average va	Annual average values (Range of values)	f values)			
		NO3.	PO. P	Cr(VI)#	Fe ^{##}	N.	CIL	$Z_{n^{99}}$	Cd	Hg ⁸⁹	Pb
		5	ng/L)				II)	(mg/L)			
L	Hartsapal	3,977	0.07	<0.002	0,355	0.003	0000	0,012	0,0021	0,00070	0,004
		(0.834	(0)(0>)								
		(9.81	0.21)								
2	Jagannathpur	2578	90'0	<0.002	0.154	0.013	610.0	0.012	0.0023	0.00025	0.005
		(1.064	(\$) (\$)								
		4.268)	0.262)								
ल	Chandanpur	4.406	90'0	<0.002	0.020	0000	0.007	0.002	0.0023	0.00013	9000
	CS	(0.997-	(0.05								
		16,429)	(811'0								
	**Class 'C'	50	•	90.0	20		1,5	15.0	10'0	1.	01'0
	**Class 'E'	x	•		•	•	•	•			

Data for the period April, 2020 ** Tolerance limits for Inland Simface water bodies (IS-2296-1982)

(B) Ponds Water Quality Monitoring

Board is regularly monitoring the water quality of eight ponds such as Bindusagar pond in Bhubaneswar, five religious ponds (Narendra, Markanda, Indradyumna, Swetaganga and Parvati Sagar) in Puri town, Jagannathsagar pond in Jeypore town and Raniguda pond in Angul town.

The annual average and range values of the criteria parameters such as pH, DO, BOD, TC and FC during 2020 in these eight ponds are given in Table-5.22. As these ponds are mostly used for bathing purposes, water quality data are compared with the bathing water quality. Comparison of the data with the tolerance limits for Class-B (Bathing water quality), specified by CPCB and water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000) reveals non-compliance at these monitoring stations with respect to DO, BOD, TC and FC for most time of the observation period during 2020. Frequent deviations in pH values in the ponds of Puri town from the tolerance limit of 6.5-8.5 have been observed. Water quality with respect to other parameters are given in Table-5.23 which remained within the tolerance limits for Class'C'.

(C) Lake Water Quality Monitoring

The Board is regularly monitoring the water quality of Chilika lake at two stations (Rambha and Satpada), four stations on Anshupa lake (Kadalibari, Bishnupur Subarnapur and Sarandagarh) and one station on Tampara lake (Tampara). Annual average and range values of the water quality parameters of these lakes during the year 2020 are given in Table-5.24 and 5.25. Assessment of the water quality status of the lakes have been done based on the best use of water body made by the society as well as the type of water body.

As Chilika is a brackish water lake and the predominant activities at the monitoring stations such as Rambha and Satapada are contact water sports and commercial fishing, the water quality criteria parameters are compared with Class SW-II. Comparison of the water quality data of Chilika lake with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) (Table-5.24(a)) reveals non-compliance with respect to fecal coliform values at both Rambha and Satapada. The probable cause of downgrading the water quality of lake may be due to human activities in the lake.

Anshupa and Tamprara lakes are sweet water lakes and the predominant activity in these lake are fish propagation. Comparison of the water quality data of Anshupa lake and Tampara lake (Table 5.24(b)) with the water quality criteria for Class-D surface water bodies (Fish culture and wild life propagation) reveals compliance with respect to all the criteria parameters. However, frequent deviation in Biochemical Oxygen Demand (BOD) and Total coliform (TC) values (Table 5.25 (b)) from the tolerance limits (3.0 mg/L and 5000 MPN/100 ml respectively) laid down for Class-C (drinking water source with conventional treatment followed by disinfection) are observed at Tampara lake. The

probable cause of downgrading the water quality of lake may be due to eutrophic condition of the lakes, human activities etc in the lake.

(D) Coastal Water Quality Monitoring

Coastal water quality near Puri town at three locations (Swargadwara, Baliapanda and Bankimuhan), Gopalpur at one location and Paradeep at one location are being regularly monitored by the Board. Annual average and range values of the water quality parameters of the sea at these five locations during the year 2020 are given in Tables -5.26 and 5.27. Assessment of the coastal water quality status have been done based on the best use and type of activities in the coastal segment.

Comparison of the coastal water quality data with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) reveals frequent non-compliance with respect to fecal coliform values at all monitored locations in Puri and Paradeep. This may be attributed to the human activities and discharge of domestic wastewater into the sea.

Comparison of the coastal water quality at Gopalpur and Paradeep with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) and SW-IV (for Harbour water) reveals compliance with the desired class.

Table -5,22 (a) Water Quality of Ponds with respect to Criteria parameters during 2020 (January- December)

z ž	Sampling Location	No. of Obs.		¥	Annual average values (Range of values)	ge values alues)		Fre	quency (Frequency of violation (Percent of violation) from designated criteria	on (Perco nated cr	ent of iteria	Existing Class	Parameters responsible for	Possible Reason
					Parameters	ers				value				downgrading	
			Ηď	DO (Into/L)	BOD	TC	FC (MPN/	Ħd	DQ	00g	C	<u> </u>		the water ouality	
				(m.8m)	(m. Sam)	100 ml)	100 ml)							4	
~	(a) Bindusagar Pond in Bhubaneswar City	in Bh	ubaneswar	City											
	Lingaraj Temple side	12	7.7 (6.8-8.4)	7.9 (6.4-9.6)	2.0 (1.3-2.9)	23174 (490- 160000)	3522 (20-22000)	0	0	0	11 (92)	(17)		TC,FC	
~i	Anguta Vasudev	27	7,6 (6,7-8,3)	7.5 (5.0- 10.6)	2.2 (1.5-3.8)	12047 (170- 92000)	2945 (20-22000)	0	0	- ®	03 (83)	(17)	Does not	BOD, TC,FC	Human
eri .	Gyananagar	12	7.6 (6.8-8.4)	7.6 (6.3-9.3)	2.0 (1.3-2.5)	7225 (1600- 16000)	2227 (240-7000)	0	0	0	12 (100)	4 (33)	Class B	TC,FC	activities
4	Near Kedarnath Research Centre	21	7.6 (7-8.3)	7.1 (4.1- 10.6)	2.1 (1.3-2.8)	7316 (790-	2744 (130-13000)	0	_	0	12 (100)	(23)		DO, TC,FC	
1	"Class 'B'		6.5-8.5	5 and above	3 or less	500 or less						Outsle	Outdoor bathing		
Z DZ C	Water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)	la for No. 90)	6.5-8.5	5 and above	3 or less		2500 (Maximum Permissible)			5	ater use	for org	Water use for organised outdoor bathing	r bathing	

Televance limit for Inland Surface water bedies (IS-2296-1982)

The criteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 20,000 MPN/100 ml and more than 20% of the samples show more than 5000 MPN/100 ml. (Ref.: 1S 2296-1982 foot note) Note:

% Si	Sampling No Location Ob	No. of Obs.		¥	Annual average values (Range of values)	te values alues)		Frequ	Frequency of violation (Percent of violation) from designated criteria value	ncy of violation (Percent of vio from designated enterta value	ercent of itteria val	violation) ue	Existing Class	Parameters responsible for	Possible Reason
					Parameters	ers								downgrading the	
			뛴	DO (mg/L)	BOD (mg/L)	TC (MPN 100 ml)	FC (MPN 100 ml)	Hd	8	BOD	JC	FC		water quality	
((b) Ponds (Puri)														
ı.i	Narendra	12 8	٨	7.9(4.5-	49	3213	1869	- *	4 5	10	9	1		pH, DO, BOD,	
			8.7)	12.4)	(23-63)	(20-22000)	(20-14000)	99	(33)	(S)	(<u>Q</u>	(8)		JCFC	
2.	Markanda	12 8	8.2 (7.7-	8.7 (2.8-	5.6	1680	607	- 6	4 60	11	9 (8)	0		pH, DO, BOD,	
	+	+	+	-	(0.0-1.0)	(20-4500)	(19-1/09)	0	Ĉ.	(3%)	(AC)			Itylic	
નાં	Indradyuma	12	<u>.</u>	7.1 (3.1-	42	4636	1638	0	- é	===	٥ (0	Does not	DO, BOD,	Thusen
			6.0	(601	(3.5-6.7)	(/8-24000)	(20-7900)		(9)	(35)	2		conform to	ICE	THE THE
4	Swetagangn	12 8	8.2 (7.9-	9.5 (2.9-	5.4	4144 (230-	1891	_	٠,	=	06		Class B	pH, DO, BOD,	activities
			89)	18.1)	(3.6-8.7)	22000)	(20-11000)	99	(42)	635	(6)	8		IC	
δ.	Parvati sagar 1	12 7.	7.8 (7.2-	7.5 (3.5-	4.9	3891 (45-	1525	0	63	=	9	2		DO, BOD, TC,FC	
			8.5)	12.3)	(3.3-8.4)	24000)	(2-7900)		(1)	(35)	(20)	(1)			
	*Class B'		6.5-8.5	5 and above	3 or less	500 or less						Outdeor bathing	bathing		
Not	Water quality criteria for bathing water (MOEF Notification G.S.R. No. 742(E) Dt. 25.09.2000)		6.5-8.5	5 алы аbоте	3 or less		2500 Ofaximum Permissible)				Water us	e for organi	Water use for organised eutdoor bathing	dhing	

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)

The enteria of non-compliance with respect to TC has been calculated on the following basis:

TC values with more than 5% of samples show more than 2000 MPN/100 ml and more than 20% of the samples show more than 500 MPN/100 ml. (Ref. 1S 2296-1982 foot note) NB:

S &	L Sampling o Location	No.		A	Annual average values (Range of values)	ge values	g .	Fr	Frequency of violation (Percent of violation) from designated criteria value	of violati	ion (Perc	ent of ria value	Existing Class	Parameters responsible for	Possible Reason
		8			Parameters	ters								downgrading	
			He	00	BOD	JC TC	FC	Hd	00	BOD	C	ľC		the water	
-	12			(mg/L)	(mg/L)	(MPN/ 100 ml)	(MPN/ 100 ml)							quality	
3	(c) Pond in Jeypore town	town							2						
i,	Jagannafhsaga	=	7.6 (7.1- 6.3 (5.4-	63 (5.4-	61	4363 (790-	1545	0	0	0	=	-	Does not	TC, FC	Human
	.		87)	8.4)	(<1.0- 2.7)	(006/	(220-3300)				(100)	6	conform to Class B		activities
(d	(d) Pond in Angul Town	(OWI)													
≓	Raniguda Pond	12	7.5 (7.3-	5.7 (2.8-	49	co.	1760	0	2	10	77	2	Dogwood	DO, BOD,	
			7.8)	9.4)	(2.0-8.4)	13000)	(220-7900)		(42)	8	(100)	(1)	conform to	TC, FC	Human
	*Class 'B'		6.5-8.5	5 and	3 or less	500 or less						10			
				apove								Outdoo	Outdoor bathing		
-	Water quality criteria for bathing water (MOEF	ria for OEF	6,5-8,5	5 and above	3 or less		2500 (Maximum			×	ater use	for organ	Water use for organised outdoor bathing	athing	
	Notification G.S.R. No. 742(E) Dt. 25.09.2000)	. No.					Permissible)					•			
	o Tollement House Line Labour Company		Laland C.		A. R. B. (10)	/TO 110/ 1001)									

Tolerance limit for Inland Surface water bodies (IS-2296-1982)

The criteria of non-compliance with respect to TC has been calculated on the following basis:

IC values with more than 5% of samples show more than 2000 MPN/100 and and more than 20% of the samples show more than 500 MPN/ 100 ml. (Ref : IS 2296-1982 foot note) 9

Table-5.23 Water quality of Ponds with respect to other parameters during 2028 (January- December)

5 °	Sampling Location	Phy	Physical parameters	ō	Organic pollution Indicators	tien Indica	tors				Min	Mineral constituents	timents			
		6			0.00		Anny	Amenal average values (Range of values)	raines (R	ange of va	nes)					
		SZI	Total alkal inity	000	NH-N	Free NR ₂ -N	TIKN	3¶	SAR	% Na	m	SQL	E	ם	¹ 0S	H
			(mg/L)		Œ.	(mg/L)		(□S/cm)						(mg/L)		
3	Bindusagar Pond in Bludbaneswar City	hubanesw	ar City													
_:	Lingaraj Temple side	38	100	15.3	1.19	0.023	3.58	360	1.53	39.53	40.5	217	82	48.22	17.53	0.341
		\ \ \ \ \ \	32	9	(0.56-	9	<\\	(208-	(0.45-	(16.54-		(188-	4	(28-62)	-7.6)	(0.218-
		283)	126)	(9.61	2.8)	0.112)	5.6)	498)	2.1)	50.13)		256)	108)		29.61)	0.517)
2	Ananta Vasudev	21	105	16.5	1.12	81079	3.48	375	1.64	41.52	40.5	228	87	51.75	16.6	0.302
		\$	-08)	(11.5-	-6.84	ŝ	(224-	286	(131-	(37.96-		204	<u>\$</u>	(40-80)	(9.3-	(40.2-
		55)	124)	26.5)	1,68)	0.039)	5.6)	468)	2.16	46.97)		252)	104)		28.45)	0,43)
r.	Gyananagar	91	104	16.1	98.0	0.012	3.05	363	1.62	41.16	₹05	215	84	47.75	18.3	0.284
		\$. 8	9	-95'0)	\$	(1.68-	(22)	.T.O)	(25.18-		(136-	(52	(22-86)	-4-6)	(40.2-
		31)	140)	23.2)	1.68)	0.067)	5.32)	479)	2.38)	51.9)		268)	108)		30.48)	0.463)
4	Near Kedarnath	24	100	15.7	960	810'0	3,27	372	1,66	42,04	₹02	221	98	51,99	18,42	0,301
	research Centre	\$	-95)	9	-950)	9	(1.96-	294	(125-	(34.63-	li L	208	-95)	(44-76)	-8.6)	\$
		69	124)	24.3)	168)	0.084)	4.48)	480)	2.08)	50.38)		240)	108)		29.64)	0.435)
	Class C				•							1500		009	400	2

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)
Class *C* : Drinking water source with conventional treatment followed by disinfection

Contd..

3	Sampling Location	NHI	Natricats					Heavy metals	netals		
, NO.							Annual ave	rage values (Annual average values (Range of values)	es)	
		NO.	PO4*-P	Cr(VI)**	Fe	Ni**	Catt	Za***	Cd#	Hg#	Pb**
			(mg/L)				٦	(mg/L)			
(B)	Bindusagar Pond in Bhubaneswar City	eswar City						200		A MANAGEMENT OF THE	0.00000
Γ.	Lingaraj Temple side	3.303	0.1 (<0.05-	<0.002	0.224	0.008	0.004	080.0	9100'0	0.00095	0.00
		(0.754-	0.226)								
7	Ananta Vasudev	3.818	160.0	<0.002	0.284	0.005	0.007	0.030	0.0011	0.00013	0.004
		-906'0)	(d) 05-								
		(986)	0,213)								
	Gyananagar	3,175	0,095	<0.002	0,222	0.013	800.0	6.019	0.0011	0.00013	0.004
		(0.942-	(<0.05								
	A CONTRACTOR OF THE CONTRACTOR	5.861)	0.208)							Superior Sup	
4	Near Kedarnath Research	2.158	0.092	<0.002	1231	0.009	9000	9000	0.0010	0.00057	0.003
9	Centre	(0.572-	(<0.05-	i con							
		4.889)	0.371)		7						
	"Class 'C'	20	•	0,05	20	(28	1.5	15.0	10.0		0.10

* Tolerance limit for Inland Surface water bodies (IS-2296-1982) ## Data for the period April, 2020 Class 'C' :Driaking water source with conventional treatment followed by disinfection

% %	Sampling Lecation	Physical parameters	ical	Org	ganic pellu	ganic pellution Indicators	tors				Wiji	Mineral constituents	ilinents			
		100	2 2011/2000/2000				Ann	Annual average values (Range of values)	values (R:	nage of val	nes)					
		SZI	Total alkal inity	6 00	NH-N	Free NH ₃ -N	TKN	C	SAR	% Na	9	SE .	Ħ	ū	80°	Н
)	(mg/L)		(iii)	(mg/L)		(DS/cm)					٥	(mg/L)		
a	(b) Pends in Puri town															
-:	Narendra	40	176	28,1	0.77	0.045	2,68	787	3,19	46,38	40.5	597	159	151,74	35,86	40,2
		(15-	-96)	(13.4-	-950)	9	(1.68-	(461-	1.64	(33.43-		65	(112-	-99)	(B)	(4 02-
		125)	220)	49.5)	1.12)	0.109)	5.04)	1381)	7.38)	(88.22)		(098	208)	356.7)	(8.93)	0.361)
2	Markanda	50	158	33.2	1.19	690.0	4.39	613	2.05	39.52	Q0.5	377	150	82.76	39.08	<0.2
		41)	(100-	(17.4-	-950)	9	(2.24-	(513-	(1.1-	4.82		38	401)	-0+)	(21.7-	(40.2-
		(64	196)	(1)	1.68)	0.260)	6.72)	735)	3,66)	54.4)		460)	200)	142,2)	(9.69	0.322)
3.	Indradyuma	50	104	25.4	98.0	0.041	3.89	537	2.77	49.89	40.5	377	76	108.59	23.28	0.235
	0)	\ \ \ \ \ \ \	-7.	(10,4-	-95'0)	9	<\\	-792)	(1.03-	(32,14-		(180-	-95)	\$	-9'TI)	(40.2-
		(19	172)	45.7)	1,12)	0.174)	7.28)	1279)	(66'9	(66'69)		820)	180)	390,4)	52,22)	0.482)
4.	Swetaganga	23	151	32,9	960	950'0	3.64	731	2.97	47.38	<0.5	489	144	151,61	28,36	0,236
		\$ \$ \$	-08)	(13.9-	-950)	9	₹	(424-	(1.36-	(3423-	Î	6260-	-9/	-99)	(20.2-	(d)
		52)	246)	51.7)	2.24)	0.179)	5.04)	1155)	6.24)	(20:69		(692)	300)	246.8)	58.09)	0.417)
5.	Parvati sagar	27	103	28.1	126	0.040	4.48	384	17.1	41.29	40.5	244	100	65.38	17.13	40.2
		ċ	-89)	(10.4-	-950)	٥	\$	(288-	(0.92-	(26.1-		961)	<u>\$</u>	-96	(8.2.28)	(40.5
		6	184)	53,3)	2.24)	0,174)	8,96)	\$19)	3.I)	57,32)		316)	160)	112.8)		0,321)
	*Class *C		r				٠	•	•		×	1500	٠	909	400	1.5

Tolerance limit for Inland Surface water bodies (IS-2296-1982)
 Class 'C' : Drinking water source with conventional treatment followed by disinfection

ış	Sampling Location	Natries	rients		11			Heavy metals	etals		
9						2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	АввиаІ ау	erage values (Annual average values (Range of values)	es)	
		NO.	PO.'-P	Cr(VI)**	Fe	N	CHIE	Za#	2	Hg#	Ph*
-3) -0		u)	(mg/L)				_	(mg/L)			
(9)	(b) Ponds in Puri town										
-	Narendra	4.931	0.723	<0.002	0.409	0.010	8000	910.0	0.0020	0.00025	6000
i		(2,019-	(0.139-								
		8.65)	2.586)								
٠	Markanda	14.402	0.939	<0.002	299'0	600.0	0.0I3	0.037	0.0027	0.00025	0.010
ij		(4,294-	(0,145-								
		39.425)	3.352)						41		
2	Indradyumna	12.76	0.351	<0.002	0.174	0.009	0000	0.022	0.0034	0.00025	0.007
ć		(1.198-	(<0.05-								
		(890.19	1.347)								
-	Swetaganga	9.299	0.657	<0.002	0.284	0.012	6000	0.028	0.0036	900000	0.007
F		(1,302-	-260.0)								
		30.464)	4.093)								
*	Parvati sagar	6.054	961'0	<0.002	0,449	0,011	800'0	810'0	0,0039	0,00013	6,000
5		(0.833-	(<0.05-								
		17.965)	0.681)		- 31				3		
	"Class 'C'	20	•	0.02	50	•	1.5	15.0	10.0		0.10

Tolerance limit for Inland Surface water bodies (IS-2296-1982)
 Bata for the period April, 2020

Class 'C' : Drinking water source with conventional treatment followed by disinfection

3	Sampling Location	Phy	Physical	o	Organic pollution Indicators	ion Indicat	ors				Mine	Mineral constituents	itnents			
No.	3: 3	para	par amount 3				An	Annual average values (Range of values)	e values (R	ange of va	(seu)					
	> v	TSS	Total alkal tiity	G	NH-N	Free NH ₂ -N	TKN	EC (DS/cm)	SAR	% Na	æ	SQL	Ħ	១	70%	E .
		1	(mg/L)		(mg/L)	(T)								(mg/L)		
Pone	Pond in Jeypore town															
1	Jagannathsagar	35	-96 (26-	17.3	0.72	0.007	2.1	281	0.78	25.38	Ø.5	145	96	26.09	13.23	<0.2
		\$ 	124)	95)	(0.56-	9	⟨₹⟩	-9/1)	(0.23-	(9.85	(<u>0</u> .5	(112-	<u>-</u> 2	-7.7	Š	(<0.2-
		144)		38.8)	1.12)	0.022)	2.8)	369)	1.91)	48.62)	0.5)	204)	108)	48.07)	37.14)	0.247)
Pone	Pond in Angul town			(A)	N.			A.Le	32000					200000000000000000000000000000000000000	11	
-:	Raniguda	41	157	30.6	1 (0.56-	0.010	4.57	624	2.13	34.47	<0.5	472	157	93.06	39.92	0.525
		\ <u>\</u>	(64	(11.8-	1.68)	9	(2.24-	(246-	-/0.0)	(2.81-	(S)	-9/1)	\$	-7.7	8	(0.246-
		88	264)	54.9)		0.025)	11.2)	1080)	6.49)	(69.93)	0.5)	(269	240)	274.9)	58.2)	0.843)
	"Class 'C'	¥	•		•	٠		•				1500		009	400	1.5

Contd..

	Sampling Location	Nutri	utrients				Heavy	Heavy metals			
No.				A	Annual averag	ge values (Rai	inge of values)				
		NO ₃ -	PO.3-P	Cr(VI)®	Fe	NI.	- J	Zu	Cdi	Hg [®]	P6#
		im)	(mg/L)		8		(mg/L)	(T)			0
Ponk	Pond in Jeypore town										
_:	Jagannathsagar	4,167	0,108	<0,002	1,237	900'0	0,010	0.007	9100'0	0,00013	900'0
		(0.824-7.994)	(<0.05-0.257)								
Pon	Pond in Angul town										
ı.	Raniguda	6.359 (0.748-12.332)	0.051-0.782)	<0.002	0.410	0.018	0.003	0.003	81000	61000'0	0.022
	*Class 'C'	99		50.0	- 20		1.5	15.0	10.0	4	01.0

Tolerance limit for Inland Surface water bodies (IS-2296-1982)
 ## Data for the period April, 2020
 Class 'C' : Drinking water source with conventional treatment followed by disinfection

Table-5.24 Water Quality of Lakes with respect to Criteria parameters during 2020 (January-December)

(a) Brackish Water Lake

	(a)	(a) Deachash water Lane	ICI Palec											
	Sl. Sampling No Location	ing No. of on Obs.		W	Annual average value (Range of values)	ralues es)		Freq	uency of ion) fro	violation n designa	requency of violation (Percent of olation) from designated eriteria	Existing Class	Parameters responsible for	Pessible Reason
		_			Parameters					value			downgrading the	
_		_	Hď	DO (mg/L)	BOD (mg/L)	Turbidity, NTU	FC (MPN/100 ml)	阻	20	00g	D.		water quality	
_	Chillen lake													
	1. Rambha	m 12	8.2	6.8	1.4	6	120	٥	0	0	50	Does not	FC	Burnens
			(7.4-8.6)	(5.8-8.5)	(<1.0-2.6)	(<1.0-34)	(1.8-220)				(2)	conform to		activities
17	 Satpada 	a 12	7.8	7.2	1.4	31	439	٥	0	0	10	Class-SW-II	FC	
			(7.0-8.4)	(6.1-8.2)	(<1.0-1.8)	(2-80)	(1.8-1300)				(83)			
	Water qual	Water quality criteria for	6.5-8.5	4.8 or more	3.0 or less	30 or less	100 or less			or Bathi	ng, Courtact W.	ater Sports and	For Baffiling, Contact Water Sports and Commercial Fishing	
	Class SW-II V	Class SW-II Waters (MOEF									3	,		
	Netffication G.	Netffication G.S.R. No. 742(E)												
	Dr. 25.	Dc. 25.09.2000)												

(b) Fresh Water Lake

15 %	Sampling Location	No. of Obs.		Annua	Annual average values (Range of values)		E -	requency	Frequency of wolation from designated criteria value	from	Existing Class	Parameters responsible for	Possible Reason
				Į.	Parameters			1				downgrading the	
			빞	DO (mg/L)	Free ammonia	EC (micro Stemens	Ħ	20	Free	EC		water quality	
					(mg/L)	/cm)			ammouri				
(a)	(a) Anshupa Lake												
	Kadalibari	12	7.7	7.1	0.019	151	0	٥	0	0	۵		
			(6.9-8.4)	(5.1-7.8)	(0.000)	(92-196)							
ci	Bishnopur	12	7.4	9.9	0.013	144	0	0	0	0	Ω		
			(6.9-7.9)	(4.6-7.8)	(0+0.059)	(112-209)							
33	Subarnapur	12	7.5	6.7	0.017	151	0	0	0	0	Q		
			(6.6-8.4)	(4-8.4)	(0-0.082)	(108-239)							
4	Sacandagach	12	7.3	7.1	900'0	155	0	0	0	0	Q		
			(6.8-3.3)	(4.8-9.2)	(0-0.025)	(90-219)							
(e)	(b) Tampara Lake												
5.	Tampana	12	8.1	5.2	0.026	865	0	63	0	0	Ω		
			(7.8-8.7)	(3.0-9.7)	(0-0.134)	(305-1614)		9					
*Clan	*Class D'		6.5-8.5	4 and above	1,2 or less	1000 or less			i i i	ish Cultury	e and Wild II	Fish Culture and Wild life propagation	

Tolerance limit for Inland Surface water bodies (15-2296-1982)

Table-10 Water Quality of Lakes with respect to other parameters during 2020 (January-December)

(a) Brackish Water Lake

zi 2	Sampling Location	Phy	Physical parameters	rio Li	anic pellut	Organic pellution Indicators	tors	Bacteriologi cal Parameter					Mineral constituents	nstituent	30		
								Annual average values (Range of values)	age values	Range	of values	_					
	5 7	SSI		COD	Total COD NH4-N alkal	Free NH _b -N	TK N	IC	BC	SAR	% Na	SILL	89	ТЖ	Ö	70s	<u> </u>
	4	III)	(mg/L)		(mg/L)	(T)		(MBN)	(III)					٦	(mg/L)		1.
				É				100 mJ)									
Chil	Chilka lake																
1.	Rambha	49	162	26.8		0.032	3,61		13768	26.86	26.86 71.97		7777	1661	5135,25	447,04	0,385
		6 ⊘	%	(19.1-	-3	ė	-89:1)	300	-8689)	(2.03-	(42.82-	(4912-	§.	-008)	(2598.8-	(130.7-	(40.2-
	10000	102)	272)	37)		0,140)	4,48)	(20-1100)	21180)	44,64)	44,64) 83,5)		1.117)	3600)	7492,2)	1656,9)	0,5)
2	Satapada	147	136	39.2	2.03	0.036	4.2		21144	41.42	77.65		2.014	1444	6999.52	1036.05	0.44
		-8I)	-90	(15.1-	3	ė	<u>₹</u>	1333	(1830-	(5.87	(5,87- (55,58-		(1,169-	(18 <u>4</u>	(575.7-	(100.5	(40.2-
		433)	280)	708.7		0.140)	12 23	(45-4000)	47720)	81 45)	00 30		2 845)		16001 5		0.868)

z,	Sampling Lecation	Nutrients	- cl		111		Heav	Heavy metals			
No.					August aver	age values (B	ange of values	0			10000
		NO3:	PO. P	Cr(VI)®	He ⁶⁶	M.	CIN	Zn#	·PS	Hg#	Pb**
		(mg/L)	0					(mg/L)			
Chill	ca lake										
1.	Rambha	1,845	0.051	1.07.00.00.00			9900000	0.000	100000000000000000000000000000000000000		
0 ((0.955-4.24)	(<0.05-0.128)	<0.002	0.177	0.012	0.019	0.032	0.0035	0.00076	0.127
2.	Satapada	4,592	0.064				0.000000	250005531			
		(1.064-14.24)	(<0.05-0.236)	<0.002	0.701	0.002	0.007	9.009	0.0011	0.00051	0.00

Data for the period April, 2020

(b) Fresh Water Lake

Š Š	Sampling Locati	Physical parameter	Physical parameters	°	Organic p	pollution Indicators	cators	Bacteriological parameters	elogical seters	i.	3		Miner	Mineral constituents	ents		
ă.		200		0.3			2	Annual average values (Range of values	erage vah	ies (Rang	e of value	(8	9				20
		TSS	Total alkal -inity	BOD	@	NH4-N	TKN	TC	PC	TDS	В	SAR	% Na	H	เม	†0s	I
		(II)	(mg/L)			(mg/L)		(MPN	(MPN/ 100 ml)		(mg/L)					(mg/L)	
A (E	(a) Anshupa Lake																
	Kadlibari			1.4	12.7	16.0					€0.5	0.45	21.29			11.89	0.253
8		38	99	<u>∧</u>		(0.56-	4.14	2348 (490-817 (170-100 (88-	-0/1)/18	-88) 001	©	(0.23-	(11.41-	99	9.7	Š	(<0.2
		(<10-64) (32-84)	(32-84)	2.5)	19,4)	2,24)	(<1,5-7,28)	5400)	2200)	112)	Ø.5)	1,15)	49,33)	(28-88)	(91-9)	23,6)	0,374)
2	Bishnupur			1.5				\vdash			<0.5	0.42	20.91			91.01	0.252
		19	28	∇	124	1.47	3.44	1681 (110-	612	-92) [0]	© 2°	(0.19	8.73	35	10.55 (6.7-	1000	(⊲0.2
	٠	(<10-75)	(40-96)	2.4)	(6-18,4)	(0.56-2.24)	(<1.5-6.72)	3500)	20-2200)	120)	Ø 3)	1,06)	44.17)	(34-92)	14)	24,05)	0,336)
3,	Subamapur	36		1,3	11.7					63	500	0.41	21.06			10,68	
		.	35	<u>4</u> , <u>7</u>		1,16	3,08	1430 (220-534 (110-	534 (110-	8	⊘	(0,23-	(10,82-	57	29'6	ý	13 (40.2
		182)	(34-72)	2.1)		(0.56-2.8)	(1.68-5.04)	3500)	(1100)	104)	0.5)	0.75)	36.73)	(34-88)	(5.8-16)	24.31)	0.347)
4.	Sarandagarh			1,5	_					95	<0.5	0,44	21,88			10,94	0,226
8		21	51	∑. 9.		1.09	2.94	1898 (170-	S	Ė	(S)	(0.18-	(10.02-	33	20.15	ý	(40.2-
	9	(<10-73) (32-84)	(32-84)	2.4)	19.3)	(0.84-1.68) (1.68-4.48)	(1.68-4.48)	3500)	(45-1300)		<0.5)	1.14)	(96'94)	(36-92)	(6-64)	21.19)	0.338)
D 1	(b) Tampara Lake																
s.	Tampara	21	125	4,3	35.1	1,35	61'9	4360	1405	552	<0.5	4,1	50.7	611	133,06	24,61	0,402
		-0!∨	-89)	(2)	(14.8-	(0.56-	(△.5-	(230-	(130-	-9GI)	(<0.5	(1.36-	(38.58-	<u>%</u>	(34.6-	-6.6)	(0.284
		44)	(961	83)		2,24)	8,96)	17000)	3300)	(0811	(2.0	13,43)	(68.89)	220)	\$73,05)	52,38)	0,865)
	*Class 'C'		*	3.0	•		٠	2000	35	1500				•	909	400	14

* Tolerance limit for Inland Surface water bodies (IS-2296-1982)
Class 'C" : Drinking water source with conventional treatment followed by disinfection

ळ	Sampling Location	Nu	Nutrients				Heav	Heavy metals			
No.	D)				Annual a	Annual average values (Range of values)	(Range of v	alues)			
		NO ₃ -	PO. P	Cr(VI)#	Fe**	*N	Cu"	Zu#	Callin	Hg ^{fff}	Pb#
		() 	mg/L)				(m)	(mg/L)		6000000	74.74
(a)	(a) Anshupa Lake										
Ţ	Kadlibari	2,922	0,062	<0,002	060'0	0,003	800'0	0000	0,0011	0,00032	0,003
		(0.841-	(<0.05-								
		7,138)	0,133)								
7	Bishnupur	2.819	0.087	<0.002	0.028	0.002	0.010	0.001	0.0011	0.00019	0.004
		(0,444	(<0.0>								
		(2.19)	0.223)								
mi	Subarnapur	4.818	0.11 (<0.05-	<0.002	0.779	0.002	0.009	0.024	0.0012	610000	0.005
		(0.705-	0,255)	T 0000 0000				10 (ch s) (ch s)			0.0000000000000000000000000000000000000
		20.397)									
4	Sarandagarh	2.617	860'0	<0.002	0.055	0.003	0.007	0.005	0.0016	0.00032	0.004
		(0.581-	(<0.05								
		4.741)	0.251)								
(a)	(b) Tampara Lake				8						
	Tampada	3,413	<0.05	<0,002	0,028	\$00'0	0,002	0,004	0,0015	0,00044	0.007
		(1.228-	(<0.0>)	Y X Y		Į.				900000000000000000000000000000000000000	
- 3		8,342)	0,065								
	" Class 'C'	20	·••	0.05	20	∷• ∷	1.5	15.0	0.01	200	0.10

Class 'C": Drinking water source with conventional treatment followed by disinfection
 Bata for the period April, 2020

Table-5.26 Coastal Water Quality with respect to Criteria parameters during 2020 (January-December)

S S	Sampling Location	Ne. of Obs.		A	Annual average value (Range of values)	e value Ines)		Frequ violation	Frequency of violation (Percent of	Existing Class	Parameters responsible for	Possible Reason
					Parameters	E		violati designat v	violation) from designated criteria value		downgrading the water quality	
			띰	DO (mg/L)	BOD (mg/L)	Turbidity, NTU	FC (MPN/100 ml)	BOD	FC			
-1	Pari											
3	(a) Swargadwara	12	7.8	7.0	1,4	14.7	89	θ	2	Does not	R	Human
			(6.8-8.5)	(5.9-8.3)	(<1.0-2.6)	(1.7-60.0)	(<1.8-170)		(17)	confirm to Class-SW-II	\$1.00 m	activities
2	(b) Benkimuhan	12	7.8	8.9	1.4	14.7	299	0	4	Does not	S.	Human
			(6.6-8.4)	(5.6-8.1)	(<1.0-1.9)	(3.1-40.0)	(<1.8-790)		(33)	confirm to Class-SW-II		nctivities
9	(c) Baliapanda	13	7.9	8'9	1,4	16,4	77	0	2	Does not	R	Human
			(6.8-8.4)	(5.6-7.8)	(<1.0-1.9)	(1.9-45.0)	(<1.8-170)		(1)	Class-SW-II		activities
2	Gopalpur	12	8.1	7.2	1.3	23	31	0	0	II-MS		
			(7.8-8.3)	(6,3-8,5)	(<1.0-1.9)	(1.4-120)	(<1.8-78)		8	STORE PETERSON		
6	Paradeep	12	7.9	9.9	1.4	14.3	122	0	2	Does not	FC	Human
	US .		(6.8-8.2)	(4.2-7.8)	(<0.0-2,2)	(1,5-37.)	(<1.8-490)		(17)	confirm to Class-SW-II		activities
M	Water quality criteria for Class	Class	6.5-8.5	4.0 or	3.0 or less	30 or less	100 er less*			For Bathiu	For Bathing, Contact Water Sports and	perts and
Ž	SW-II Waters (MOEF Notification G.S.R. No. 742(E)	42(E)		mere						Ü	Commercial Fishing	

* The average value not exceeding 200/100 ml in 20 percent of samples in the year and in 3 consecutive samples in monsoon months.

Possible Reason		-					99
Parameters responsible for	downgrading the water	quality					For Harbour Waters
Existing Class			VI-WS		SW-IV		
dation ation)	criteria	£	0		0		
Frequency of violation (Percent of violation)	from designated criteri value	9%0	0		0	9	
Freque (Perce	from de	BOD	0		0		
		FC (MPN/100 ml)	31	(<1.8-78)	122	(<1.8-490)	500 or less
value nes)	50	O&G,	1.4	(1.1-2.4)	1.2	(0.7-1.8)	10 or less
Annual average value (Range of values)	Parameters	BOD (mg/L)	F3	(4.0-1.9)	1.4	(<1.0-2.2)	5.0 mg/L or less
A.		DO (mg/L)	7.2	(6.3-8.5)	9'9	(4.2-7.8)	3.0 or more
	*	H	8.1	(7.8-8.3)	79	(6.8-8.2)	6.5-9.0
Ne. of Obs.			12		12		eria for s (MOEF Vo. 742(E) 0)
Sampling Lecation) Je	Gopalpur	ři C	Paradeep		Water quality criteria for Class SW-IV Waters (MOE) Notification G.S.R. No. 742(E Dt. 25.09.2000)
zi S		1	-		7	8	Class

(January- December)	
ng 2020 (Ji	100
during	de-glorado
ters	Bax
parame	2
ther	deato
600	on In
respect	nic pollud
with	Organi
27 Coastal Water Quality with 1	Č.
ater (Physical
N I	Phys
oast	-
7 C	ocadi
6-5.2	llng I
Table-5.27	Samp
	_

	No.		para	parameters		,			parameter								
									Annual average values (Range of values)	values (Rang	e of values)						
			2	Total alkal -inity	Q 00	NH ₂ -N	Free NH ₃ -	TKN	TC	BC	SAR	g	TDS	H	g	°OS	<u> </u>
			己	(mg/L)		(T/Snu)	(T)		(MPN 100 ml)	(_S/em)	-			=	(mg/L)		
	1	Puri															
	(8)	Swargadwara	261	148 (96-	31.9	0.6 (0.56-	0.018 (0-	3.27	140	44472	118.27	3.673	36085	2467	19442	1748	0.609
	_		(5)	332)	(20.7-	0.84)	0.087)	(< S	(<1.8-270)	(32970-	(82.09-	(3.535-	(26780-	(1320-	(14419-	304	(0.377-
			1087)		_	8	88	8.96)	2000	(00000)	199.37)	3.798)	53340)	4000)	31726)	2607)	0.885
100	(Q)	Bankhushan	261	127 (84-	$\overline{}$	0.74 (0.56-	-0) 97000	2.77	753	42593	106.27	3.479	33463	2678	09881	2105	0.627
	Į.		-9/	(081		1.12)	0.090)	<u>₹</u>	(<1.8-1700)	(32550-	(79.72-	(3.357-	(26692-	(1320-	(14419-	-5601)	(0.327-
-0	-		1202)		$\overline{}$	_0		4.76)		48180)	163.73)	3.666)	42680)	4400)	21841)	4583)	0.902)
	<u></u>	Ballapanda	251	132 (92-	-	0.77 (0.56-	0.023 (0-	2.77	137	42640	105.08	3.545	32794	2651	18907	2008	0.622
			\$	(881		1.68)	0.070)	<u>√</u>	(<1.8-270)	(31520-	(83.74-	(324	(26284-	(1400-	(14419-	<u>\$</u>	(0.322-
- 3	1		968)		_			5.04)		48900)	156.14)	3.812)	41480)	4000)	21841)	3512)	0.916)
	7	Gopalper	991	156 (88-		1.07 (0.56-	0.043 (0-	3.48	62	42967	195.61	3.564	33788	2573	18553	1825	0.611
	is		-8/	340)		224)	0.218)	-89-1)	(<1.8-130)	(30250-	(53.06-	(3.014-	(23380-	(1400-	-06611)	-916	(0.311-
			238)	2000000	$\overline{}$	20.0000		8.96)	20075 SANGERS	59050)	167.67)	3.781)	49820)	5200)	29803)	(7162	0.865
	3.	Paradeep	180	135 (88-	34.6	0.72 (0.56-	-0)810.0	3.11	225	41696	108.7	3.66	31358	2358	17783	1842	0.731
			#	220)	(19.4-	1.12)	0.090)	<u>√</u>	(<1.8-790)	(31550-	(49.81-	(3.413-	(24892-	(1200-	-06611)	(245-	(0.42-
			418)		56.1)	3E	55	7.84)		\$1920)	180.12)	3.941)	42260)	3600)	21841)	4357)	0.898)

Contd.

S	Sampling Location	Nutrients	nts				Heavy metals	metals			
No.					Annual av	erage values	Annual average values (Range of values)	nes)			
		NO3-	PO P	Cr(VI)**	He"	Nim	#J	Zu	, S	Hg**	Pl
		(mg/L)	_ (1)				(mg/L)	3		300	
1,	Puri										
(a)	Swargadwara	3.845 (1.24-8.768)	(40.05 (0.10)	<0.002	1.096	0.011	0.025	0.040	0.0030	0.00019	0.008
②	Bankimuhan	3.723 (1.811- 6.433)	0.06 (<0.05- 0.229)	<0.002	0.433	600.0	0.028	0.031	0.0026	900000	9000
ම	Baliapanda	2.789 (0.961- 8.099)	<0.05 (<0.05- 0.073)	<0.002	0.700	0.012	0.020	0.024	0.0023	900000	0.004
2.	Gopalpur	2.403 (1.268- 6.149)	<0.05 (<0.05 0.056)	<0.002	0.198	0.003	0.002	0.003	0.0011	900000	0.007
3.	Paradeep	2.137 (0.572- 4.741)	0.135 (<0.05- 0.976)	<0.002	0.545	0.009	0:030	0.038	0.0028	0.00013	0.004

Bata for the nerical Arrell 2020

(E) Creek Water Quality Monitoring

Board monitors the water quality of Atharabanki creek in Paradeep on regular basis. The creek flows along the boundary wall of M/s Paradeep Phosphate Ltd (PPL) and joins river Mahanadi near its confluence with Bay of Bengal. Atharabanki creek also acts as a receiving water body for treated effluent from M/s Paradeep Phosphates Limited and M/s Indian Farmers Fertilizer Cooperative operating at Paradeep.

Annual average and range values of the water quality parameters of the creek during the year 2020 is given in Table-5.28. Assessment of the creek water quality status have been done based on the best use and type of activities in the water segment.

Comparison of the Atharabanki creek water quality data with the water quality criteria for SW-II waters (for bathing, contact water sports and commercial fishing) reveals non-compliance with respect to DO, BOD and FC. This may be attributed to the discharge of domestic wastewater into the creek and other human activities. Fluoride concentration in the creek water varied within the range 3.85-8.26 mg/L with an annual average value of 2.26 mg/L.

Table-5.28 Water Quality of Atharabanki Creek during 2020 (January-December)

No. of Obs.		V	Annual average value (Range of values)	e value (nes)		Freque	ney of vio	Frequency of violation (Percent of iolation) from designated criteria	reent of criteria	Existing Class	Parameters responsible for	Possible Renson
			Parameters	ES.	0.000		W	value			downgrading the	
	Hď	DO (mg/L)	BOD (mg/L)	Turbidity, NTU	FC (MPN/100 ml)	Н	00	BOD	FC		water quality	
12	7.2	4.4	3.1	23		0	9	2	12	Does not	DO, BOD, FC	Human
	(6.6-8.2)	(22-6.4)	(<1.0-6.2)	(3-90)	(170-7900)	8	(20)	(42)	(100)	confirm to		activities
Water quality criteria for lass SW-II Waters (MOER Notification G.S.R. No. 742(E) Dt. 25.09.2009)	6.5-8.5	4.0 or	3.0 or less	30 or less	100 or less					For Bathin	For Bathing, Contact Water Sports and Connected Fishing	ports and

_	Sampling Locatie	Phys	cal	ō	Organic pollu	tion Indicat	SHO	Bacteriolo -gica	9			Mineral co	msfituent	_		
No.		parameters	cters	9.				parameter								
								Annual average	values (Rang	e of values	_					
		38	Total all all all all all all all all all	Q 00	NH _t -N	Free NH.	TKN	JC TC	EC	SAR	æ	ŠĒ	Ħ	D	os o	F
) III	(mg/L)		Œ,	(mg/L)		(MPN/ 100 mb	(DS/cm)				m)	(mg/L)		
	Athambanki	35	115	59	1.54	0.032	4.42	9019	5739	18.3	0.61	5356	768	1838	212	5.15
	Creek	(19-	-95)	(15-	(0.56-	(040.358)	(1.68-	(220-24000)	(2156-	-97)	(<0.5-	-0997	(152-	90	(42	(3.85
_	6 22 22 22 22 22 22 22 22 22 22 22 22 22	274)	176	289	4.48)	7	9.52		12710	43.0)	(160	89800	1800)	50000	474	8 21

zi	Sampling Location	Nutrien	nts				Heavy	Heavy metals			
No					Annen	Annual average values	s (Range of values	es)			- 00
		NO3-	PO4-P	Cr(VI)#	Feff	NF	#5	Zum	Cd#	Hg**	h/h
		(mg/L)	T)	7.17	201	8	(mg/L)	(T)			242
7	Athambaali Creek	6.989 (0.572-	1.29 (<0.05-	<0.002	0.231	0.011	0.017	0.072	0.0023	0.00025	0.004
		18.822)	3.64)				4.000	defects constitu			

2020 Data for the period April, 2020

(F) Biomonitoring of Water Bodies

Biomonitoring of water quality is useful for assessing the over-all biological health of the water bodies. This indicates any disruption in ecological balance of the water bodies caused by the changes in its physical and chemical environment. Thus, measurement of the level of the ecological degradation would indicate the extent of pollution. Benthos are regarded as the best indicator of pollution as they are sedentary, sessile, long-lived and easily collectable.

To assess the actual health of water bodies, Central Pollution Control Board (CPCB) has derived a Biological Water Quality Criteria (BWQC) for water quality evaluation. This system is based on the range of saprobic values and diversity of the benthic macroinvertebrate families with respect to water quality. The entire taxonomic groups, with their range of saprobic score from 1 to 10, in combination with the range of diversity score from 0 to 1 has been classified into five groups as stated in Table 5.29

Table-5.29 Biological Water Quality Class

Sl. No.	Taxonomic Group	Range of Saprobic score	Range of Diversity score	Water Quality Characteristic	Water Quality Class
1	Ephemeroptera, Plecoptera, Trichoptera, Hemiptera, Diptera	7 and more	0.2-1.0	Clean	A
2	Ephemeroptera, Plecoptera, Trichoptera, Hemiptera, Odonata, Diptera	6-7	0.5-1.0	Slight Pollution	В
3	Ephemeroptera, Plecoptera, Trichoptera, Hemiptera, Odonata, Diptera, Crustacea, Mollusca, Polychaeta, Coleoptera, Hirudinea, Oligochaeta	3-6	0.3-0.9	Moderate Pollution	С
4	Mollusca, Hemiptera, Coleoptera, Diptera, Oligochaeta	2-5	0.4 & less	Heavy Pollution	D
5	Diptera, Oligochaeta, No animals	0-2	0-0.2	Severe Pollution	Е

Biomonitoring studies were carried out at 26 selected stations during 2020. Biological data generated from these stations were analysed for computing the saprobity indices (SI) and diversity indices (DI), which are presented in Table-5.30. From the Table, it is evident that the biological water quality class at seven stations conform to the Class 'B-C' (slight to moderate pollution), at four stations conform to Class B (slight pollution) and at fifteen stations conform to Class C (moderate pollution) water quality.

Table-5.30 - Biomonitoring of River Bodies (2020)

Statio	Onk		verage value of values)	Existing Biological Water
		Saprobity Index	Diversity Index	Quality Class
(A) M	[ahanadi		30307128-3055	
1.	Brajarajnagar U/s	5.3 (5.3-5.3)	0.66 (0.66-0.66)	С
2.	Brajarajnagar D/s	6.2 (5.6-6.8)	0.64 (0.64-0.64)	B-C
3.	Sambalpur U/s	6.3	0.56	В
4.	Sambalpur D/s	6.7	0.51	В
5.	Cuttack U/s	5,4 (5,0-5,7)	0,62 (0,60-0,64)	С
б.	Cuttack D/s	5.5 (5.2-5.8)	0.63 (0.61-0.64)	С
7,	Kathajodi U/s	5.7 (4,9-6,5)	0,52 (0,51-5,3)	B-C
8,	Kathojodi D/s	5.7 (5.5-5.8)	0.7 (0.61-0.78)	С
9.	Kuakhai U/s	5.4 (5.1-5.7)	0.62 (0.57-0.66)	С
10.	Kuakhai D/s	5,2 (5,2-5,2)	0,71 (0,7-0,71)	С
11.	Birupa D/s	6,4 (6,4-6,4)	0,58 (0,58-0,58)	В
(B) Br	ahmani (2020)			10
12.	Panposh D/s	5,4 (5,2-5,6)	0,64 (0,62-0,66)	С
13,	Rourkela D/s	5.8 (5.7-5.8)	0,54 (0,42-0,66)	С
14.	Talcher U/s	4.7 (4.2-5.3)	0,57 (0,51-0,62)	C
15.	Talcher D/s	5.17 (5.14-5.20)	0.58 (0.54-0.62)	С
(C) Ri	ishikulya (2020)			
16.	Potagarh	5.5 (4.8-6.2)	0.55 (0.48-0.54)	B-C

Statio	DR.		verage value of values)	Existing Biological Water
		Saprobity Index	Diversity Index	Quality Class
(D) Na	agavali (2020)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
17,	Penta U/s	6,3 (5,69-6,6)	0,64 (0,62-0,66)	B-C
18,	J. K. Pur D/s	5,8 (5,6-6,0)	0,60 (0,58-0,61)	С
19.	Rayagada D/s	6.0 (5.6-6.4)	0.59 (0.53-0.65)	B-C
(E) Sub	arnarekka	'		
20.	Rajghat	6.15 (5.80-6.50)	0.74 (0.65-0.82)	B-C
(F) Buc	lhabalnga (2020)			
21.	Baripada D/s	5.6 (5.4-5.8)	0.6 (0.58-0.62)	С
22.	Balasore U/s	5.4 (4.6-6)	0.58 (0.52-0.62)	С
23.	Balasore D/s	5,5 (5,4-5,7)	0,66 (0,6-0,75)	С
(G) Ker	randi (2020)			
24.	Sunabeda	6.2 (6.0-6.4)	0.6 (0.4-0.7)	B-C
(H) Var	sadhara (2020)			
25.	Muniguda	5.5 (5.3-5.6)	0.6 (0.6-0.61)	С
26.	Gunupur	6.4 (6.3-6.4)	0.6 (0.5-0.7)	В

G) Ground water quality status

The Board monitors ground water quality at 48 locations in eleven major towns of the state, such as, Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Paradeep, Jajpur (Sukinda), Jhasruguda, Puri, Sambalpur and Talcher. Ground water quality status during the year 2020 at 46 locations alongwith the acceptable and Permissible limit for drinking water under IS: 10500-2012 are given in Table-5.31.

pH of ground water in Khandagiri area (April), Kalpana-Laxmisagar area (April, Oct), Chandrasekharpur (Oct) and Capital Hospital Area (April) in Bhubaneswar was found to be beyond the permissible range of 6.5-8.5. pH at all other places remained well within the permissible range.

Fluoride in Kuanrpur (April) of Balasore exceeds the Permissible limit for drinking water i.e. $1.5 \, \text{mg/L}$.

Frequent occurrence of total coliform and fecal coliform bacteria above the permissible limit (should be absent in 100 ml sample) are observed in the ground water of some of the monitored locations such as, Naigopalpur (April, Oct), Chakulia (April, Oct) in Balasore; Railway Station (Oct), MKCG Medical College (Oct), Bus stand area (April, Oct); Badabazar (Oct) in Berhampur; Khandagiri (Oct), Old Town- Samantarapur area (April, Oct), Kalpana- Laxmisagar area (April, Oct) in Bhubaneswar; Musadiha (April, Oct), Badapadia (Oct) in Paradeep; Saruabil (April, Oct), Kaliapani (April, Oct), Kamarda (April, Oct) in Sukinda; Near Sea beach (April), Baliapanda (April) in Puri, Near Railway Station (April) in Sambalpur; in Kaniha (April), Talcher Town (Oct), Talcher Thermal area (Oct), Banarpal (Oct) and Kulad (Oct) in Talcher.

Metal contents like iron, cadmium, lead and nickel are observed exceeding the prescribed limit in some of the tube wells in Angul, Berhampur, Bhubaneswar, Sambalpur, Talcher, Puri.

Table-5.31 Ground water Quality Status (Tube well) (2020)

						ľ		ŀ								
Monitoring Station	Month of gairotineM	Hq	Cond.,	BOD, mg/L	COD, mg/L	Turbidity, UTN	J\gm ,SQT	SAL	Total Alkalinity, J\gm	Total DOs Sesenbral Alem	sa mubleO A\gm	Magnesium as Mg, mg/L	Chloride, mg/L	Sulphate, Algm	Mitrate, J\gm	'7/3m 'N⁴HN
 ANGUL (2 stations) 	ns)															
1 Anoni Townshin	April	7.4	830	< 1.0	5.9	6.7	NA	NA	316	NA	NA	NA	NA	145.84	NA	NA
T. rangut townsamp	Oct	7.0	998	< 1.0	7.9	3.9	NA	NA	176	260	88,18	9.75	116	145,1	14,028	95'0
2. NALCO	April	9.7	612	< 1.0	8.9	99	NA	NA	312	NA	NA	NA	NA	23.69	NA	NA
township	Š	7.5	366	< 1.0	19.9	2.5	NA	NA	160	152	52.91	4.87	91	24.02	1.329	0.56
2, BALASORE (3 st	(3 stations)															
	April	6,5	184	< 1,0	0'9	4,3	NA	NA	32	NA	NA	NA	NA	9,64	NA	NA
3, rvargoparpur	oct O	8.9	392	< 1.0	8.0	12	NA	VA	64	144	25,65	19,50	64	47.55	22,802	1,12
4. Kuaurour	April	7.6	548	<1.0	5.0	6.1	NA	NA	180	NA	NA	NA	NA	16.07	NA	NA
1	Ö	7.3	278	< 1.0	8.0	7	NA	NA	89	28	6,41	2,92	44	17,16	1,329	1,12
5. Chakulia	April	8'9	405	<1,0	> 2.0	4.5	NA	NA	09	NA	NA	NA	NA	34.76	NA	NA
	Oct	7.5	132	< 1.0	8.0	Ξ	NA	NA	99	36	8.02	3.90	10	8.73	1.583	1.12
3. BERHAMPUR(4 stations)	stations															
6. Near Railway	Apr	7,33	1139	< 1,0	5.9	8,2	NA	NA	260	NA	NA	NA	NA	48,45	NA	NA
station	Oct	7.2	551	< 1.0	16.0	5.8	NA	AN	104	091	57.72	3.90	96	44.1	8.841	0.56
7. MKCG Medical	Apr	7.24	1078	< 1.0	5.9	45	NA	NA NA	396	NA	NA	NA	NA	39.167	NA	NA
College	Ö	7.8	707	< 1.0	8.0	5.8	NA	NA	144	172	54,51	8.77	115.9	85,3	1,329	0.56
8 Pus stand	Apr	7.86	951	< 1,0	5.9	82	NA	NA	312	NA	NA	NA	NA	40,119	NA	NA
O THE SHEET	Oct	7.3	695	< 1.0	8.0	8.9	NA	VV	176	172	60.92	4.87	115.9	34.8	1.329	1.12
0 Boshskeron	Apr	7.07	1204	<1.0	5.9	12	NA	NA	248	NA	NA	NA	NA	18.89	NA	NA
7, Daugogzai	Oct	7.1	838	< 1.0	8.0	4.8	NA	NA	136	236	90,16	8,77	165.9	92'19	6,336	0,56
8 000000000000000000000000000000000000	ALC: UNESTED	5 63	1	0 3	Drinking 1	water	specification	ation (1	(IS: 10500	(2012)		2017. ST	8 8		S 84	5 80
Acceptable Limit		6.5-8.5	**	55	87	_	200	N.	200	200	75	30	250	200	45	0.5
Permissible limit		No relax	ŭ.	2	2.	್ಯಾ	2000	2	009	009	200	100	1000	400	No relax	No relax

Stn Name	Month of gairestack	Hq	Cond., µS/cm	BOD, mg/L	COD, mg/L	Turbidity, UTU	J\gm ,SQT	SAT	Тоғаі АІкайпіту, Луш	Total Gardness CaCO: Mg/L	Calcium as Ca, mg/L	Magnesium as Mg, mg/L	Chloride, mg/L	Sulphate, Agm	Nitrate, mg/L	J/8m 'N→HN
4. BHUBANESWAR (6 stations)	R (6 sta	tions)														
	April	6.1	608	< 1.0	< 5.0	6.2	NA	NA	24	NA	NA	NA	NA	8,809	NA	NA
10. Midheaght Aton	Ö	7.8	169	< 1.0	7.8	5.6	NA	ΝΛ	09	99	17.64	2.92	18	16.96	3.557	0.56
11. Old town-	April	7.1	530	< 1.0	0.9	9.7	NA	NA	132	NA	NA	NA NA	NA	22.85	NA	NA
Area	ğ	8.9	365	<1.0	7.8	5.3	NA	NA	188	144	44.89	7.80	14	16.96	6.579	1.12
12. Kalpana-	April	1.9	407	< 1.0	< 5.0	3.6	NA	NA	82	VV	NA	NA	NA	13.69	NA	NA
Area.	Og	6.1	337	< 1.0	7.8	4.9	NA	NA	09	89	19,24	4.87	50	33,82	31,813	1,12
1 5 5	April	6.5	169	<1.0	< 5.0	4.8	NA	NA	38	VV	NA	NA	NA	6,31	NA	NA
15. Chandrasekharpur	Og	6.4	183	< 1.0	7.8	6.1	NA	NA	99	09	16.03	4.87	56	10.59	1.441	0.56
14. Capital	April	5.1	481	< 1.0	< 5.0	4.6	NA	NA	12	NA	NA	M	NA	10.71	NA	NA
Hospital Area	Oct	6.1	162	< 1.0	7.8	8.7	NA	NA	48	32	9.62	1.95	20	10.88	1.824	0.56
15. Secretariate-	April								Not Monitored	itored						
House-Old bus stand Area	ğ								Not Monitored	iitored						
5, CUTTACK (5 stations)	ations)															
, T	April	6'9	159	< 1.0	3.0	81	NA	NA	172	NA	NA	NA	NA	16.66	NA	NA
to, Jagapin	Ö	9.9	429	< 1.0	8,0	5.4	NA	NA	148	144	49.70	4.87	46	31.87	1.329	0.56
in the second se	April	7.3	861	< 1.0	0.6	7.7	NA	NA	89	NA	NA	NA	NA	15.12	NA	NA
17. Mangalabag	Ö	7.2	152	0.1>	8.0	91	NA	NA	92	89	22.44	2.92	00	7.35	1.408	1.12
18. Madhupatna-	April	6.9	503	<1.0	< 5.0	23	NA	NA	112	NA	NA	NA	NA	14.52	NA	NA
Area	Oct	6.5	351	< 1.0	8.0	8.7	NA	NA	120	108	38.48	2.92	46	11.47	1.452	1.12

-	Monitoring	Cond.,	BOD, mg/L	COD, mg/L	Turbidity, UTN	J\gm ,&QT	SAT	Total Alkalinity, mg/L	Total ODeS esarbral MayL	Caldum as Ca, Algu	Magnesium as Mg, mg/L	Chloride, mg/L	Sulphate, Algm	Nitrate, A\gm	7/8w 'N∸HN
 Badambadi April 	1 7.3	320	< 1.0	< 5.0	9.7	NA	NA	134	NA	NA	NA	NA	15.59	NA	NA
Area Oct	6.9	382	< 1.0	8.0	1.6	NA	NA	132	104	35.27	3.90	52	6.47	1.373	0.56
20. Bidanasi- April	1 7.6	250	< 1.0	< 5.0	6.8	NA	NA	112	NA	NA	NA	NA	14.17	NA	NA
Tulsipur Area Oct	6.9	135	< 1.0	8.0	3.5	NA	NA	64	52	12.83	4.87	10	5.69	1.329	0.56
6. PARADEEP (JAGATSINGHPUR) (2 stations)	INGHP	UR) (2 sts	utions)												
21 Musadiba Apr	8.06	2598	< I.0	3	1.0	NA	NA	252	NA	NA	NA	NA	13.93	NA	NA
Oct	8.3	1364	1.7	12.0	1.2	NA	NA	80	89	19.24	4.87	435.8	87.3	6.910	1.12
22 Badanadia	8,34	1920	< 1.0	9	<1.0	NA	NA	204	NA	NA	NA	NA	8.33	NA	NA
Oct	8.0	1818	1.1	8.0	3,4	NA	NA	124	168	49,70	10,72	595.7	80,3	7,015	1,12
SUKINDA (JAJPUR) (4	4 stations	(Su													
April April		325	< 1.0	20.9	5.1	NA	NA	128	NA	NA	NA	NA	7.97	NA	NA
23. 113CU Oct	7.1	349	< 1.0	8.0	14	NA	NA	96	132	38,48	8.77	38	34,31	7,771	1,12
2d Sorroskii April	1 6.5	251	< 1.0	0.9	42	NA	NA	72	NA	NA	NA	NA	5.35	NA	NA
27. Sai uaton		183	< 1.0	8.0	9.7	NA	NA	88	88	32.06	1.95	×	8.9	1.329	0.56
25 Valianoni April		181	< 1.0	< 5.0	56	NA	NA	80	NA	NA	NA	NA	6.31	NA	NA
Co. remapeum		363	< 1.0	8.0	2.4	NA	NA	116	136	38.48	9.75	36	33.3	899.6	1.12
26 Vermode April	1 7.4	302	< 1.0	< 5.0	82	NA	NA	112	NA	NA	NA	NA	8,93	NA	NA
20. Nameron Oct	8.9	564	< 1.0	8.0	80	NA	NA	89	9/	25.65	2.92	28.2	30.88	2.080	1.12
8. JHARSUGUDA (8 stat	stations)														
27 Thouland April		200000000000000000000000000000000000000	000000000000000000000000000000000000000	1000	300000	4330	2000	Not Monitored	itored	1000		2000	202	SCHOOL ST	V - 70
27. Inchesi		97	200	7	000		200	Not Monitored	itored		35	65	100	50	
20 Directhonnedo April	1 6.87	557	< 1.0	< 5.0	<1.0	VV	NA	36	NA	NA	NA	NA	12.26	NA	NA
26. Butta Antaliumon Oct	8.1	119	< 1.0	8.0	4.2	NA	NA	40	32	8.02	2.92	91	< 5	3.866	1.68
 Badamal April 			< 1.0	9	3	NA	NA	32	NA	NA	NA	NA	7.62	NA	NA
Industrial Estate Oct	9		< 1.0	8.0	13	NA	NA	32	24	6.41	1.95	%	< 5	1.417	0.56
20 Dudhingdor April	6.44		< 1.0	< 5.0	9	NA	NA	36	NA	NA	NA	NA	6.9	NA	NA
	8.9	128	< 1.0	8.0	8.8	NA	NA	36	24	6.41	1.95	22	5.69	3.359	0.56

7.3 256 <1.0 7.9 4.3 NA NA 80 68 16,03 6,82 30 17 1,776 0,56
The state of the s
The state of the s
256 < 1.0 7.9 4.3 NA NA 80 68 16,03 6,82 30 17 1,776
256 < 1.0 7.9 4.3 NA NA 80 68 16,03 6,82 30 17 1,776
256 <1.0 7.9 4.3 NA NA 80 68 16,03 6,82 30 17 1,776
256 <1.0 7.9 4.3 NA NA 80 68 16,03 6,82 30 17 1.776
256 <1.0 7.9 4.3 NA NA 80 68 16.03 6.82 30 17 1.776

Stn Name	Nonth of gainstails	Hq	Cond.,	BOD, mg/L	COD, mg/L	.vhibidinT UTN	J\gm ,&QT	SAT	ТетеЛ Адайайду, Д\зш	Total ODeD essabral Jam	Calcium as Ca, mg/L	Magnesium as Mg, mg/L	Chloride, mg/L	Sulphate, Agm	Vitrate, J\gm	7J/Bw 'N∸HN
11. TALCHER (7 stations)	station	(8)														
42. Mahanadi	April	50'2	414	<1,0	6'8	16	NA	NA	104	NA	NA	NA	NA	49.05	NA	NA
Coal Field Area	Ö	0.7	263	< 1.0	19.9	6.7	NA	NA	96	88	25.65	5.85	24	16.57	1.329	0.56
42 Vonibo	April	7.85	387	< 1.0	> 5.0	70	NA NA	NA	220	NA	NA	NA	NA	14.17	NA	NA
to. Natillia	Oct	7.5	245	< 1.0	7.9	11	NA	NA	112	104	36.87	2.92	12	19.61	1.329	1.68
44 Tolohon ton	April	7.62	325	< 1.0	5.9	=	NA	NA	200	NA	NA	NA	NA	40.12	NA	NA
44. I BICLICE TOWN	Oct	7.0	235	< 1.0	11.9	28	NA	NA	116	80	25.65	3.90	18	6.67	1.329	1.68
45. Meramundali	April	7.91	1008	< 1.0	6.8	12	NA	NA	428	NA	NA	NA	NA	92,62	NA	NA
Area	Oct	7.4	470	< 1.0	7.9	14	NA	NA	801	128	41.68	5.85	96	16.57	1.329	1.68
46, Talcher	April	7.62	1178	< 1.0	5.9	17	NA	NA	248	NA	NA	NA	NA	98.22	NA	NA
Thermal Area	ರ್	7.4	559	< 1.0	11.9	17	NA	NA	112	148	44.89	8.77	116	24,31	1,329	1,68
47 Decembel	April	7.24	1023	< 1.0	6.8	9.8	ΥN	NA	300	NA	NA	NA	NA	73.45	NA	NA
4/. Damarpar	Oct	7.1	829	< 1.0	7.9	6	NA	NA	126	184	51,30	13,65	116	29,61	1,329	95.0
40 Verlad	April	7.54	557	< 1.0	11.8	65	NA	NA	320	NA	NA	NA	NA	18,57	NA	NA
46. Nulski	ರ್	8.0	387	< 1.0	11.9	×	NA	NA	120	104	36.87	2,92	52	15.7	1,347	0.56
					Drin	cing wa	Drinking water specification	fication ((IS: 10500 ((2012))						
Acceptable Limit		6.5-8.5)(8	200 200 200	100	A	200	200 200 200	200	200	75	30	250	200	45	5'0
Permissible limit		No relax		Ŧ.	·	5	2000		009	009	200	100	1000	400	No relax	No relax

NA: Not analysed

Conto																	
Sin Name	to dinoM gahotinoM	Total Kjeldahi N, mg/L	Flooride, mg/L	J\gm.9-4 ₂ Q9	J\gm,muibo2	,muissitof J\gm	убш ′чолод	Cr (VI), mg/L	Mercury,mg/t	Cadmium. mg/L	Copper, mg/L	Lead, mg/L	Nickel, mg/t	Zinc, mg/L	JołoT noil J\gm	TC, MPN 100	FC, MPN/ 100
1. ANGUL (2 stations)	lons)																
1. Angul	April	≨	0.467	0.094	¥	≨	≨	40.002	0.00013	60000	9000	6100	0.091	0,012	0.943	8,1>	<u>5</u>
Township	8	3.92	¥	< 0.05	87.4	3.14	≨	≨	ž	≨	≨	ž	¥.	¥.	¥Z	<1.8	<1.8
2.NALCO	April	≨	606'0	1500	≨	≨	≨	<0.002	0.00025	0.0016	9000	810.0	0.014	0.145	0.310	8,1	28.
dusumou	ß	2.24	₹ Z	< 0.05	10.53	4.33	≨	≨	ž	ž	ž	ž	₹Z	¥	ď.	8,1	8,1
2. BALASORE (3 staffons	stations																
a Meleonolieur	April	≨	0.292	0.155	ž	ž	≨	40,002	0,00013	0.0011	0.002	0,005	100'0>	900'0	0.585	88	3
o wagopanha	Ş	224	ž	< 0.05	22.93	1.86	≨	ž	Š	≨	ž	ž	¥.	ž	₹ Z	130	23
Postaneous in	April	≨	5,94	0.288	ž	ž	≨	<0,002	0,00051	41000	0.002	9000	0.000	0,005	0.166	1,8	1.8
A. NOGIIIDO	S	1.68	NA.	< 0.05	41.52	8.09	¥	¥	ž	¥	¥	¥	NA	¥	ď.	<1.8	<1.8
S Cholotte	April	ž	0.734	0.573	£	ž	ž	<0.002	0,00032	0,0013	6000	0.002	0.00	0,005	0,340	49	45
a Cildrolla	oct	2.24	N.	< 0.05	11.75	2.48	NA NA	¥	٨	¥	¥	¥	N.A.	NA.	ΨZ	240	23
3. BERMAMPUR ((4 staffons																
6. Berhampur near		¥	0.257	0.093	ž	¥	ž	<0.002	9000000	0.0021	0004	0.013	6000	0.064	690'0	8,1>	8,1>
taliway staffon	Ś	1.68	NA	< 0.05	47	224	NA	¥	¥	¥	¥	¥	NA.	W	NA	49	13
7. MKCG	Apr	≨	0.234	0.061	≨	¥	ž	<0.002	900000	91000	0.002	6000	9000	0:030	0.538	6.1>	× 1.8
medical College	oct	3.92	¥	< 0.05	85.65	2.56	¥	≨	ž	≨	≨	≨	Ϋ́	ž	₹ Z	49	13
Day observed	Apr	¥	0.465	0.068	M	¥	¥	<0.002	0.00044	0.0020	0000	0.007	0.005	0.015	0.333	17	4.5
a. Dus sitaria	S	3.36	NA NA	< 0.05	76.7	6.86	≨	≨	ž	¥	¥	¥	ΥN	¥	Ϋ́	26	23
O Bradehavan	Apr	×	0.156	0.065	M	¥	×	<0,002	9000000	0,0033	60000	2100	0.004	0,047	960'0	6,1>	<1,8
v. padapadal	ö	1.68	NA	< 0.05	75.6	3,83	NA	¥	W	NA	¥	¥	ΝA	NA	AN	22	<1.8
	P	Drinking water specification (IS	er specific		10500	(2012)			2000	500000		010000	1 2000000	0.000000			
Acceptable Limit			G.I			8 8	0.5		1000	5003	900	lab	0.02	2.0	1.0	Absent	ţ
Permissible ilmit			1.5		ē	0.	d.	*	No relax	Pelax Spiez	1.5	Pe No	No Melox	15.0	ola xpler	No relax	X

Sin Name	4. BHUBANESWAR (6 staffons)	10. Khandaairi	-		Samantarap ur Area	12. Kalpana-	JOL	13.	Chandrasekh		Hospital Area	<u>p</u>	Governor House-Old bus stand Area	5. CUTTACK (5 stations)		16. Jagatpur		17. Mangalabag	ė	Kalyan Nagar Area
to ritnoM grinofinoM lotoT	station	April	oct O	April	Oct	April	80	April	8	April	8	April	oct	(suc	April	oct	April	oc.	April	8
Total Kjeldahi N, mg/L	18	₹	1,68	≨	2.24	¥	2.8	≨	2.24	ž	^ 				ž	88	≨	5.04	ž	224
,ebhoufi J\gm		0.175	¥	0.197	¥	0.176	¥	0.17	¥	0.233	¥				0.22	ž	0.286	¥.	0.168	¥
.q-≤ _p Oq J\gm		0.037	0.211	0.215	0.05	0.113	0.05	0.391	0.104	0.201	0.05				0.469	v	0.023	0.05	0.429	0.05
,muibo2 J\gm		Ą	14	Ā	81	¥	32	¥	15	ž	16				¥	29.35	ž	3.99	¥	26.77
,mulssaton J\gm		Α̈́	2.09	¥.	7.39	AN.	12.52	¥	6.42	¥	9.22				Y.	2.85	¥	3.24	¥	4.79
Boron, mg/L		₹	≨	≨	¥	¥	₹	ž	¥	≨	≨				ž	≨	≨	₹	≨	≨
Cr (VI), mg/L		<0.002	ž	<0.002	¥	<0.002	¥	<0.002	ž	<0.002	≨		7		<0.002	≨	<0.002	¥	<0.002	ž
Mercury, mg/L		900000	ΑN	0.00019	NA	0.00025	NA NA	0.00067	ΑN	9000000	A A	Not Monitored	Not Monitored		9000000	ΑN	9000000	NA	0.00044	AN
Cadmium,		0.0013	¥	0.0011	¥	0.0011	NA NA	0.0012	¥	0.0011	₹	litored	ifored		0.0012	¥	0.0017	AN	0.0023	A A
Copper,		0.004	¥	9000	¥	0.004	NA A	0.003	¥	0.004	≨				0.008	¥	2000	ΑN	900'0	¥
1/gm ,bes1		9000	¥	0.003	¥.	0.004	A.	0.004	¥.	0.005	ž				0000	¥	0.003	N.	0.004	ž
Nickel, mg/L		0.023	¥	0.007	¥	0.018	¥	9000	¥	0.004	¥				2000	¥	9000	¥	9000	¥
Zinc, mg/L		0.026	¥	9000	≨	0.018	ž	0.145	ž	0.029	≨				9000	ž	0.005	Ą	0,004	₹
,liofoT notil J\gm		1.133	A N	0.302	A.	1.138	¥.	1.558	¥ Z	0.281	A A				0.289	ΑÄ	0.160	Ą	0.330	A A
TC, MPN/ Im 00 I		d. A.B	79	88	=	26	23	8.1	8.1>	% - - - - - - -	6. 1.8				2	e; ∨	2	<1.8	1,8	∆ B
FC, MPN/ 100 ml		√ 1.8	13	4.5	8.I.s	4.5	8.	8,1.8	×1.8	0; V	<u>δ</u>			V	89 	<u>^^</u>	8. 1.8	6.1.8	œ'	∨ 9.

NA 0.483 0.024	Stn Name	to ritnom gainstinom	Total Kjeldahi N, mg/L	Pluoride, mg/L	J\Bm ,4-%04	1/Bui 'tunipos	Połassium, T/gm	J\gm,novo8	Cr (VI), mg/L	Mercury,mg/L	Cadmium, I\gm	Copper, mg/L	J/Bm /bbeJ	Nickel, mg/L	J/Bm ,aniZ	lion Total, J\gm	TC, MPN/ 100	FC, MPN/ 100
Oct <1.5 NA <0.05 37.95 736 April NA 0.16 0.049 NA NA NA 0.16 0.049 NA NA NA 0.748 0.059 NA NA Apr NA 0.748 0.059 NA NA Apr NA 0.748 0.059 NA NA April NA 0.176 0.057 NA NA April NA 0.176 0.057 NA NA April NA 0.176 0.037 NA NA April NA 0.123 0.013 NA NA April NA 0.123 0.013 NA NA April NA 0.124 NA <0.05 21.78 9.72 April NA 0.185 0.049 NA NA April NA 0.185 0.049 NA NA April NA 0.187 0.055 11.21 2.66 April NA 0.187 0.055 13.49 4.76 April 0.187 0	19. Badambadi	April	≨	0.433	0,024	ž	≨	¥	<0.002	9/00000	91000	9000	0.002	0.008	0.014	0.340	6,1,8	₽. -
April NA 0.16 0.049 NA	Ared	Oct	<1.5	¥	< 0.05	37.95	736	¥	¥	¥	¥	ΥN	¥	¥	¥	¥	<1.8	<1.8
Page Oct <1.5 NA <0.05 5.12 2.78	20. Bldanasl-	Aprill	¥	0.16	0.049	ž	¥	NA	<0.002	0.00044	0.0015	9000	0.004	0.005	0.003	0.420	8.1>	8.1>
## (JAGATSINGHPUR) (2 stations) Ind	Tuisipur Area	oct	<1.5	ž	< 0.05	5.12	278	NA NA	¥	¥	¥	ΑN	¥	¥	¥	≨	8.1.8	<1.8
Paper NA 0.748 0.059 NA NA NA NA NA NA 0.059 NA NA NA NA NA NA NA N		GATSING	SHPUR)(2 staffons	i i													
Oct 2.24 NA < 0.05 328.2 6.94 Oct 3.92 NA < 0.05 NA	100	Apr	≨	0.748	690'0	≨	¥	NA NA	<0.002	0.00057	0.00032	1000	0.005	0000	8100	0.508	7.8	2
Apr	ZI. MUSdding	Sch	224	≨	< 0.05	328.2	6.94	¥	¥	¥	≨	Ϋ́	ž	≨	¥	≨	1700	790
April NA 0.168 0.037 NA NA NA NA NA NA NA N	-	Apr	≨	1.17	690'0	ž	¥	NA NA	<0.002	610000	0.0028	0.002	0.004	0.003	0.041	9101	دا. 8.	<1.8
April NA 0.168 0.037 NA NA NA NA Oct 3.36 NA 0.057 NA NA NA Oct 1.68 NA 0.027 NA NA NA Oct 1.68 NA 0.023 0.013 NA NA NA Oct 1.68 NA 0.022 NA NA NA Oct 1.68 NA 0.052 NA NA Oct Oct 1.68 NA 0.069 NA NA Oct	77. padabadia	oct	3.92	ž	< 0.05	386.5	12.05	NA NA	¥	¥	¥	N.A.	¥	¥	¥	≱	1300	490
April NA 0.166 0.037 NA NA OLG NA NA OLG NA A COLG NA NA NA OLG NA COLG NA NA COLG NA COLG NA NA COLG NA NA COLO NA COLG NA COLO	7. SUKINDA (JAJI	PUR) (4 si	(suojions)															
Oct 3.36 NA < 0.05 14.23 6.85 NA	000	April	ž	0,168	0,037	ž	≨	ž	<0.002	6100000	01000	0.004	0.005	0.005	0.029	0,113	8,1×	8.1>
April NA 0.176 0.027 NA NA NA OLI	ZS. IBCO	oct	3.36	≨	< 0.05	14.23	6.85	¥	¥	≨	≨	¥X	¥	≨	ž	≨	8,1	41.8
Oct 1.68 NA 0.352 3.59 1.72		April	ž	0.176	0.027	¥	¥	NA	<0.002	9000000	0.0011	0.005	0.004	9000	0.004	0.203	ಜ	=
April NA 0.123 0.013 NA NA NA NA NA NA NA NA NA	24. Sarudoll	oct	1.68	₹	0.352	3.59	1.72	¥¥	ž	₹	¥	ΑN	¥	ž	¥	≱	2	22
rda April NA 0.185 0.022 NA	1 1 2	Aprill	≨	0.123	0.013	≨	¥	NA	<0.002	9000000	0.0011	0.004	0.003	0.007	0003	0.454	ě.	13
rda April NA 0.185 0.022 NA NA COUD 12 1.78 9.72 1.68 NA < 0.05 21.78 9.72 1.69 NA 1.68 NA < 0.05 21.78 9.72 1.69 NA 1.69 NA	zo. Kalidadrii	oct	<1.5	¥	< 0.05	18.32	4.69	ž	ž	¥	ž	Ϋ́	ž	ž	ž	≱	2	13
GUDA (s stations) NA < 0.05 21.78 9.72 GUDA (s stations) April April April April April April NA 0.287 0.04% NA NA NA unda Oct 3.36 NA < 0.05	2	Aprill	¥	0,185	0.022	ž	ž	K.	<0.002	0.00057	0,0015	0000	0.008	9100	0.053	1,391	17	4.5
April April April April NA 0.287 0.049 NA NA unda Oct 3.36 NA < 0.05	Zb. Karriana	oct	1.68	¥	< 0.05	21.78	9.72	≨	N.	¥	ž	Ϋ́Z	¥	¥	¥	¥	13	<1.8
April NA 0.287 0.048 NA NA NA NA NA NA NA N	2000	(8 station	18)		6	65 V.	2	8				2	8	8		G G		ψ 2)
Oct April NA 0.287 0.049 NA NA NA NA NA NA NA NA NA	27. Thelitol	April								Not Monitored	yred							63
April NA 0.287 0.049 NA NA NA NA NA NA Sedemula Oct 3.36 NA < 0.05 11.21 2.66 Na Industrial Oct 2.8 NA < 0.05 5.2 3.28 State April NA 0.169 0.056 NA		oct		100000000000000000000000000000000000000					1	Not Monitored	pex							8
Oct 3.36 NA < 0.05 11.21 2.66 April NA 0.164 0.044 NA NA Oct 2.8 NA < 0.05 5.2 3.28 April NA 0.169 0.056 NA NA Oct 3.92 NA < 0.05 13.49 4.76	28.	Aprill	¥	0.287	0.049	¥	ž	K X	<0.002	0.00013	91000	0000	0.004	0.021	2000	0.103	<1,8	<1,8
Oct 2.8 NA < 0.05 5.2 3.28 Sor April NA 0.169 0.056 NA NA NA NA Oct 3.92 NA < 0.05 13.49 4.76	Bhurkhamunda	Oct	3.36	¥	< 0.05	11.21	2.66	NA NA	¥	N.	¥	ΝΑ	ž	¥	¥	≨	<1.8	<1.8
Oct 2.8 NA < 0.05 5.2 3.28 April NA 0.169 0.056 NA NA NA Oct 3.92 NA < 0.05 13.49 4.76	29. Badamal	Aprill	¥	0.164	0.044	ž	ž	N.A.	<0.002	0.00013	0.0029	6000	0.007	9000	0.104	0.578	<1,8	<1,8
Apill NA 0.169 0.056 NA NA OCT 3.92 NA < 0.05 13.49 4.76	Industrial Estate	oct	2.8	¥	< 0.05	5.2	3.28	ž	¥	¥	¥	ΑN	¥	≨	ž	¥	<1.8	<1.8
Oct 3.92 NA < 0.05 13.49 4.76	An Bridleton dan	April	¥	0,169	0.056	¥	¥	N.	<0.002	0.00044	0.0026	0.011	9000	0.011	0.083	1,123	<1,8	<1,8
	30. Buanipagar	oct	3.92	≨	< 0.05	13.49	4.76	ž	NA NA	¥	ž	ΑN	≨	₹	¥	≨	8.1>	<1.8

Ndme to ritnom Parinolinom	April April	Mining Bell Oct	32. Rampur April	oct	33 to thermod	8	34. Beloghar April	8	9. PURI(4 staffons)	35. Hospital- April	Busstand- Maustma Oct temple area	36. Near April	Jagannath Temple Oct	37. Near Sea April	Beach Oct	April	-	10. SAMBALPUR(3 stoflons)	39. Near April	hanlwas	40. Near April	
Total Kjeldahi N, mg/L	≨	28	≨	4.48	≨	3.92	≨	3.36		¥	3.92	¥	5.04	¥	504	≨	3.36	13	≨	5.6	¥	2.24
Fluoride, mg/L	0.164	≨	0.162	≨	0.177	≨	0.171	ž		0.153	≨	0.208	≨	0.412	¥	0,175	≨	3	0,139	≨	0273	≨
1/6m /4-√°O4	0,065	< 0.05	950.0	< 0.05	0.051	< 0.05	0.047	< 0.05		10.0>	< 0.05	10.0>	< 0.05	10.0>	0.101	10.0>	< 0.05		9.104	< 0.05	0.085	< 0.05
20 djum, mg/L	≨	12.36	≨	19.22	ž	4.53	≨	10.29		≨	87	≨	88	¥	129	ž	83	1	≨	13.42	≨	42.3
,mulasalo¶ J\gm	≨	6.7	≨	8.32	ž	5.21	≨	107		¥	45.8	ž	46.6	¥	51.1	ž	4.59		ž	4.01	≨	4.83
J\pm,notoå	ž	≨	≨	¥	¥	≨	¥	≨		¥	≨	¥	¥	W	NA	¥	ž		≨	¥	¥	ž
Ct (VI), mg/L	<0.002	ž	<0.002	ž	<0.002	ž	<0.002	ž		<0.002	₹ Z	<0.002	٧×	<0.002	٧N	<0.002	¥.		<0.002	×	<0.002	¥
Mercury,mg/L	900000	ž	0.00025	¥	0.00013	ž	0.00057	ž		0.00038	₹ ¥	0.00019	Ϋ́	0.00025	ΑN	0,000013	ď.		0,00038	ď Z	0.00038	¥
Cadmium, mg/L	0.0021	ž	0.0021	¥	0.0015	ž	0.0020	≨		0.0021	≨	0.0041	¥	0.0023	¥	0.0023	≨		0.0018	ž	0.0020	ž
Copper, mg/L	2000	≨	41000	ž	0.018	≨	0.011	≨		0.007	≨	4100	ž	0.012	NA	0.008	≨		0000	ž	6000	ž
1/6m /bbə1	2000	¥	2000	ΑN	0.008	¥	6000	ď Z		9000	¥.	0.008	W.	0.007	NA	010'0	ď.		0.007	Ϋ́	0.005	ď.
Mickel, mg/L	0,008	₹ Z	0.012	Š	5100	ž	600'0	₹ Z		600°a	ž	7100	¥	610.0	Ϋ́N	0,013	ž		0,007	ď Z	8100	ž
Zjuc' uð\r	0.045	≨	190'0	ž	0.120	≨	0.110	≨		0.184	≨	0.074	≨	0.192	¥	0.109	≨		9100	¥	0.003	ž
,lofoT noti J\gm	0.349	≨	1,322	≨	1,333	≨	0.971	≨		1.656	≨	1.465	≨	1.198	¥	0.472	≨		0,135	≨	0.020	≨
TC, MPN/ 100	6,12	۸. 8.	<1.8	<1.8	<1.8	<1.8	<1.8	8,12		<1.8	8,1^	<1.8	<1.8	13	<18	4.5	S		41,8	<1.8	23	8,1
FC, MPN/ 100	8,	<1.8	<1.8	<1.8	<1.8	<1.8	6.1>	41,8		<1.8	<1,8	<1.8	<1.8	<1.8	8.1>	<1,8	41,8		۷],8	<1.8	2	41,8

5.7.2 Air Quality Status

5.7.2.1 National Ambient Air Quality Monitoring Programme (NAMP) & State Air Quality Monitoring Programme (SAMP)

The Board monitors ambient air quality at 38 stations in seventeen areas of the State, under the CPCB assisted National Ambient Air Quality Monitoring programme (NAMP) and State Ambient Air Quality Monitoring programme (SAMP) of the Board. Details of air quality monitoring stations, station type and parameters monitored are listed in Table-5.32. Parameters like Respirable suspended particulate matter (RSPM or PM₁₀, particulate matter having an aerodynamic diameter less than or equal to 10 μm), PM_{2.5} (particulate matter having an aerodynamic diameter less than or equal to 2.5 μm), SO₂, NO₂, NH₃, O₃, CO, Pb & Ni are being regularly monitored at all monitoring stations. The monitoring is carried out for 24 hours (24-hourly sampling for PM_{2.5}, 8-hourly sampling for PM₁₀, Pb & Ni and 4-hourly sampling for gaseous pollutants like SO₂& NO₂ and 1 hourly monitoring for NH₃& O₃ with a frequency of twice in a week not in consecutive days, to have a minimum of 104 observations in a year as per CPCB Guideline.

Table-5.32 Ambient Air Quality Monitoring Stations

Sl. N o	Name of the areas	Monitoring stations	Parameters monitored
1.	Angul	(i) RO, SPCB office building, Angul	
		(ii) NALCO Nagar, Angul	PM ₁₀ , PM _{2.5} , SO ₂ ,
		(iii) R.O, SPCB, Ganeswarpur	NO ₂ , NH ₃ , O ₃ , Pb
2.	Balasore	(iv) DIC office, Angaragadia	& Ni
		(v) Rasalpur Industrial Estate	
3.	Berhampur	(vi) RO, SPCB office building, Brahmanagar	
		(vii) SPCB office Building, Unit-VIII	
		(viii) I.R.C. Village, Nayapalli	DM. DM. SO.
4.	Bhubaneswar	(ix) Capital Police Station, Unit-I	PM ₁₀ ,,PM _{2.5} , SO ₂ , NO ₂ , NH ₃ , O ₃ , Pb,
4.		(x) Chandrasekharpur	No 2, N 113, O 3, 1 D, Ni & CO
		(xi) Patrapada	- Maco
		(xii) Palasuni water works	
5	Bonaigarh	(xiii) Bonai Govt. Hospital	
		(xiv) Hotel Bishal Inn, Near Badambadi	
6.	Cuttack	(xv) RO, SPCB office building, Surya Vihar	PM ₁₀ , PM _{2.5} , SO ₂ ,
		(xvi) PHED Office, Barabati	NO ₂ , NH ₃ ,O ₃ , Pb
		(xvii)RO, SPCB office building, Babubagicha,	& Ni
7.	Jharsuguda	(xviii) Inside TRL Colony Premises	
		(xix) BRPL Guest House(Near TATA Guest House)	
8	Kalinga	(xx) RO, SPCB Office building, Kalinganagar	
8	Nagar	(xxi) DET Hostel Tata Steel(Previous at NINL)	PM ₁₀ , PM _{2.5} , SO ₂ ,
9	Keonjhar	(xxii) RO, SPCB Office building, Baniapat	NO ₂ , NH ₃ ,O ₃ , Pb
10	Konark	(xxiii) Konark Police Station	& Ni

		(xxiv) PPL Guest House	
11	Paradeep	(xxv) IFFCO STP	
		(xxvi) PPT Colony	
12	Puri	(xxvii)Sadar Police Station	
12	1 uii	(xxviii) Town Police Station	
12	Davagada	(xxix) RO, SPCB Office building, Indiranagar	
13	Rayagada	(xxx) L.P.S high school Jakaypur	
14	Rajgangpur	(xxxi) DISR, Rajgangpur	
		(xxxii) RO, SPCB Office building, Sector-5	
15	Rourkela	(xxxiii)IDL Outpost, Sonaparbat	
13	Rourkeia	(xxxiv)IDCO Water Tank, IDC Kalunga	
		(xxxv)Kuarmunda Out Post, Kuarmunda	
16	Sambalpur	(xxxvi) PHED Office, Modipara	
1.7	Talahan	(xxxvii) TTPS, Talcher	
17	Talcher	(xxxviii) M.C.L., Talcher	

Ambient air quality status with respect to PM₁₀, PM_{2.5}, SO₂, NO₂, NH₃, O₃, CO, Pb & Ni at 37 monitoring stations during the year 2020 are reflected in Table-5.33. The air quality of different cities/ towns have been compared with the national ambient air quality standards to assess the existing air quality status.

The Annual average concentration of Respirable Suspended Particulate Matter(RSPM or PM_{10}) at all monitoring locations are remained above the prescribed limit i.e. 60 (μ g/m³) except at Brahamanagar, Berhampur and at konark police station, Konark, where as the Annual average value of $PM_{2.5}$ remained below the limit i.e. 40 μ g/m³ at 21 locations (out of 30 locations monitored).

Comparing the 24-hrly average data with the prescribed standard, the % of data violated were calculated. It was observed that no violation was observed for gaseous pollutants.

The range of PM₁₀ violation varied from 2.9 % to 100%.Similarly for PM_{2.5} no violation observed at 09 places i.e.,DIC office, Angaragadia, (Balasore), R.O, SPCB, (Brahamanagar),I.R.C. Village, Nayapalli ,Capital Police station,Unit-1, Chandrasekharpur,(Bhubaneswar), Bonai Govt. Hospital(Bonaigarh), LPS High School, Jaykaypur(Rayagada), DISIR, Rajgangpur and R.O. SPCB building, Sector-5 (Rourkela). The range of violation varied from 0.9% to 25.3%

Air Quality Index (AQI)

AQI value of 17 areas during the year 2020 with prominent pollutant and category of different areas are shown in Table-5.34. The range of AQI value, categorization and health impact are presented in Table-5.35. From the Table-5.34, it was observed that out of 17 areas, 14 areas are falling under Satisfactory category & 03 areas like Cuttack, Kalinganagar & Paradeep are falling under Moderate category. The prominent pollutant was PM_{10} in all 15 areas. The highest AQI value i.e., 160 w.r.t $PM_{2.5}$ has been observed at Paradeep area and lowest in Berhampur i.e., 52

Table-5.33 Ambient Air Quality Status of different cities & towns of Odisha during -2020

Asola	C.	П		kgpcpnk	Saf	À	queçesî	diez		Ализ	outstine	S	An	Sutisfacti			Â	retonî	Sults		
Un's of the vil	IOV			(ergq			(mgy,	a)			87 LV(9)		(SS HIV(4)				M(m) 82	Ð		
19A yt arti gairtoi	10			85 (PM _{k0})	88 (PMIo)		88 (PM ₄₀)	97 (PM ₁₀)		77 (PM ₂₀)	74 (PM ₁₀)	84 (PM ₁₀)		52 (PMIo)		92 (PM _{k0})	73 (PM ₁₀)	94 (PM ₁₀)	76 (PMto)	70 (PM ₁₀)	84 (PM _{to.)}
24 hourly lard	PM_{25}			4.7%	1.8%		7.6%	95%		%60	E	3.6%		N		3.2%	IN	图	屋	2.5%	8.5%
chta from 24 hourly standard	PMs			26.4%	28.3%		29.5%	37.1%		Nil	Nil	Nil		Nil		33,3%	21.3%	37.2%	27.1%	22.5%	23.1%
	Pb			0.012 (BDL-0.046)	0.016 (BDL-0.061)		0.013 (BDL-0.044)	0.015 (BDL-0.063)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Not Monitored					0.015 (BDL-0.070)	0.012 (BDL-0.075)	0.010 (BDL-0.060)	0.021 (BDL-0.241)	0.016 (BDL-0.075)	0.015
-hourly range)	ô	eter)	ei .	20.2 (BDL-31.2)	BDL-25.8)		BDL-20.6)	BDI. (BDL-25.6)		23.8 (BDL-28.0)	22.7 (BDL-28.0)	24.4 (21.0-26.9)		36.0 (25.9-47.9)		23.4 (BDL-25.4)	23.3 (BDL-30.2)	23.8	23.2	222 (20.3-28.1)	22.4
e) except O, 8	NH3	m per cubic m		25.5 (BDL-36.0)	21.1 (BDL-34.5)		32.8 (20.4-40.2)	21.1 (BDL-38.4)		23.3 (BDL-31.0)	23.7 (BDL-31.0)	28.1 (23.0-32.0)		35.2 (27.3-46.3)		34.8 (23.0-45.2)	31.9 (BDL-86.7)	34.0	30.2	35.7 (22.0-54.0)	43.4
(24hourly rang	NO;	ed in Microgra	3657	24.1 (14.6-31.6)	24.3 (16.1-28.4)		27.1 (17.4-31.1)	26.7 (18.3-30.6)		10.1 (BDL- 11.91)	9.6 (BDL-12.2)	11.1 (10.2-12.4)		16.5 (BDL-30.3)		(9.1-37.1)	14.0 (BDL-24.6)	18.8	14.0 08DL-22.3)	12.7 (BDL-18.7)	142
Annual Average Value (24heurly range) except O, 8-hourly range)	202	(values expressed in Microgram per cubic meter)		9.7 (4.8-16.9)	8.9 (5.6-12.9)		10.0	9.1		BDL (BDL-RDL)	BDL (BDL-RDL)	7.3 (5.8-8.7)		BDL (BDL-6.9)		BDL (BDL-42)	BDL (BDL-BDL)	BDL (BDL-BDL)	BDL (BDL-BDL)	BDL (BDL-BDL)	BDL cont part
Ammuni	PM15			39 (20-75)	32 (17-62)		38 (18-81)	33 (15-79)		39 (29-62)	37 (27-58)	43 (30-63)		23 (10-35)		31 (16-66)	19 (15-22)	33 (13-48)	73.58)	32 (19-64)	37
	PMp			85 (44-132)	88 (46-134)		88 (48-197)	97 (44-171)		77 (46-96)	74 (42.96)	84 (68-100)		52 (15-79)		92 (43-198)	73 (26-157)	94 (35-139)	76	70 (35-160)	¥ :
(Ops	to .oV (24 t			901	106		105	507		105	105	82		107		88	87	83	88	88	83
	Area/Stations		Angul	1. RO SPCB, Augul	2. NALCO Nagar, Angul	Taicher	3. TTPS, Taksher	4.MCL, Talcher	Balasore	5.R.O, SPCB, Ganeswarpur	6. DIC office, Anguragadia	7.Rasalpur,Industrial Estate	Berlumpur	8. R.O, SPCB, Brahamanagar	Blanbaneswar	9. SPCB Office Building, Unit- VIII	10. IR.C. Village, Nayapalli	11. Capital Police Station, Unit-I	12.Chandrasckhamur	13. Patenpada	14.Palasmii water works
No.				-		Г	~		Γ		т			4				~			-

ÂI	aBəşi	Ca		Crotonisting		ot ar	Ea pop	ũ	a	eraera Y	HaZ		agi	Modern		0	Satisfacti	,	Satisfia		- Ogs	arshoM	
io io.	e Ci			78 (*) IV(4)		(8	101 (634)			(#1E) 24			(211 211			(⁸¹ IVd) †L	(09 (**EVIA)		(160 Szfe(9)	
To 1Q Suitos en		ци эць		87 (PMs ₁₀)		122 (PM ₁₀)	85 (PM ₁₀)	89 (PM ₁₀)		79 (PM ₁₀)	89 (PM ₁₀)		108 (PM ₁₀)	117 (PM _{2.5})	110 (PM ₁₀)		74		60 (PM ₁₀)		160 (PM _{2,5})	133 (PM ₁₀)	115 (PM ₁₀)
lation of 24 hourly lard	PM2.5			평		25.3%	20.3%	14.1%		9,979	10.3%			8.1%							2.9%		
% of violation of data from 24 hourly standard	PMu			27.8%		29.8%	34.9%	41.3%		23.5%	30.1%		\$2.6%	47.5%	75.3%		40.2%		Nil		71.2	100%	72.1%
	Pb			0.022 (0.015-0.028)		0.014 (BDL-0.025)	0.014 (BDL-0.036)	0.012 (0.005-0.024)		0.022 (BDL-0.227)	0.023 (BDL-0.139)			0.018	0.010-0.034)		0.022 (BDL-0.090)		0.008 (BDL-0.092)		0.026	0.032 (0.021-0.043)	0.028 (0.012-0.074)
hourly range)	Ю	Herr)		23.5 (21.8-26.4)		27.0 (24.1-29.0	BDI. (BDI29.0)	BDL-26.6)		BDL (BDL-30.0)	22.8 (BDL-30.2)		Not Monitored	BDL (BDL-22.5)	Not Monitored		Not Monitored		21.2 (BDL-27.2)		76.9 (70.7-83.8)	74.4 (64.6-86.5)	(523-74.2)
Annual Average Value (24hourly range) except O ₂ 8-hourly range)	NH	(values expressed in microgram per emble meter)		27.1 (22.0-36.1)		29.9	40.6 (20.6-96.5)	27.7		BDL (BDL-31.0)	21.4 (BDL-30.0)		49.8 (42.6-53.9)	45.7 (40.8-54.0)	47.4 (42.1-53.3)		51.2 (39.0-71.7)		32.2 (BDL-45.6)		185.2 (165.5- 260.2)	181.9 (160.9- 247.0)	165.6 (147.4- 262.8)
(24Бенгіу ганд	NO2	d in microgra		13.1 (9.3-62.1)		18.8 (16.3-21.3)	17.9 (12.0-26.3)	18.2 (12.9.22.8)		(8.9-24.1)	13.9 (10.0-21.8)		17.7 (13.0-20.0)	14.9 (10.1-22.5)	16.1 (11.5-20.3)		12.0 (BDL- 19.2)		10.7 (BDL - 14.3)		11.5 (BDL- 20.8)	12.7 (10.1-18.1)	11.5 (BDL- 16.4)
Average Value	SO2	values expresse		6.7 (4.2-18.7)		5.3 (BDL-7.3)	BDL-6.1)	BDL (BDL- 5.3)		7.1 (4.4-21.2)	7.4 (4.6-21.4)		BDK (BDL-BDK)	BDK. (BDK BDL)	BDK. (BDK. BDL.)		BDL (BDK-BDL)		BDK. (BDK BDL)		16.8 (6.3-26.2)	20.2 (13.8-25.7)	(9.1-25.1)
Annual	PM2.5	Ũ		36 (13-54)		42 (18-100)	41 (21-95)	41 (20-112)		45 (18-72)	46 (30-68)		Not Monitored	65 (52-84)	Not Monitored		Not Monitored		Not Mondored		78 (72-85)	MM	NM
	PMs			87 (49-160)		133 (81-202)	83 (43-159)	(40-183)		79 (40-125)	(58-120)		112 (55-171)	108 (43-194)	115 (65-192)		74 (27-157)		(30-99)		126 (34-368)	150 (108-219)	122 (58-222)
sdC (s.	ore	oN (s)		67		29	103	92		106	901		19	19	99		92		101		101	35	104
	Area / Stations		Bonalgarh	15.Bonal Govt. Hospital	Cuttack	16. Hotel Bishal Isas, Near Badambadi	17. R.O.SPCB Building, Surya Vilor	18.PHD office ,Barabati	Jharsuguda	19. RO Building, Cox. Colony, Babubagicha,	20.Inside TRL Colony Premises	Kalluga Nagar	21. BRPL Guest Homse(Near TATA Guest Homse)	22. RO SPCB, building	23.DET Hostel Tata Steel (Previous at NIML.)	Keonfhar	24. R.O.SPCB, Beninput	Konark	25. Konark Police station	Paradeep	26.PPL Guest House	27. IFFCO STP	28. Paradeep port trust
8	No			9		7							6				10		11			12	

Á	10He	CNB	Γ	₹400 milleibn≥		блорэн	dzibeS	Γ	ÁR	angung		Á	tokselleli	mS			Trobadabe S		
eų	eral of the	IOV		92 (4349)			9 9		99	96 (a167)			(or)	98 98			88 (919(4)		
Bu	aq)	Smoon		70 (Phile)		62 (PMLn)	66 (Ph.E.)			91 (PBEs)		TS (PMa)	68 (Pales)	305 (Ph.La)	94 (PMIn)		85 (PMIs)		
to com 24 hourity standard	PMa			ĕ		160	N			W		N	969	1,92%	19%		25.2%		
from 34 hour	PMss PMss			30%		EN	灵			36.3%		17.3%	29%	90'06	37.2%		40.1%		
	139			(2017-4-10E)		0.0016 (0.007-0.036)	(0.011-0.940)			60.026-0.968)	8	(0.0033	0.033	0.039	0.042 (0.036-8.056)		0.039 (0.020-0.062)	3	59
arly range)	i0	(a	3	BDC. (4004-23.7)		24.6 (BDL-36.0)	22.8 (BDL-34.6)			229 (213-27.1)		25.0	24.2	24.3	28.5		BDL. (BDL-27.5)	180 (Hounly)	40 50 46 1300 (S Rously) 6,5
Annual Average Value (2-thourty rungs) except 0: 8-hourly range)	MB	(values expressed in nicrogram per cubic meter)		H.J. (35,6-63.2)		EDL-48.09	29.E (BDL-41.9)			25.4 (23.0.36.1)		253	25.5-86.7)	25.9	M8 (223-861)		28.5 (BDL-28.4)	404	100
due Othourly res	NOs	ressed in microgr		13.1 (BDL-19.5)		15.1	15.3 (10.2-18.7)			11.2 (9.3-18.4)		11.0 (BDL-18.4)	16.3 (BDL-18.1)	M.5 (BDL-18.4))	18.9 (9.1-19.7)		11.3	8	8
Annual Average V	SO	(values es		(108-108) 108		BDL (BDL-7.7)	BDL (BDL-7.9)			63 (BDL-17.0)		6.9 (BDL-16.0)	5.9 (BDL-16.2)	6.7 (43-16.4)	6.3 (BDL-10.2)		59 (4.3-9.8)	2	20
	Phha			NA		30 (12-67)	34 (15-56)			36 (16.36)		31	30 (10-68)	35 (14.76)	39 (19-73)		(16-81)	8	9
	PMu			78 (51-134)		62 (29-68)	66 (27-89)			91 (46-178)	- 10	73 (25-185)	(90-108)	(41-262)	94 (32-206)		25 (27-176)	100	8
180	NO N	(34 (34 (34		8		103	101			창		104	102	188	102		107		
	Array / Sinflons	CONTRACTOR OF THE PERSON OF TH	Park	29. Zowa golkoe Smilon	Rayagada	30.R.O.SPCB Building, Indicategor	31. LPS High School, Jaylangyur	Rajgangpur.	32. DISB. Rajgmegent		Remelada	53. R.O.SPCB brilding, Sector-5	34. DL Ougest	35. DCO Water Tout, D.C. Rofrings	36. Kmenunda Out Post, Klummula	Sambalpur	37. PHD Office, Modpara	Prescribed Stradurd (24 hrty)	Standard for Amund Avg. Value
No.				5	T	*	2332		0	n		1 27	0.56	91	- 2550		TI.		

MB:BDL-Below Detectable Limit, PMtn - Particulate Matter ± 16 pt size, PMtn - Particulate Matter ± 2.6 pt size SO: - Suphur Dioxic
 BDL Value for SO: 54 µg/m², NO: 5 9 µg/m², NH: ±10 µg/m², O: ±10 µg/m², Pb ±0.0022 µg/m², PMtn±5 µg/m², PMtn±5 2 µg/m²
 NO percentage of violation of data from 24 hourly average for all moralcaved gaseous like SO: NO: NH: NO: NH: SO: AD: 50 µg/m²

Table-5.34 Annual Air Quality Index of Different monitored Stations in Odisha during the year 2020

			Cosh indov	on has no m	Cab index value us of namenton				
	PM10	PM2.6	SO ₂	NO2	NHs	ő	P	Overall AQI With prominent parameter	Overall Categorisation
L.Angul									
1.Industrial Estate	\ G	g		9	,	6		7 200 00	A STATE OF THE STATE OF
2.NALCO Nagar	90	28	71	30	9	10.0	1.4	80 (FM16)	Saustactory
2.Takher									
3.TTPS, Talcher	8	0.7	1,1	3.4	t	10.0	1.4	ON/BAE >	Contribution
4.MCL, Talcher	7,6	28	77	4		10.0	1.4	94(FM16)	Sattstactory
3.Balasore									
R.O, SPCB, Ganeswarpur									
6.DIC office, Angaragadia	78	29	3	13	9	24	NM	78(PM ₁₀)	Satisfactory
7.Rasalpur,I.B.								,	
4.Berhampur									
8.R.O. SPCB Brahamanagar	52	38	3	21	6	36.0	NM	52 (PMss)	Satisfactory
5.Bhubaneswar									
9.SPCB Office Building, Unit-VIII									
10 I.R.C. Village, Navapalli									
11. Capital Police Station, Unit-L	Š	ş	,		s				Satisfactory
12.Chandrasekharour	82	84	۳,	8	a,	23.0	1.5	82 (PM10)	
13 Patrapada									
14 Palasmi water works									
6.Bonaigarh	62	36	٥	1,4	ŀ	7.4	,,	er/BM.	Catiofontains
15.Bonai Govt. Hospital	/0	30	ø	01	,	\$	4.4	0 / (F.M119)	Sansiaciory
7.Cuttack									
16.Traffic Tower Badambadi,									
17.R.O.Building, Surya Vilsar	102	88	3	23	œ	10.0	1.3	102(PM ₁₀)	Moderate
18.PHD office ,Barabati									Modelate
8.Jharsuguda									
19.RO Building, Cox Colony,									
Babubagicha,	*	75	0	16	m	10.0	2.2	84(PM ₁₀)	Satisfactory
 Inside TRL Colony Premises 									
9.Kalinganagar									
21. Over the roof of BRPL Guest									
House(Near 1A1A Guest House) 22.Roof of Regional Office Building.	108	117		90	12	10.0	1.7	117/DM.	Moderate
The state of the s	9	4	,	à	1	2007	-	(complete) per	All Paragraphs
(Previous at NTNL)									
									We will be a second of the sec

Table-5.35 AQI range with categorization and Health impact

AQI VALUE	CATAGORY	IMPACT ON HUMAN HEALTH
0-50	GOOD	Minimal Impact
51-100	SATISFACTORY	Minor breathing discomfort to sensitive people
101-200	MODERATE	Breathing discomfort to the people with lung, heart disease, children and adults
201-300	POOR	Breathing discomfort to people on prolonged exposure
301-400	VERY POOR	Respiratory illness to the people on prolonged exposure
>401	SEVERE	Respiratory effects even on healthy people

5.8 IMPACT OF LOCKDOWN TO CONTAIN COVID 19 ON WATER QUALITY AND AIR QUALITY OF THE STATE

State Government of Odisha had taken proactive measures to contain the COVID-19 pandemic and declared lockdown in the State from 22nd March to 29th March, 2020 in 40% of the State including the State Capital Bhubaneswar, Khurdha, Cuttack, Ganjam, Kendrapada and Angul districts and the towns of Puri, Rourkela Sambalpur, Jharsuguda, Balasore, Jajpur road and Jajpur town and Bhadrak. Subsequently, the Hon'ble Prime Minister of India declared the lockdown from 23rd March to 14th April, 2020 in whole of the country which was subsequently extended upto 3rd May, 2020. During the lockdown period, activities of peoples including transportation of vehicles was highly restricted. Industries of essential services and manufacturing units which require continuous operation only were allowed after obtaining permission from the District administration.

Discontinuance in the activities during lockdown period resulted in generation of less wastewater as well as decreased waste load in comparison to the normal period which were being discharged to the inland surface water bodies. Similarly, restriction on traffic movement, constructional activities, industrial activities has resulted in less emission into atmosphere. A study was undertaken to assess the impact of lockdown on the water quality and air quality of the State.

(a) Impact of lockdown on Water quality

To assess the impact of lockdown on the water quality, the critical parameter, BOD, has been chosen as the indicative parameter. Comparison of water quality monitoring data obtained during the lock down period with the results of pre-lockdown period revealed that, out of 129 river monitoring stations, the number of stations conforming to Class-C has been increased from 89% in "Pre-Lockdown" period to 94% in "During-lockdown" period. Discontinuance in the activities during lockdown period has generated less volume of wastewater in comparison to the normal period which were being discharged to the surface water bodies, less consumption of water by most of the water demanding sectors were the reasons attributed towards of significant reduction in BOD values and improvement on water quality. River-wise improvement in water quality monitoring stations is presented in Table-5.36.

Table-5.36 Impact of Lockdown on the river water quality status of the State

Sl. No.	Name of Water body	No. of Water quality	No. of monitoring to Conforming to Conformin		Remarks
		monitoring	Pre-lockdown	During -	Improved (I)
		stations	period*	lockdown	Nos./
				period**	Deteriorated
					(D) Nos. (%)
Rivers	S				
1	Mahanadi River System	55	45	49	I (4) (+7%)
2	Brahmani River System	41	37	39	I (2) (+5%)
3	Baitarani River System	14	14	14	No Change
4	Rushikulya River System	6	6	6	No Change
5	Nagavali River System	3	3	3	No Change
6	Subarnarekha River System	1	1	1	No Change
7	Budhabalanga River System	4	4	4	No Change
8	Vansadhara River System	2	2	2	No Change
9	Kolab River System	1	1	1	No Change
10	Indravati River System	1	1	1	No Change
11	Bahuda River System	1	1	1	No Change
		129	115	121	

(b) Impact of lockdown on Air quality

Ambient air quality of 16 cities/ towns in Odisha in 'pre-lockdown' period (1st to 21st March, 2020 and 'During lock down' period in three time intervals such as 22nd to 31st March, 2020, 1st to 30th April, 2020 and 1st to 31st May, 2020 were compared to assess the impact of lockdown on the air quality status. Cities/towns covered under this study were Angul, Talcher, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rajgangpur, Rourkela and Sambalpur. In Pre-lock down period, the Air Quality Index varied from 48 to 122 indicating Good to Moderate category with the prominent pollutant being respirable particulate matter (PM₁₀). The Air

Quality Index (AQI) was of good category at one station, satisfactory category at nine stations and moderate category at six stations.

During the Lockdown period (22^{nd} to 31^{st} March, 2020), out of 14 monitored stations, significant improvement in air quality has been observed with increased number of stations under good category to three and satisfactory category to eleven. During this period, the Air Quality Index varied from 22 to 80 with the prominent pollutant being respirable particulate matter (PM_{10}).

Similarly, in the lockdown period from 1^{st} April to 30^{th} April, 2020, out of 16 monitored stations the number of stations in good category was five and under satisfactory category was eleven. The Air Quality Index varied from 33 to 81 with the prominent pollutant being respirable particulate matter (PM₁₀) at twelve stations and fine particulate matter (PM₂₅) at four stations.

Improvement in air quality during lockdown period may be attributed to the minimal traffic movements, reduced construction and industrial activities. However, after 3^{nd} May, 2020 on relaxation in traffic movements & construction activities was allowed by the State government, an increase in the Air Quality Index values of PM_{10} has been observed at some places compared to the previous month. The AQI value during the period 1^{st} to 31^{st} May, 2020, varied from 30 to 106 and the number of stations under good category was four, under satisfactory category was eleven and under Moderate Category was one. The prominent pollutant being respirable particulate matter (PM_{10}) at fourteen stations and fine particulate matter (PM_{25}) at two stations.

The Air Quality Index values with the prominent pollutant in different cities of Odisha in Pre-lockdown period and during lockdown periods with the category are given in Table-5.37. Comparison of air Quality Index (AQI) of different Cities/Towns of Odisha during the pre-lockdown period (March (1st to 21st) 2020 and during Lockdown Period of March (22nd to 31st), April (1st to 30th) and May (1st to 31st) 2020 are graphically presented in the following Figure.

Out of six Non-attainment cities of Odisha such as Angul, Talcher, Balasore, Bhubaneswar, Cuttack and Kalinganagar, AQI in pre-lockdown period was Satisfactory at four stations and Moderate at two stations whereas During-Lockdown period, AQI in all six cities was in Satisfactory category.

Air Quality Index (AQI) of different Cities/Towns of Odisha during the Normal Period of March (1st to 21st) 2020& Lockdown Period of March (22nd to 31st), April (1st to 30th) and May (1st to 31st) 2020

Table-5.37 Air Quality Index (AQI) of different Cities/Towns of Odisha during the Pre-Lockdown Period (March (1st to 21st) 2020), During Lockdown Periods (March (2sst to 31st) 2020, April (1st to 30st) 2020 and May (1st to 31st) 2020

	Pre-Lockd	Pre-Lockdown Period			During Lockdown Period	own Period		
Cities/Towns	1st to 21st N	1st to 21st March, 2020	22 ^{md} to 31 st]	22" to 31st March, 2020	1st to 30th	1st to 30th April, 2020	1st to 31st May, 2020	May, 2020
	AQIw.r.t Prominent Pollutant	Category	AQI w.r.t Prominent Pollutant	Cartegory	AQIwr.t Prominent Pollutant	Category	AQI w.r.t Prominent Pollutant	Category
"Angul	88(PM ₁₀)	Satisfactory	56(PM ₁₆)	Satisfactory	57(PM ₁₆)	Satisfactory	76(PM ₁₀)	Satisfactory
"Talcher	104(PM ₁₀)	Moderate	78(PM ₁₈)	Satisfactory	73(PM ₁₀)	Satisfactory	75(PM ₁₀)	Satisfactory
*Balasore	88(PM ₁₀)	Satisfactory	80(PM1e)	Satisfactory	60(PM _{2.5})	Satisfactory	63(PM23)	Satisfactory
Berhampur	48(PM ₁₀)	Good	22(PM ₁₀)	Good	33(PM _{2.5})	Good	30(PM ₁₀)	Good
*Bhubaneswar	99(PM ₁₀)	Satisfactory	41(PM ₁₆)	Good	45(PM ₁₆)	Good	52(PM ₁₀)	Satisfactory
*Cuttack	100(PM ₁₀)	Satisfactory	61(PM ₁₀)	Satisfactory	57(PM ₁₀)	Satisfactory	55(PM ₁₀)	Satisfactory
Jharsuguda	110(PM ₁₀)	Moderate	55(PMte)	Satisfactory	65(PM _{2.5})	Satisfactory	79(PM ₁₀)	Satisfactory
*Кавиданадаг	122(PM ₁₀)	Moderate	62(PM ₁₆)	Satisfactory	81(PM ₁₀)	Satisfactory	95(PM ₁₀)	Satisfactory
Keonjhar	100(PM ₁₀)	Satisfactory	53(PM ₁₀)	Satisfactory	53(PM ₁₀)	Satisfactory	52(PM ₁₀)	Satisfactory
Konark	69(PM ₁₀)	Satisfactory	NM		34(PM ₁₀)	Good	34(PM ₁₀)	Good
Paradeep	101(PM ₁₀)	Moderate	64(PM ₁₈)	Satisfactory	65(PM ₁₀)	Satisfactory	106(PM ₁₀)	Moderate
Pari	87(PM ₁₀)	Satisfactory	NM	*	36(PM ₁₀)	Good	45(PM ₁₀)	Good
Rayagada	76(PM10)	Satisfactory	32(PM1e)	Good	55(PM ₁₀)	Satisfactory	60(PM ₁₀)	Satisfactory
Rajgangpur	85(PM ₁₀)	Satisfactory	56(PM10)	Satisfactory	62(PM ₁₀)	Satisfactory	62(PM ₁₀)	Satisfactory
*Rourkela	107(PM ₁₀)	Moderate	66(PM ₁₀)	Satisfactory	51(PM ₁₀)	Satisfactory	58(PM ₁₀)	Satisfactory
Sambahur	109(PM ₁₀)	Moderate	73(PM ₁₀)	Satisfactory	50(PM _{2.5})	Good	48(PM2.5)	Good

Non-attainment Cities of Odisha NM-Not Monitored

5.9 NABLACCREDITATION OF CENTRAL LABORATORY OF THE BOARD

NABL Accreditation has been accorded to Central Laboratory, Patia, Bhubaneswar for a period of two years from 01.02.2021 to 31.01.2023 under Chemical and Biological Testing for following group of parameters.

(A) Surface Water/ Ground Water/ Wastewater 25 chemical Parameters (Temp, pH, EC, Turbidity, Total Suspended Solids, Total Dissolved Solids, Total Fixed Solids, Alkalinity, Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemial Oxygen Demand (COD), Ammonical Nitrogen, Total Kjeldahl Nitrogen, Nitrate-N (NO₃-N), Phosphate-P (PO₄³⁻P), Sodium, Potassium, Total Hardness, Calcium Hardness, Magnesium Hardness, Chloride, Sulphate, Fluoride, Boron) 2 Biological parameters (Total Coliform and Fecal Coliform) 8 Heavy metal parameters (Hexavalent Chromium, Iron, Nickel, Copper, Zinc, Cobalt, Cadmium and Lead)

Chloropyriphos)

9 Pesticide residue parameters (alpha-BHC, Lindane (gamma-BHC), o,p-DDT, p,p-DDT, Aldrin, Dieldrin, Alhpa- Endosulphan, Beta- Endosulphan,

(B) Ambient Air: 7 parameters (Respirable Particulate Matter (PM₁₀), Fine Particulate matter (PM_{2.5}), Nitrogen Dioxide (NO₂), Sulphur Dioxide (SO₂), Ammonia (NH₃), Ozone (O₃) and Lead) and Noise

5.10 INDUSTRIAL INSPECTIONS, MONITORING OF WATER, AIR AND SOLID WASTE SAMPLES

The status of inspection, monitoring and analysis conducted during the year 2020-21 is presented in Table-5.38.

Table - 5.38 Inspection and Monitoring of Water, Air and Solid Waste

Nos. of	Samples	No. of Bio-	Nos. of	Nos. of	Nos. of	Nos. of	Ambient Ai	r Quality	studies	Ambient
Inspec- tions	under NWMP.	monitoring samples	Industrial samples	other water	Soil/solid waste/	Stack emission	Industrial premises	SAMP	Others	Noise
	SWMP & NRCP	sumpres	Samples	samples	Plant samples	samples	premises	NAMP		
5449	4489	60	2266	5567	88	734	1375	14,911	306	1376

5.11 PUBLIC GRIEVANCES

550 no. of public complaints were received during 2020-21 covering 17 caterories of highly polluting Industries, Hazardous waste, Chemicals, Stone Crushers, Brik Kilns, Mines, Iron Crushers, Public nuisance and Miscellaneous issues. Out of which, 306 cases were disposed and 244 cases are under investigation.

IMPLEMENTATION OF RGHT TO INFORMATION ACT, 2005

The Right to Information Act, 2005 provides for setting out the practical regime of right to information for citizens to secure access to information under the control of Public Authorities (P.A), in order to promote transparency and accountability in the working of every public authority.

In accordance with Act, the State Pollution Control Board, Odisha is providing available information as and when sought through proper application. The status of applications received under RTI Act is presented at Table 5.40.

Table - 5.40 Status of Applications under RTI Act

SL. No.	Details of the Application	Nos.
01.	Total no. of applications received	490
02.	No. of applications on which Information provided	434
03	No. of applications on which request rejected	18
04.	No. of requests transferred to other public Authorities	18
05.	No. of applications under evaluation	20

The total amount collected for RTI requests during 2020-21 is ₹21,092/-.

CHAPTER - VI

LEGAL MATTERS

6.1 STATUS OF LEGAL CASES

The Board initiates legal action against those units which fail to adopt adequate pollution control measures or complying to norms / standards amount to violations Acts, Rules and statute. The Board initiates legal action when persistant non-compliance / violation of Acts, Rules or directions are observed. Persons aggrieved by the actives of the Board also take the shlter of legal course.

The Board has filed/counter filed 130 cases in various courts and 89 cases have been disposed off by the respective Courts during 2020-2021. The details of cases filed by the Board alongwith the status of public interest litigations and writ petitions filed in different Courts are presented in Table-6.1.

Table - 6.1 Details of Cases Filed by the Board

Sl.	Name of the Court	No. of Cas	ses
No			
		Filed/Counter filed	Disposal*
A	Lower Court (SDJM)	<u> </u>	
1.	The Water (PCP) Act	Nil	Nil
2.	The Air (PCP) Act	Nil	Nil
3.	The Environment (Protection) Act	Nil	Nil
В	High Court	•	
1.	PIL	29	22
2.	Writ	22	29
C	Supreme Court		
1.	PIL	Nil	Nil
2.	Writ	14	Nil
D	Other Court	<u> </u>	
1.	Civil Suit	Nil	Nil
2.	Consumer Dispute Cases	Nil	Nil
3.	Lokpal Cases	Nil	Nil
4.	N.H.R.C. / O.H.R.C.	14	Nil
		(NHRC-05+ OHRC-09)	
5.	Cases U/S-133 of CrPC	Nil	Nil
6.	Cases before the State Appellate Authority	11	06
7.	Cases before the National Green Tribunal	40	32
8.	Misc. Cases	Nil	Nil
	Total	130	89

N.B: *Include cases carried over from the previous years:

CHAPTER - VII

FINANCE AND ACCOUNTS

The estimated and the actual receipts during 2020-21 are given in Table-7.1. Table-7.2 reflects the details of budget provision and actual expenditure incurred during the year 2020-21.

Table - 7.1RECEIPTS OF THE BOARD FOR THE F.Y-2020-21

		(Rupe	es in Lakhs)
Sl No.	Head of Receipt	Budget for 2020-21	Amount
A.	Board's Own Receipt		
1	Consent to Operate Fees.	3998.64	6167.17
	a. Pre-paid Consent to Operate Fees	3298.64	3298.64
	b. Consent to Operate Fees	700.00	2868.53
2	Consent to Establish Fees	1200.00	1358.02
3	Misc.Receipts (Registration fees for PWM,Batteries, Empanelment of consultant fees, RTI,HRD(Board),auction sale etc.)	10.00	72.57
4	Analysis Charges	4.00	2.14
5	Recovery of Loans & Others	15.00	21.57
6	Public Hearing Fees	25.00	38.75
7	Hazardous Waste Auth. Fees	25.00	32.07
8	BMW Authorisation Fees.	15.00	21.08
9	Interest on Savings/Advances	2000.00	2273.49
	Sub-Total	7292.64	9986.86
B.	Environmental Compensation Fund		0.00
1	Pollution Charges	12.00	99.15
2	Forfeiture of Bank Guarentee	5.00	4.13
3	Environmental Penalties	410.00	486.13
	Sub-Total	427.00	589.41
C.	Grants-in-Aid from MoEF & C.C/CPCB.	304.85	304.85
1	For Scheme "Control Of Pollution"	304.85	304.85
D.	Receipt of Projects/Schemes.	2705.76	1338.27
	Grand Total	10730.25	12219.39

Table - 7.2 Expenditure during the Financial Year 2020-21 (Rupees in lakhs)

			(R	Supees in lakhs)
Sl No.	Source of Funding	Head of Account	Budget	Expenditure
		1. Salary	2001.00	1604.94
		2. Recurring Exp.	687.00	495.95
	Do andla Orum Do asimt	3. Loans & advances	17.00	11.00
A	Board's Own Receipt	4. Non Recurring	991.50	620.28
		5. Projects	786.50	175.10
		Sub Total	4483.00	2907.27
		1. Pollution Charges	0.00	0.00
В	Environmental	2. Forfeiture of Bank Gaurantee	0.00	0.00
В	Compensation Fund	3. Environmental Penalties:	24.00	22.46
		Sub Total	24.00	22.46
		Salary & Establishment Expenditure	150.00	150.00
		2. E-goverance & IT Operations	32.00	30.58
C	GRANTs-IN-AID From MoEF &	3. Pollution Assessment and R& D Activities	90.00	80.69
	C.C/CPCB.	4. Laboratory Development	78.00	29.45
		5. Management of Polluting sources	4.20	4.15
		6. Training & Mass Awarness	9.00	8.71
		Sub Total	363.20	303.58
D	Receipt of Sponsored Projects/Schemes.		2738.86	1008.11
		Grand Total	7609.06	4241.43

CHAPTER - VIII

OTHER IMPORTANT ACTIVITIES

8.1 COASTAL WATER (PARADEEP TO DHAMARA) MONITORING AND ANALYSIS

Coastal Water Monitoring and Analysis are being made regularly since April 2014 on quarterly/seasonal basis by the Coastal Management Cell for the assigned monitoring area i.e. from Paradeep (20°10'02.67"N; 86°31'22.63"E) to Dhamara coast (20°5'58.96N; 86°58'12.27E), covering nearly 80 KM in the sea. All samplings have been made from on-shore and off-shore sampling points with the help of trawler as well as monitoring vessel (MV Sagar Utkal. Seventy three (73) sampling locations have been selected for the entire monitoring area (Mahanadi transect-32 points, Dhamra transect-17 points and Gahirmatha-Bhitarkanika transect-24 points).

The details of monitoring conducted during 2020-21 by the ICZM Cell are given in table below.

Table-8.1

Year/ Monitoring Quarter	Period	Duration of sampling	Name of Stretch/Zone	No. of Water samples collected	No. of Sediment samples collected
2020/Q2	July- October	August-2020	Paradeep (Z-1)	96	Nil
2020/Q2	July- October	September-2020	Paradeep (Z-1)	454	12
2020/Q3	October - November	November-2020	Bhitarakanika- Gahirmatha (Z-2)	256	26
		November-2020	Dhamara (Z-3)	216	Nil
		December-2020	Dhamara (Z-3)	366	12
2020/Q4	December- February	December-2020	Bhitarakanika- Gahirmatha (Z-2)	428	6
		December-2020	Paradeep (Z-1)	132	6
2021/Q4	December- February	January-2021	Paradeep (Z-1)	944	50
2021/Q4	December- February	March-2021	Gahirmatha- Bhitarakanika (Z-2)	208	14
		Total	no. of samples collected	3100	126

Parameters analysed for the water samples include pH, Conductivity, Total Suspended Solid, Total Dissolved solid, Turbidity, Fluoride, Dissolved Oxygen, Biochemical Oxygen Demand, Alkalinity, Salinity, Nitrite, Nitrate, Ammonia, Silicate, Ortho-phosphate, TOC, TIC, heavy metals(V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Pb, Cd, Hg), PAH, Pesticides, Total Coliform, Fecal Coliform, Chlorophyll-a, Chlorophyll-b, Chlorophyll-c, Total Chlorophyll, Phaeophytin pigment, Carotenoid, Phytoplankton and Zooplankton.

Parameters analysed for the sediment samples include pH, TOC, TIC, heavy metals, composition of sediment (sand, silt and clay), Macro Benthos and Meio Benthos.

Some photographs during sampling in vessel are given below:

Monitoring of Coastal water under National Water quality Monitoring Programme (NWMP)

The coastal water monitoring has been commenced by ICZM cell from January 2021 for 91 locations under NWMP covering 6 coastal districts viz., Ganjam, Puri, Jagatsinghpur, Kendrapara, Bhadrak and Balasore along 480 KM coast line of Odisha. The assessment of the suitability of coastal water quality for different

uses of the coastal segment has been proposed based on the "Water Quality Standards for Coastal Waters Marine Outfalls" (G.S.R. 7(E) dated 22.10.1998 and subsequent amendment vide G.S.R. No. 682 (E) dated 05.10.1999). In total, 130 samples were collected and analysed during the month of January and March 2021 in coastal district Jagatsinghpur (100 no.) and Bhadrak (30 no.), respectively.

8.2 FLYASH RESOURCE CENTRE (FARC)

Fly Ash Resource Centre (FARC) is functioning in the Board since June'2013 as per the decision of High Level Committee, chaired by the Chief Secretary, Govt. of Odisha. During 2020-21, about 3,56,05,668 MT of fly ash has been generated, out of which about 90.58% has been utilised.

The mandate of the FARC is to enhance the utilisation of fly ash in the State by facilitating and exploring various options such as brick manufacturing, cement, asbestos manufacturing, quarry filling, coal mine void filling, dyke height raising, land development, road making etc. The Board has also taken up awareness programme from time to time among the stakeholders. FARC has prepared the following guidelines which are available in the Board's website.

- a. Guidelines for Manufacturing of quality Fly Ash Bricks
- b. Guidelines for Low lying area filling with fly ash
- c. Guidelines for Use of Fly ash Tiles in canal lining
- d. Best Practices in Fly ash utilization
- e. Fly ash in Road construction

8.3 UNIDO-GEF-Funded MoEF Project on Biomedical Waste (BMW) Management

Odisha is one of the five States in the Country (Other States are Maharashtra, Gujarat, Punjab, Karnataka) implemented UNIDO-GEF-Funded MoEF Project on Biomedical Waste Management. SPC Board has been designated by the State Govt. as the Nodal Agency and the Board has signed the contract with UNIDO. The project is implemented in 28 Health Care Establishments (HCEs) including three Govt. Medical Colleges and Hospitals and 01 Common Bio-Medical Waste Treatment Facility (CBMWTF) Govt. of Odisha is co-financing the project.

The achievements of the project in implementing best BMW management in the State are as follows

14 qualified manpower have been provided to 03 large Medical College & Hospitals, State Bio-Medical Waste Cell in H & FW Dept., 06 District Head Quarters Hospitals and at SPCB, Bhubaneswar through outsourcing agency designated as Project Officers who exclusively deal with Bio-medical Waste Management

Regular training has been imparted to waste handlers and staff associated with Bio-medical waste handling.

Due to regular surveillance, the Bio-medical Waste Management practice in the aforesaid 9 Govt. HCEs has shown considerable improvement, particularly the practice of segregation of bio-medical wastes.

Colour-coded bins (3330 nos.) and waste collection trolleys (240 nos) have been provided to the identified 28 HCEs.

Capacity building of Medical Officers, Nurses, Paramedical Staff, Waste Handlers and related stockholders has been made.

Training has been imparted online to Health Care Personnel dealing with Bio-Medial Waste Management in the Hospital.

Training Guidelines / Manuals on environmetally sound management of Bio-Medical Waste for Doctors, Nurses, Nodal Officers and Waste Managers, Trainers Guide for training, Information Handbook on Bio-Medical Waste for Administrators, Training manual of Waste Handlers, SOPs and Posters have been prepared.

The training manuals have been translated into Odia language and circulated among all stakeholders.

Five microwaves and 05 shredders have been provided to 4 nos. of large medical college and hospitals namely SCB Medical College and Hospital, Cuttack; VIMSAR, Burla; MKCG Medical College and Hospital, Berhampur; and SUM Hospital, Bhubaneswar under the project.

Specification of PPE, Mercury Spill Kit, Biological Spill Kit and Needle Syringe Destroyer has been prepared and shared with all identified hospitals to procure it from their user fund.

The CBMWTF (M/s Sani Clean Pvt. Ltd., Tangiapada, Khordha) has upgraded its incinerator with residence time in the secondary chamber. Emision of dioxin and furans meet the prescribed standard.

8.4 OBSERVATIONS DURING DIFFERENT FESTIVALS

8.4.1. Impact of Festive Activities during Dussehra and Deepavali on Noise level and Ambient Air Quality (AAQ) of selected towns and cities of Odisha.

State Pollution Control Board, Odisha has taken pro-active measures to published public notices in two English and one Odia newspaper on dtd:-20.10.2020 to create public awareness on ill effects of noise and bursting of fire crackers.

Later Govt. of Odisha is the first state in India had prohibited the sale and use of fire crackers from 10th to 30th Nov-2020 in the public interest considering the potentially harmful consequences of burning of crackers amidst COVID-19 pandemic situation people usually burn fire crackers on the occasion of Deepawali & Kartika Purnima Festival. To assess the impact of Dussehra and Deepawali on ambient air quality, the Board has conducted monitoring of Noise Level on 'pre' and "on the day of Dussehra" and Deepawali at 14 towns/cities of the State as well as ambient air quality monitoring with respect to PM₁₀, PM_{2.5}, SO₂& NO₂ in 17 towns/cities on 'pre' and "on the day of Deepawali" along with continuous ambient air quality monitoring in two locations of the capital city Bhubaneswar with respect to parameters like PM₁₀, PM_{2.5}, SO₂& NO₂ and Heavy metals like, Pb, Ni & As in PM₁₀&, Al, Ba & Fe in PM_{2.5} as sought for by CPCB. The ambient air quality data of Deepawali has already been sent to CPCB in scheduled time for submission before Hon'ble Supreme court.

The findings of the monitoring results are summarized and presented in Tables 8.2 to 8.4. The ambient noise level as well as air monitoring results of 'pre' and 'during' and continuous air quality monitoring on eve of Deepawali for the year -2020 are compared with the data of -2019 and presented in Table 8.6.

IMPACT OF DUSSEHRA FESTIVAL CELEBRATION ON AMBIENT NOISE LEVEL

State Pollution Control Board, Odisha has conducted ambient noise monitoring at 53 locations in 14 towns/cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur covering Industrial, Commercial, Residential and Silence zone during day and night time in pre and during Dussehra to assess the impact of Dussehra festival on ambient noise level. Out of 53 locations, 11 were in Industrial, 14 each were in commercial, residential and silence zone respectively.

I. Industrial Zone

The noise level in day time at all locations in pre & on the day of Dussehra were below the prescribed limit i.e., 75 dB (A) Leq except at RSP. Sail, Rourkela in pre Dussehra with noise level 75.4 dB(A) Leq.

During night time, the noise level were below the prescribed limit i.e., 70 dB (A) Leq at all locations except at Kalinganagar Industrial Estate in pre Dussehra with noise level 71.7 dB(A) Leq.

II. Commercial Zone

The noise level in day time on pre & during Dussehra at all locations were above the limit i.e. 65dB(A) Leq except at two locations in pre Dussehra Sahidnagar, Bhubaneswar & Jhandachowk, Jharsuguda and at two locations i.e NAC market, Konark and Ambagaan ,Rourkela in both pre & during Dussehra were below the prescribed limit. The maximum noise was recorded at Gopabandhu chowk, Kalinganagar i.e., 79.5 dB(A) Leq on pre-Dussehra.

The noise level in night time exceeded the limit i.e.,55 dB (A) Leq at all locations in pre & on the day of Dussehra except at Sahidnagar, Bhubaneswar, Jhanda chowk, Jharsuguda & NAC Market, Konark, on pre Dussehra and Bazar chowk, Angul & Ambagaan, Rourkela in both pre & during Dussehra. The maximum noise level was recorded i.e., 75.9 dB (A) on pre-Dashera at Gopabandhu chowk, Kalinganagar.

III. Residential Zone

The noise level in the day time exceeded the limit i.e. 55 dB (A) Leq in both pre & during Dussehra at all locations except at Sahadevkhunta, Balasore and Madhipur, Konark on pre Dussehra. Madhipur Konark and Ainthapali, Sambalpur during Dussehra. The maximum noise level occurred at Kumutisahi, Old sadar lane, Puri i.e., 73.2 dB (A) Leq in day time on the day of Dussehra.

During night time, the noise level in pre & during Dussehra were more than the limit i.e., 45 dB (A) Leq at all locations except at Sahadevkhunta, Balasore, on pre Dussehra. Madhipur, Konark, Amalapada, Angul and Brahmanagar, Berhampur on the day of Dussehra. The maximum noise level occurred i.e., 69.3dB (A) Leq at Suryavihar, Cuttack during Dussehra.

IV. Silence Zone

The noise level in day time & night time at all locations were above their respective limit i.e., 50 dB (A) Leq & 40 dB (A) Leq respectively except at Public Health Centre, Konark & IGH steel Township, Rourkela in day time in pre Dussehra. Public Health Centre, Konark and District Head Quarter Hospital, Balasore on the day of Dussehra. The Maximum noise level i.e., 70.9 dB (A) Leq in day time on pre and 70.4 dB (A)Leq in night time were occurred at SCB Medical College & Hospital, Cuttack on the day of Dussehra.

Table-8.2 Noise level in dB(A) Leq at different locations on pre and on Dashera day during the year 2020

Sl.		le year 2020	Dra F	ashera	On the d	ay of Dashera
No	Towns/Cities	Monitoring Locations	D Pre L	N N	D the d	ay of Dashera N
110		1.Amalapada(R)	58.3	46.3	61.3	40.7
		2.Bazar chhak(C)	78.4	50.1	69.8	49.4
1.	Angul	3.District Head Quarter Hospital(S)	60.1	46.5	59.1	44.3
		4.Hakimpada(I)	63.7	54.7	60.7	52.4
		5.Sahadevkhunta(R)	53.0	43.8	58.7	48.2
2.	Balasore	6.Motiganj Bazar(C)	74.2	56.2	74.9	65.3
		7.District Head Quarter Hospital(S)	54.5	44.9	49.5	49.6
		8.Balasore Industrial Estate(I)	57.4	53.2	51.5	42.9
		9.Brahmanagar(R)	56.9	54.4	56.9	43.3
3.	Berhampur	10.Girija market square(C)	70.0	66.4	77.8	61.5
	1	11.MKCG Medical & Hospital(S)	62.6	58.4	70.0	49.0
		12.Ankuli(I)	66.1	56.2	66.6	58.8
		13.Nayapalli(R)	59.7	49.0	68.3	58.1
4.	Bhubaneswar	14.Sahidnagar(C)	64.4	49.1	72.4	64.6
		15.Capital Hospital(S)	51.3	41.1	56.5	46.4
		16.Rasulgarh(I)	66.4	52.1	69.0	62.3
		17.Suryavihar(R)	69.9	69.3	67.2	64.2
5.	Cuttack	18.Badambadi(C)	72.9	71.1	72.1	67.3
٥.	Cuttuck	19.SCB Medical College & Hospital(S)	70.9	70.4	63.3	65.2
		20.Khapuria(I)	73.0	69.4	63.8	63.2
		21.Cox Colony(R)	67.2	58.6	62.3	63.1
6.	Jharsuguda	22.Jhanda Chowk(C)	60.6	47.7	68.2	61.1
0.	Jilaisuguda	23.District Head Quarter Hospital(S)	51.7	46.6	55.4	45.3
		24.Bombay Chowk(I)	62.4	58.2	65.6	64.8
		25.Sapagadia(R)	66.4	64.7	71.0	60.6
7.	Kalinganagar	26.Gopabandhu Chowk(C)	79.5	75.9	74.3	73.1
/.	Kannganagai	27.CHC Hospital, Jajpur Road(S)	63.8	61.5	66.8	60.0
		28.Kalinganagar Industrial Estate(I)	72.2	71.7	74.6	66.0
		29.Baniapat Chowk(R)	66.4	59.6	68.1	60.3
0	V:1	30.Punjabi Chowk(C)	67.6	67.7	70.6	59.8
8.	Keonjhar	31.Govt.Hospital(S)	63.8	43.3	60.2	48.0
		32.Drupada I/E(I)	73.5	69.8	68.7	62.5
		33.Madhipur(R)	46.5	45.8	46.0	44.0
9.	Konark	34.NAC Market(c)	58.8	54.2	64.4	57.0
		35.Public Health Centre(S)	47.8	46.9	50.0	49.9
		36.Near Police Colony(R)	66.4	62.1	68.9	63.8
10.	Paradeep	37.LIC Building Jagatsinghpur(C)	65.6	59.5	79.1	68.2
		38.District Head Quarter Hospital(S)	70.9	62.0	68.9	65.9
		39.Kumutisahi, Old Sadar lane(R)	66.0	60.5	73.2	62.5
11.	Puri	40.Sri Mandir(C)	75.2	65.0	78.5	66.0
		41.District Head Quarter Hospital(S)	64.5	60.0	67.5	58.5
		42.Indira Nagar(R)	69.8	64.2	64.1	57.3
	D 1	43.Near Main Market(C)	71.3	67.8	74.1	71.6
12.	Rayagada	44. District Head Quarter Hospital (S)	63.9	61.7	70.1	62.4
		45.Near Jesco(I)	70.6	66.1	71.9	59.6
		46.Sector-6(R)	66.4	62.1	57.5	47.0
		47.Amwargan(C)	62.9	52.5	62.9	53.6
13.	Rourkela	48.IGH steel Township(S)	45.1	41.9	52.1	44.3
		49.RSPL Sail(I)	75.4	59.1	68.9	68.5
		50.Ainthapali(R)	57.9	51.4	53.3	51.9
	l	51.Golebazar(C)	72.8	62.9	74.9	68.2
14.	Sambalpur	52.District Head Quarter Hospital(S)	56.9	49.8	58.5	58.4
		53.Bareipali(I)	59.6	52.7	57.3	55.3
		1 1/	1			

 $N.B\text{:-}D\text{-}Day\ Time\ monitoring\ period\ (6PM\ to\ 10PM),} N-Night\ Time\ monitoring\ period\ (10PM\ to\ 12.00\ AM)$

IMPACT OF DEEPAWALI CELEBRATION ON AMBIENT NOISE LEVEL

State Pollution Control Board, Odisha has conducted ambient noise level monitoring at 53 locations in 14 towns/cities i.e., Angul, Balasore, Berhampur, Bhubaneswar, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rourkela and Sambalpur town/cities of Odisha covering Industrial, Commercial, Residential and Silence Zone in the day and night time in pre & on the day of Deepawali to assess the impact of noise on ambient air quality. Out of 53 locations, 11 locations were in Industrial zone, 14 locations were in commercial, residential and silence zone respectively. The findings of the monitoring are summarized below and results are presented in Table-8.3.

I. Industrial Zone

The day time noise levels in the pre and during Deepawali were found below the prescribed standard of 75dB (A) Leq at all locations except one location at Kalinganagar Industrial Estate on pre Deepawali with noise level 77 dB (A).

In night time the noise level in pre and during Deepawali were within the prescribed standard of 70dB (A)Leq at all locations except at Kalinganagar Industrial Estate & RSP, Sail, Rourkela in pre-Depawali and Jesco, Rayagada on the day of Deepawali. The maximum noise level observed at Kalinganagar Industrial Estate i.e., 81.3 Leq dB(A).

II. Commercial Zone

The day time noise level in pre & on the day of Deepawali remained above the prescribed standard of 65 dB(A) Leq at all the locations except at Bazar chowk, Angul, NAC market, Konark and Ambagaan, Rourkela in pre & during Deepawali and Badapadia market, Paradeep on pre-Deepawali. The maximum noise level observed at Sri Mandir, Puri i.e 78.2 dB (A) Leq on pre-Deepawali.

In night time the noise level in pre and during Deepawali were above the prescribed standard of 55dB (A) Leq at all locations except at Bazar chowk, Angul both in pre & during Deepawali. At NAC Market, Konark and Panjabi Chock, Keonjhar in pre- Deepawali. The maximum noise level observed at Sahidnagar, Bhubaneswar on the day of Deepawali i.e., 74.8 dB(A) Leq.

III. Residential Zone

The day time noise level in residential zone exceeded the standard of 55 dB (A) Leq at all locations in pre &during Deepawali except at Brahmanagar, Berhampur, Cox colony, Jharsuguda, Sector-6, Rourkela and Madhipur, Konark in pre Deepawali and Madhuban, Paradeep in both Pre and on the day of Deepawali. The maximum noise level observed at Baniapat chowk, Keonjhar on the day of Deepawali i.e 73.1 dB(A)Leq.

The night time noise level in residential zone exceeded the standard of 45 dB (A) Leq at all locations except at Amalapada, Angul both in pre &during Deepawali Sector-6, Rourkela, Cox colony, Jharsuguda and Madhipur, Konark in pre Deepawali and Brahmanagar, Berhampur on the day of Deepawali. The maximum noise level observed at Baniapat, Keonjhar i.e., 74.2dB(A) Leq on the day of Deepawali.

IV. Silence Zone

The day time noise level were found to be exceeding the prescribed standard of 50 dB (A) Leq at all locations except at Capital Hospital, Bhubaneswar & IGH steel township, Rourkela in pre-Deepawali and Public

health centre, Konark in both pre & During Deepawali. The maximum noise level occurred at Govt. Hospital, Keonjhar on the day of Deepawali i.e., $73.4\,\mathrm{dB}(A)\,\mathrm{Leq}$.

In night time noise level in pre & during Deepawali were found to be exceeded the prescribed standardof 40 dB (A) Leq at all locations. The maximum noise level observed at CHC Hospital, Kalinganagar i.e., 67.7dB(A) Leq on pre Deepawali.

Table-8.3 Noise level in dB(A) Leq at different location in pre Deepavali & Deepavali day during the year 2020

Sl.No	Towns/ Cities	Monitoring Locations		eepawali 1.2020)	On the or Deepa (14.11.2	wali
			D	N	D	N
		1.Amalapada(R)	59.0	43.2	63.5	42.6
1	Angul	2.Bazar chhak(C)	60.9	40.4	62.2	40.5
1	Aligui	3.District Head Quarter Hospital(S)	68.9	50.7	70.0	52.3
		4.Hakimpada(I)	63.4	55.1	64.8	54.7
		5.Sahadevkhunta(R)	56.2	46.4	64.2	49.2
2	Balasore	6.Motiganj Bazar(C)	72.7	65.8	76.1	67.2
2	Dalasole	7.District Head Quarter Hospital(S)	55.5	46.1	57.8	50.0
		8.Balasore Industrial Estate(I)	59.9	47.7	63.8	54.8
		9.Brahmanagar(R)	52.9	45.4	63.8	44.9
2	D1	10.Girija market square(C)	69.1	63.1	75.5	65.7
3	Berhampur	11.MKCG Medical & Hospital(S)	60.4	53.2	55.9	53.2
		12.Ankuli(I)	64.7	54.0	60.5	52.7
		13.Nayapalli(R)	65.4	53.0	65.5	58.0
4	Bhubanesw	14.Sahidnagar(C)	74.1	57.5	73.2	71.8
4	ar	15.Capital Hospital(S)	48.9	45.9	56.5	46.8
		16.Rasulgarh(I)	67.6	56.5	73.6	66.2
		17.Suryavihar(R)	64.7	64.5	67.3	70.3
5	C41-	18.Badambadi(C)	67.0	72.5	70.7	68.2
3	Cuttack	19.SCB Medical College(S)	65.1	53.4	63.5	66.5
		20.Khapuria(I)	66.5	64.1	65.9	59.3
		21.Cox colony(R)	53.0	39.5	67.2	57.4
6	T1 1.	22.Jhanda Chowk(C)	65.3	63.4	71.1	71.8
6	Jharsuguda	23.covid Hospital(S)	61.8	55.1	65.1	64.9
		24.Bombay Chowk(I)	68.4	48.0	64.3	64.7
		25.Sapagadia(R)	65.1	72.5	63.4	58.7
7	Kalinganag	26.Gopabandhu Chowk(C)	77.4	72.9	75.3	60.9
7	ar	27.CHC Hospital(S)	66.9	67.7	66.5	63.5
		28.Kalinga nagar industrial estate (I)	77.0	81.3	70.4	60.1
		29.Baniapat Chowk(R)	60.6	52.0	73.1	74.2
8	Keonjhar	30.Punjabi Chowk(C)	68.0	54.6	71.5	60.4
		31.Govt.Hospital(S)	67.1	62.1	73.4	67.6
		32.Madhipur(R)	47.1	44.2	56.1	46.1
9	Konark	33.NAC Market(C)	57.7	53.3	60.6	56.4
		34.Public Health Centre(S)	48.4	46.6	45.5	42.9

		35.Madhuban(R)	50.8	55.9	54.0	59.0
10	Donadaan	36.Badapadia Market(C)	63.5	65.5	65.7	58.9
10	Paradeep	37.Bijumemorial Hospital(S)	57.1	51.0	63.8	54.3
		38.IFFCO Ltd(I)	59.4	56.3	64.7	61.6
		39.Kumutisahi, Old Sadar lane(R)	71.2	58.5	63.6	55.7
11	Puri	40.Near Sri Mandir(C)	78.2	66.5	75.3	63.8
		41.District Head Quarter Hospital(S)	65.5	58.5	61.7	53.9
		42.Indiranagar(R)	68.3	62.6	68.3	65.9
12	Rayagada	43.Main market(C)	68.2	59.8	72.1	61.8
12	Kayagada	44.District Head Quarter Hospital(S)	59.3	61.9	63.7	61.4
		45.Jesco(I)	70.7	62.6	70.2	71.4
		46.Sector-6(R)	48.6	39.0	67.3	57.4
13	Rourkela	47.Ambagaan(C)	60.5	60.1	61.9	66.7
13	Kourkeia	48.IGH steel Township(S)	48.6	47.8	55.9	52.4
		49.RSPL Sail(I)	71.1	72.0	60.7	59.8
		50.Ainthapali(R)	58.9	58.1	64.9	59.9
14	Sambalpur	51.Golebazar(C)	73.2	65.2	73.5	72.9
14		52.District Head Quarter Hospital(S)	54.7	51.3	58.9	58.7
		53.Bareipali(I)	59.1	53.8	66.8	55.5

N.B:-D-Day Time monitoring period (6PM to 10PM), N-Night Time monitoring period (10PM to 12.00 AM)

IMPACT OF DEEPAWALI CELEBRATION ON AMBIENT AIR QUALITY

State Pollution Control Board, Odisha has monitored the Ambient Air Quality on pre & on the day of Deepawali at 37 locations in 17 town/cities of Odisha i.e., at Angul, Balasore, Berhampur, Bhubaneswar, Bonaigarh, Cuttack, Jharsuguda, Kalinganagar, Keonjhar, Konark, Paradeep, Puri, Rayagada, Rajgangpur, Rourkela, Sambalpur & Talcher with respect to parameters like SO₂, NO₂ PM₁₀(at 35 locations)& PM_{2.5} (at 29 locations) to assess the impact of brusting of fire crackers on the local ambient air quality.

The $SO_2\&NO_2$ values on pre & during Deepawali remained below the prescribed limit i.e $80\mu g/m^3$ (for both $SO_2\&NO_2$ on 24 hourly average basis) at all 37 locations. The maximum SO_2 value i.e., 25.7 $\mu g/m^3$ observed at STP building, IFFCO and maximum NO_2 value i.e., 33.8 $\mu g/m^3$ observed at Modipara, Sambalpur. The respirable dust particle matter (PM_{10}) values were below prescribed limit of $100\mu g/m^3$ on 24 hourly average basis at 11 locations on the day of Deepawali (out of 34 locations) and at 22 locations on pre Deepawali (out of 35 locations) whereas $PM_{2.5}$ values were remained below the prescribed limit i.e $60~\mu g/m3$ 24 hourly average basis at 23 locations on the day of Deepawali (out of 29 locations) and at 27 locations on pre Deepawali (out of 28 monitoring locations). However, 09 locations on pre and 08 locations during Deepawali were not monitored. On the day of Deepawali maximum PM_{10} value i.e., $171\mu g/m^3$ observed at PPT, staff quarters Paradeep. The maximum $PM_{2.5}$ value i.e., $99~\mu g/m^3$ observed at Palasuni water works, Bhubaneswar. The concentration of gaseous pollutants like SO_2 , NO_2 , $PM_{10}\&PM_{2.5}$ shows insignificant increase on the day of Deepawali compared to pre Deepawali concentration at all locations. This indicates minimal impact of bursting of fire crackers on the air quality due to prohibition on sale and use of fire crackers by Govt. of Odisha. The monitoring results are shown in Table no-8.4.

Table-8.4 Ambient Air Quality status of major cities/towns in the pre & during Deepavali-2020

Sl.	Towns/cities	ient Air Quality status of major citi Monitoring Locations	23/10/11	s in the		rameter]	_			
No		g	S	O_2		O ₂		M_{10}	P	M _{2.5}
				Values as	re expres	sed in mi		per cubi		
			Pre	During	Pre	During	Pre	During	Pre	During
1	Angul	1. RO, SPCBOffice Building	9.4	13.2	25.3	29.6	94	111	43	51
1	ringui	2. Nalco Township	9.6	12.9	23.6	27.4	101	111	25	36
		3.Ganeswarpur	BDL	BDL	10.3	11.1	82	88	33	41
2	Balasore	4.Oriplast, OT Road	BDL	BDL	11.3	11.2	84	85	37	54
		5.Rasalpur Industrial Estate	7.7	7.8	11.3	11.7	89	92	41	46
		6.Brahmanagar	5.5	6.4	18.6	20.2	42	48	23	24
3	Berhampur	7.Girija market square	8.3	9.5	20.8	30.2	75	85	26	32
3	2 Cinampai	8.MKCG Medical College& Hospital	7.1	9.3	17.9	22.5	68	79	16	22
		9.Industrial Estate, RO office	5.7	8.1	19.6	23.4	54	79	22	20
		10.RO,SPCB Office Building	BDL	4.2	17.0	19.0	80	136	46	56
		11.IRC Nayapalli	BDL	BDL	15.4	19.5	100	99	N M	NM
4	Bhubaneswa	12.Capital Police Station			Not	Monitor	ed			78
	r	13.Patrapada	BDL	BDL	15.3	18.7	90	160	31	64
		14.Chandrasekharpur	BDL	BDL	15.0	21.6	107	112	31	58
		15.Palasuni water works	BDL	NM	12.0	NM	97	NM	72	99
5	Bonaigarh	16.Govt. Hospital Bonai	8.7	15.4	12.4	17.6	68	117	28	46
		17. PHD Office near Barabati Stadium	4.1	BDL	18.4	19.8	109	113	42	46
6	Cuttack	18. RO, SPCBOffice Building Suryavihar	BDL	BDL	19.7	20.7	106	129	46	42
		19.Hotel Bishal Inn near Traffic Tower Badambadi			Not Mo	onitored			36	34
7	Jharsuguda	20. RO, SPCB OfficeBuilding, Cox Colony, Babubagicha	7.7	16.3	12.3	18.2	89	116	51	72
8	Kalinganagar	21. DET Hostel,M/S Tata steel	BDL	BDL	18.0	19.2	114	124	NM	NM
9	Keonjhar	22 RO, SPCBOffice Building	BDL	BDL	16.2	19.2	99	105	NM	NM
10	Konark	23. Konark Police Station	BDL	BDL	13.6	13.8	82	82	NM	NM
		24. STP Building, IFFCO,	19.4	25.7	12.7	18.1	153	164	NM	NM
11	Paradeep	25. PPL Guest House,	20.9	25.2	11.7	18.2	161	168	NM	NM
		26. PPT Staff Quarters,	19.5	24.3	10.1	16.2	171	171	NM	NM
12	Puri	27.Town Police Station	BDL	BDL	14.9	19.3	82	105	NM	NM
13	Rayagada	28. RO, SPCBOffice Building	4.7	7.7	16.6	17.8	69	93	39	67
13	Kayagaua	29.LPS High School	5.0	7.0	17.1	17.1	72	87	41	56
14	Rajgangpur	30.DISIR Rajgangpur	6.4	17.0	11.9	18.4	98	124	33	45
		31. RO, SPCBOffice Building	7.8	16.4	12.4	18.4	136	107	60	47
15	Rourkela	32.IDL Police Outpost	6.4	16.2	12.3	18.1	74	108	45	47
		33.IDC Kalunga	7.9	16.4	11.8	18.4	141	167	36	58
		34. Kuarmunda Hospital,	7.7	18.0	11.5	19.7	118	137	44	52
16	Sambalpur	35.Modipara	7.6	9.3	26.2	33.8	91	108	48	68
17	Talcher	36.Talcher Thermal	11.9	13.1	27.4	30.6	111	125	46	51
1 /		37. MCL area, Talcher	8.5	12.4	25.1	29.2	115	120	37	48
	Standa	ard on 24hrly avg. Basis	8	30	8	30	1	00		60

N.B-BDL-Below Detection Limit,BDL value for SO2 =4 $\mu g/m^3,$ NM-Not Monitored

Comparison of Ambient Air Quality and Ambient Noise Level during Deepawali for the year-2019 and 2020

Ambient Air and Ambient Noise monitoring results during Deepawali for the year 2020 has been compared with the year 2019 and the results are presented in Table-8.5 & 8.6.

Ambient Air Quality During Deepawali Festival

It was observed that the gaseous pollutants like SO_2 & NO_2 in both the years during Deepawali were below the prescribed limit i.e., $80\mu g/m^3$.

Respirable Particulate Matter (PM_{10}) remained above the limit (i.e $100\mu g/m^3$ on 24 hourly avg. standard) at all locations except at 04 locations in the year-2019 and 11 locations in the year 2020. PM_{10} values in the year 2020 were in increasing trend at 08 locations and decreasing trend at 26 monitoring locations in comparison to the year, 2019. The concentration of PM_{10} for the year 2019 was in the range of 77 to 266 $\mu g/m^3$ and for the year 2020 it was 48 to $171\mu g/m^3$.

Fine Particulate Matter ($PM_{2.5}$) values remained above the limit i.e., $60\mu g/m^3$ at 19 locations out of 29 locations in the year 2019 whereas in the year 2020, $PM_{2.5}$ values remained below the limit at 22 locations out of 28 locations. In the year 2020 $PM_{2.5}$ values were observed to be in increasing trend at 04 locations and decreasing trend at 25 monitoring locations during the year 2019. The range of $PM_{2.5}$ for the year 2019 was from 34 to 164 $\mu g/m^3$ whereas for the year 2020 it was from 22 to 99 $\mu g/m^3$. Comparative figures for the year 2019 & 2020 are shown in table no-8.5.

Ambient Noise level During Deepawali Festival

On comparison of ambient noise data for the year 2019 & 2020, it was observed that during Deepawali-2020, the noise level at 52 locations were in decreasing trend in day time and at 46 locations in night time compared to the result of Deepawali Day of year 2019. The range of Noise level in day time for the year 2019 was from 57.4 to 87.5 Leq dB(A) and for the year 2020, it was from 45.5 to 76.1. Similarly, in night time the noise level in the year 2019 varied from 51.8 to 84.1 and for 2020 it was in the range of 40.5 to 72.9 Leq dB(A). The results of noise level observed in 2019 & 2020 are presented in Table- 8.6.

Table-8.5 Ambient Air Quality of Deepawali festival during the year 2019 & 2020 in Odisha

			Pa	rameter	Monito	red	P	arameter	Monttore	d	
S1.	Towns/	Monitoring Locations	SO ₂	NO ₂	PM_{10}	PM2.5	SO ₂	NO ₂	PM ₁₀	$PM_{2.5}$	
No	cities	Monitoring Locations		Value	s are exp	ressed in	ı microgra	am per cu	bic meter		
				20	19			2020			
1	Angul	1. RO, SPCB Office Building	19.1	31.2	189	84	13.21	29.6	1111	511	
-		2. Nalco Township	15.4	34.1	222	60	12.9	27.4	1111	361	
		3.Ganeswarpur	BDL	12.0	103	62	BDL=	11.11	881	411	
2	Balasore	4.Oriplast, OT Road	BDL	12.9	113	70	BDL=	11.2	85↓	541	
		5.Rasalpur Industrial Estate	9.0	13.6	115	75	7.81	11.7↓	92↓	46Į	
		6.Brahmanagar	10.5	45.6	92	45	6.41	20.2	481	241	
		7.Girija market square	14.2	48.5	110	55	9.51	30.2↓	85↓	321	
3	Berhampur	8.MKCG Medical College & Hospital	8.5	40.2	88	44	9.3↑	22.5↓	79↓	22.1	
		9.Industrial Estate, RO office	10.2	50.2	104	65	8.11	23.4↓	79↓	201	
4	Bhubaneswar	10.RO, SPCB Office Building	4.3	20.2	218	110	4.21	19.0	136↓	561	

	1	11.IRC Nayapaffi	4.9	22.1	234	129	BDL	19.51	99↓	NM
		12.Capital Police Station	7.1	25.0	206	37	N	ot Monitor		781
		13.Patrapada	4.3	26.0	164	34	BDL↓	18.7↓	1601	641
		14.Chandrasekharpur	5.7	21.2	244	83	BDL	21.61	1121	58,
		15.Palasuni water works	6.9	21.2	110	40	NM.	NM.	NM	991
5	Bonaigarh	16.Govt. Hospital Bonai	12.1	19.6	177	83	15.4↑	17.6↓	1171	46,
		17. PHD Office near Barabati Stadium	4.2	19.1	112	NM	BDL	19.8↑	113†	46.
6	Cuttack	18. RO, SPCB Office Building Suryavihar	9.9	42.3	159	94	BDL↓	20.7↓	1291	42.
		19.Hotel Bishal Inn near Traffic Tower Badambadi	8.1	31.1	235	97	N	ot Monitor	ed	34.
7	Jharsuguda	20. RO, SPCB OfficeBuilding, Cox Colony, Babubagicha	30.6	44.8	167	97	16.3↓	18.2↓	1161	72.
8	Kalinganagar	21. DET Hostel, M/S Tata steel	4.9	25.9	179	NM	BDL↓	19.2↓	124Ļ	N
9	Keonjhar	22 RO, SPCB Office Building	BDL	25.1	212	NM	BDL=	19.2↓	105‡	NI
10	Konark	23. Konark Police Station	BDL	13.8	77	NM	BDL=	13.8=	82↑	NM
		24. STP Building, IFFCO,	26.2	18.1	139	NM	25.7↓	18.1=	164†	NI
11	Paradeep	25. PPL Guest House.	24.9	17.9	134	NM	25.2↑	18.2↑	1681	N
		26. PPT Staff Quarters,	26.6	19.2	139	NM	24.3	16.21	171†	NA
12	Puri	27.Town Police Station	5.3	22.4	163	91	BDL	19.31	1051	N
	Transaction de	28. RO, SPCB Office Building	11.6	21.6	112	91	7.71	17.81	931	67.
13	Rayagada	29.LPS High School	9.4	20.5	83	61	7.01	17.11	87↑	56
14	Rajgangpur	30.DISIR Rajgangpur	18.0	22.1	132	93	17.0↓	18.4↓	1241	45
		31. RO, SPCB Office Building	15.9	21.9	178	88	16.4↑	18.4↓	1071	47.
15	Roudela	32.IDL Police Outpost	10.3	16.3	160	93	16.2↑	18.1↑	1081	47.
		33.IDC Kalunga	15.4	24.8	124	45	16.4↑	18.41	167↑	58
		34. Kuarmunda Hospital,	13.6	21.9	199	93	18.0↑	19.7↓	1371	52,
16	Sambalpur	35.Modipara	35.6	46.2	266	164	9.31	33.8↓	1081	68,
	1975	36.Talcher Thermal	13.9	31.9	116	53	13.1↓	30.6↓	125↑	51.
17	Talcher	37. MCL area, Talcher	13.7	35.0	130	51	12.4↓	29.2↓	1201	48,

†: Indicates the value is higher. 1: Indicates the value is lower. (=):Dataremained same.

Table-8.6

SI.No	Towns/Cities	Monitoring Locations		e day of vali, 2019	On the day Deepawali,	
			D	N	D	N
		1.Amalapada(R)	70.5	60.3	63.51	42.61
	An and	2.Bazar chhak(C)	75.6	67.3	62.21	40.5
1	Angul	3.District Head Quarter Hospital(S)	67.3	55.2	70.01	52.3
		4.Hakimpada(I)	67.4	59.3	64.81	54.71
		5.Sahadevkhunta(R)	77.0	58.5	64.21	49.2↓
•	D.1	6.Motiganj Bazar(C)	87.5	75.6	76.11	67.21
2	Balasore	7.District Head Quarter Hospital(S)	66.9	61.0	57.81	50.01
		8.Balasore Industrial Estate(I)	73.3	66.4	63.81	54.81
		9.Brahmanagar(R)	72.9	61.8	63.81	44.91
3	Darksman	10.Girija market square(C)	76.4	71.1	75.51	65.71
3	Berhampur	11.MKCG Medical & Hospital(S)	67.7	59.1	55.91	53.2
		12.Ankuli(I)	67.7	60.6	60.51	52.71
		13.Nayapalli(R)	67.3	60.5	65.51	58.01
4	Bhubaneswar	14.Sahidnagar(C)	70.2	61.1	67.61	59.0
-1-	Diffrontieswat	15.Capital Hospital(S)	64.2	59.2	56.51	46.81
		16.Raeulgarh(I)	69.1	61.3	68.0L	58.21

	1	17.Suryavihar(R)	73.8	70.6	67.31	70.31
5	0 11 1	18.Badambadi(C)	75.8	77.0	70.71	68.21
5	Cuttack	19.SCB Medical College(S)	68.8	67.2	63.51	66.51
		20.Khapuria(I)	75.2	75.2	65.91	59.31
		21.Cox colony(R)	77.6	83.2	67.2	57.4
6	71	22.Jhanda Chowk(C)	73.1	84.1	71.1	71.81
0	Jharsuguda	23.covid Hospital(S)	75.1	80.8	65.1	64.91
		24.Bombay Chowk(I)	74.5	80.0	64.3	64.71
		25.Sapagadia(R)	83.3	83.1	63.4	58.7
_	w. C.	26.Gopabandhu Chowk(C)	83.9	76.7	75.31	60.9
7	Kalinganagar	27.CHC Hospital(S)	73.8	79.4	66.5	63.5
		28.Kalinga nagar industrial estate (I)	76.9	74.9	70.41	60.1
	94.27G #91	29.Baniapat Chowk(R)	76.0	69.8	73.1	74.21
8	Keonjhar	30.Punjabi Chowk(C)	79.8	76.0	71.5	60.4,
		31.Govt.Hospital(S)	71.5	63.8	73.4	67.61
		32.Madhipur(R)	60.0	56.6	56.1	46.1,
9	Konark	33.NAC Market(C)	68.8	56.7	60.6	56.4
	######################################	34.Public Health Centre(S)	57.4	51.8	45.51	42.9.
		35.Madhuban(R)	71.2	67.0	54.01	59.0.
	The section of	36.Badapadia Market(C)	74.8	68.8	65.71	58.9
10	Paradeep	37.Bijumemorial Hospital(S)	71.5	63.5	63.8	54.3,
		38.IFFCO Ltd(I)	76.4	70.2	64.7	61.6
	1	39.Kumutisahi, Old Sadar lane(R)	77.3	68.3	63.6	55.7
11	Puci	40.Near Sri Mandir(C)	82.0	75.7	75.31	63.8,
	78502743035	41.District Head Quarter Hospital(S)	73.9	65.9	61.7	53.9.
		42.Indiranagar(R)	83.5	63.7	68.31	65.91
		43.Main market(C)	76.9	61.3	72.1	61.81
12	Rayagada	44.District Head Quarter Hospital(S)	77.1	75.9	63.71	61.4.
		45.Jesco(I)	79.5	66.8	70.21	71.41
	ſ	46.Sector-6(R)	70.1	56.6	67.3	57.41
	Ti anada da	47.Ambagaan(C)	73.3	60.5	61.9↓	66.71
13	Rourkela	48.IGH steel Township(S)	60.7	63.7	55.91	52.4.
		49.RSPL Sail(I)	67.3	69.3	60.71	59.8
		50.Ainthapali(R)	71.0	65.4	64.91	59.9.
	Cambalana	51.Golebazar(C)	79.9	82.6	73.51	72.9
14	Sambalpur	52.District Head Quarter Hospital(S)	67.3	72.8	58.91	58.7
		53.Bareipali(I)	75.1	72.8	66.81	55.5

.

Comparison of Continuous Ambient Air Quality monitoring results on the eve of Deepawali for the year-2019 and 2020

Continuous ambient air quality monitoring has been carried out at two locations in Bhubaneswar i.e., at (i) SPCB Office building, Unit-8 & (ii) Central laboratory, Patia, Bhubaneswar to assess the impact of pre, during and 'post Deepawali' on ambient air quality with respect to parameters like PM₁₀, PM_{2.5}, SO₂& NO₂ and Heavy metals like, Pb, Ni & As in PM₁₀&, Al, Ba & Fe. The monitoring results of the year 2020 are compared with the results of 2019 which are reflected in Table-8.7 to 8.12 & Graph-1, 2, 3 & 4.

From the Tables it was observed that the gaseous pollutants like SO_2 & NO_2 in both the years were for below the prescribed limit i.e., $80\mu g/m^3$. The concentration of SO_2 , NO_2 , PM_{10} , $PM_{2.5}$ and heavy metals (Pb, Ni, As, Al, Ba & Fe) was less during 2020 as compared to the results of 2019.

 SO_2 :- The range of SO_2 varied from BDL to 4.3 μ g/m³ in the year 2019 whereas in 2020, it was from BDL to 4.2 μ g/m³ at SPCB Office Building, Unit-8. At Central Laboratory, Patia the range of SO_2 was from BDL to 5.7 μ g/m³ in 2019 and was BDL in 2020.

NO₂:- The range of NO₂ was 13.4 to 21.2 μ g/m³ for the year 2019 where as for the year 2020 it was from 14.3 to 19.0 μ g/m³ at SPCB Office Building, Unit-8. At Central Laboratory Patia the concentration range of NO₂ varied from 14.0 to 21.2 μ g/m³ for the year 2019 and from 13.9 to 21.6 μ g/m³ for the year 2020.

 PM_{10} The range of PM_{10} was from 50 to $218\mu g/m^3$ for the year 2019 where as for the year 2020, it was from 62 to $136 \mu g/m^3$ at SPCB Office Building, Unit-8. At Central Laboratory, Patia the concentration was in the range of 46 to 244 $\mu g/m^3$ for the year 2019 and 78 to 112 $\mu g/m^3$ for the year 2020.

Pb:- The range of Pb in PM₁₀ filter paper was BDL to 0.712 μ g/m³ at SPCB Office Building,Unit-8 for the year 2019 and for the year 2020 it was from BDL to 0.037 μ g/m³. At Central Laboratory, Patia Pb in PM₁₀ was from BDL to 0.082 μ g/m³ for the year 2019 and BDL to 0.044 μ g/m³ for the year 2020.

Ni:- The range of Ni in PM₁₀ filter paper was BDL to 21.6 ng/m^3 at SPCB Office Building, Unit-8 for the year 2019 and for the year 2020 it was from 0.5 to 8.4 ng/m³. At Central Laboratory, Patia the concentration range was BDL to 18.5 ng/m^3 for the year 2019 and $6.7 \text{ to } 11.8 \text{ ng/m}^3$ for the year, 2020.

As:- The range of As in PM₁₀ filter paper was 4.0 to 5.8 ng/m³ at SPCB Office Building, for the year 2020. At Central Laboratory, Patia the concentration range was from 3.2 to 5.1 ng/m³ for the year, 2020.

PM_{2.5}:- The range of PM_{2.5} was 16 to 110μg/m³ for the year 2019 where as for the year 2020 it was 26 to 56 μg/m³ at SPCB Office Building, Unit-8. At Central Laboratory, Patia the concentration range was from 13 to 83 μg/m³ for the year 2019 and 29 to 58 μg/m³ for the year, 2020.

Fe:- The range of Fe in PM_{2.5} filter paper was 0.15 to 3.48 μ g/m³ at SPCB Office Building, Unit-8 for the year 2019 where as for the year 2020 it was from 0.136 to 1.065 μ g/m³. At Central Laboratory, Patia the concentration range was from 0.035 to 0.250 μ g/m³ for the year 2019 and 0.142 to 0.945 μ g/m³ for the year 2020.

Al:- The range of Al in PM_{2.5} filter paper was 0.305 to 1.013 μ g/m³ at SPCB Office Building, Unit-8 for the year 2020. At Central Laboratory, Patia the concentration range was from 0.206 to 2.892 μ g/m³ for the year 2020.

Ba:- The range of Ba in PM_{2.5} filter paper was 0.054 to 0.395 $\mu g/m^3$ at SPCB Office Building, Unit-8 for the year 2020. At Central Laboratory, Patia the concentration range was from 0.021 to 0.176 $\mu g/m^3$ for the year 2020.

Due to problem in ICP-MS (Inductive Couple Plasma Mass Spectroscope) the heavy metals like (As in PM_{10}) and (Al & Ba in $PM_{2.5}$) were not analysed in the year 2019. So the heavy metals (As, Al & Ba) data for the year 2020 could not be compared with the year 2019.

Conclusion- Ambient Noise level on the eve of Dussehra and Ambient Noise as well as ambient air quality results on the eve of Deepawali for the year 2020 have been compared with those of year 2019. From the results, it was observed that both noise and air quality for the year 2020 were low at most of the locations as compared to the year 2019 especially for the parameters like PM_{10} & $PM_{2.5}$. The reason for decrease in air pollution on the eve of Deepawali in 2020 is due to prohibition by Govt. of Odisha on sale and use of fire crackers on eve of Deepawali from 10^{th} November to 30^{th} November 2020 and due to restriction on COVID pandemic.

Comparison of Ambient Air Monitoring (Continuous monitoring) Data of Bhubaneswar city during Deepawali Festival 2020 and 2019

Table-8.7

			2	020				2	019	
Sl.No.	Date of	SO ₂	NO ₂	PM ₁₀	PM2.8	Date of	SO ₂	SO ₂ NO ₂		PM2.6
	Monitoring 07.11.2020		(values expressed in licrogram per cubic meter)			Monitoring		(values expressed in Microgram per cubic n		
1.	07,11,2020	BDL	15,9	86	NM	20,10,2019	BDL	13,4	54	18
2.	08.11.2020	BDL	14.3	104	40	21.10.2019	BDL	18.5	86	29
3.	09.11.2020	BDL	17.0	80	46	22.10.2019	BDL	18.8	50	16
4.	10.11.2020	BDL	16.6	82	30	23.10.2019	BDL	16.2	63	19
5.	11.11.2020	BDL	16.1	79	26	24.10.2019		Not M	onitored	21
6.	12,11,2020	BDL	14,6	95	48	25,10,2019	BDL	18,5	89	26
7.	13.11.2020	BDL	16.9	129	38	26.10.2019	BDL	19.5	102	29
8.	14,11,2020	4,2	19,0	136	56	27,10,2019	4,3	20,2	218	110
9.	15.11.2020	BDL	15.9	93	40	28.10.2019	BDL	20.3	159	40
10.	16.11.2020	BDL	15.7	108	50	29.10.2019	BDL	21.2	104	31
11.	17,11,2020	BDL	15.1	80	35	30,10,2019	BDL	16,2	109	35
12.	18.11.2020	BDL	16.4	86	39	31.10.2019	BDL	15.6	134	39
13.	19,11,2020	BDL	15,2	62	41	01,11,2019	BDL	16,3	142	42
14.	20.11.2020	BDL	15.8	71	38	02.11.2019	BDL	16.3	108	34
15.	21,11,2020	BDL	16,4	81	40	03,11,2019	BDL	16,1	101	30

Table-8.8

	1444 (1700) (184		2020	1977			2019	Marie C
Sl.No.	Date of Monitoring	Pb (μg/m³)	Ietals in PM Ni (ng/m³)	As (ng/m³)	Date of Monitoring	Pb (μg/m³)	Ietals in PM Ni (ng/m³)	As (ng/m³)
1,	07,11,2020	0,008	7,7	5,0	20,10,2019	BDL	BDL	NM
2.	08.11.2020	0.006	8.3	4.7	21.10.2019	BDL	BDL	NM
3.	09,11,2020	BDL	7.0	4,9	22,10,2019	BDL	9,5	NM
4.	10.11.2020	BDL	8.4	4.8	23.10.2019	BDL	4.1	NM
5.	11,11,2020	BDL	8,1	4.7	24,10,2019	l l	Not Monitore	d
6.	12.11.2020	0.024	7.2	5.2	25.10.2019	BDL	4.4	NM
7.	13.11.2020	0.022	7.5	4.3	26.10.2019	0.006	21.6	NM
8.	14.11.2020	0.025	7.4	5.4	27.10.2019	0.712	19.4	NM
9.	15.11.2020	0.022	6.0	4.0	28.10.2019	0.044	21.1	NM
10,	16,11,2020	0,025	6,4	5,5	29,10,2019	0,034	12,5	NM
11.	17.11.2020	0.032	4.1	4.2	30.10.2019	0.026	BDL	NM
12.	18.11.2020	0.021	0.5	4.0	31.10.2019	0.019	BDL	NM
13.	19.11.2020	0.037	6.4	5.8	01.11.2019	0.170	BDL	NM
14.	20.11.2020	0.026	6.4	5.4	02.11.2019	0.012	BDL	NM
15.	21,11,2020	0,033	6,6	4,9	03,11,2019	0,011	BDL	NM

Table-8.9

CLAT	Date of	2020 Metals in PM _{2.5}	2.5	Date of Monitoring	M	2019 Letals in PM	2.5	
NI DIO	Monitoring	Al (μg/m³)	Fe (µg/m³)	Ba (μg/m³)	CATTERNATION CONTRACTOR - V	Al (μg/m³)	Fe (µg/m³)	Βa (μg/m³)
1.	07.11.2020	N	ot Monitore	d	20.10.2019	NA	ND	NA
2.	08,11,2020	0,574	0.445	0.079	21,10,2019	NA	0.97	NA
3.	09.11.2020	0.326	0.685	0.072	22.10.2019	ŇA	2.00	NA

4.	10.11.2020	0.328	0.136	0.054	23.10.2019	NA	2.17	NA
5.	11,11,2020	0,552	0,197	0,092	24,10,2019	Not Monitored		
6.	12,11,2020	0.806	0.769	0,239	25,10,2019	NA	1,24	NA
7.	13,11,2020	0,305	0,249	0,395	26,10,2019	ŊA	1,63	NA
8.	14.11.2020	1.013	1.065	0.113	27.10.2019	NA	3.48	NA
9.	15.11.2020	0.607	0.419	0.089	28.10.2019	NA	1.26	NA
10.	16.11.2020	0.827	0.452	0.135	29.10.2019	NA	1.23	NA
11,	17,11,2020	0,630	0,297	0,099	30,10,2019	NA	1,89	NA
12.	18.11.2020	0.511	0.198	0.077	31.10.2019	NA	0.15	NA
13,	19,11,2020	0,557	0,872	0,352	01,11,2019	NA	ND	NA
14.	20.11.2020	0.567	0.260	0.206	02.11.2019	NA	0.53	NA
15.	21.11.2020	0.561	0.406	0.079	03.11.2019	NA	0.63	NA

Table-8.10

Sl.No.	Date of Monitoring	2020					2019			
		SO ₂	NO ₂	PM ₁₀	PM2.5	Date of	SO2	NO ₂	PM ₁₀	PM2.6
		(values expressed in Microgram per cubic meter)				Monitoring	(values expressed in Microgram per cubic meter)			
1.	07,11,2020	BDL	17.7	106	33	20,10,2019	BDL	14,8	93	25
2.	08.11.2020	BDL	17.7	114	46	21.10.2019	BDL	14.0	97	29
3.	09.11.2020	BDL	15.0	107	31	22.10.2019	BDL	15.4	81	29
4.	10.11.2020	BDL	15.6	105	49	23.10.2019	BDL	15.7	46	13
5.	11.11.2020	BDL	16.4	98	29	24.10.2019	8			
6.	12.11.2020	BDL	15.8	107	48	25.10.2019	BDL	15.7	54	27
7.	13,11,2020	BDL	13,9	102	45	26,10,2019	BDL	14,9	73	24
8.	14.11.2020	BDL	21.6	112	58	27.10.2019	5.7	21.2	244	83
9.	15.11.2020	BDL	14.9	104	47	28.10.2019	BDL	19.6	87	22
10.	16.11.2020	BDL	14.9	91	41	29.10.2019	BDL	16.4	74	24
11.	17.11.2020	BDL	16.7	100	43	30.10.2019	BDL	17.0	87	29
12.	18.11.2020	BDL	17.6	93	41	31.10.2019	BDL	14.1	92	31
13.	19.11.2020	BDL	16.1	78	38	01.11.2019	BDL	14.7	88	27
14,	20,11,2020	BDL	17.0	98	42	02,11,2019	BDL	16,4	78	24
15.	21.11.2020	BDL	16.8	88	39	03.11.2019	BDL	15.2	87	27

Table-8.11

Sl.No.	Date of Monitoring	2020 Metals in PM10			Date of Monitoring	2019 Metals in PM10		
		1.	07.11.2020	BDL	9.6	4.7	20.10.2019	0.014
2.	08.11.2020	0.032	9.5	4.9	21.10.2019	BDL	BDL	NA
3.	09,11,2020	0,003	11,0	4,9	22,10,2019	0.015	BDL	NA
4.	10.11.2020	BDL	9.6	4.2	23.10.2019	0.013	BDL	NA
5.	11,11,2020	BDL	8,5	4,5	24,10,2019	Not Monitored		
6.	12.11.2020	0.020	9.9	5.1	25.10.2019	BDL	BDL	NA
7.	13.11.2020	0.032	11.8	4.9	26.10.2019	0.022	5.2	NA
8.	14.11.2020	0.044	8.0	4.3	27.10.2019	0.082	18.5	NA
9.	15.11.2020	0.040	8.5	4.7	28.10.2019	0.013	12.3	NA
10.	16.11.2020	BDL	7.9	4.4	29.10.2019	0.021	4.2	NA
11,	17,11,2020	BDL	8,7	4,7	30,10,2019	0.070	7.4	NA
12.	18.11.2020	BDL	6.7	3.2	31.10.2019	0.033	3.6	NA
13.	19,11,2020	0.013	9,5	4,0	01,11,2019	0,025	BDL	NA
14.	20.11.2020	0.006	7.9	4.1	02.11.2019	0.026	BDL	NA
15.	21.11.2020	BDL	7.9	4.8	03.11.2019	0.022	BDL	NA

Table-8.12

2. Name of the Monitoring Station:-Central Laboratory, Patia, Bhubaneswar										
Sl.No.	Date of Monitoring	2020 Metals in PM _{2.8}			Date of	2019				
						Metals in PM _{2.5}				
		Al (μg/m³)	Fe (μg/m³)	Ba (µg/m³)	Monitoring	Al (μg/m³)	Fe (μg/m³)	Ва (µg/m³)		
1.	07,11,2020	0,471	0,513	0,176	20,10,2019	NA	0,099	NA.		
2,	08,11,2020	0,933	0,461	0,119	21,10,2019	NA	0,066	NA		
3.	09,11,2020	0,793	0.142	0.052	22,10,2019	NA	0.037	NA		
4,	10,11,2020	0,471	0,149	0,122	23,10,2019	NA	0,116	ŊA		
5.	11,11,2020	0,426	0,396	0,079	24,10,2019	Not Monitored				
6.	12,11,2020	0,662	0,181	0.089	25,10,2019	NA.	0.065	NA		
7.	13.11.2020	0.376	0.318	0.133	26.10.2019	NA	0.035	NA		
8.	14.11.2020	2.892	0.330	0.157	27.10.2019	NA	0.250	NA		
9.	15,11,2020	0.815	0.880	0,109	28,10,2019	NA.	0.053	NA		
10.	16.11.2020	0.788	0.201	0.077	29.10.2019	NA	0.068	NA		
11.	17.11.2020	0.784	0.444	0.058	30.10.2019	NA	0.130	NA		
12.	18.11.2020	0.352	0.945	0.121	31.10.2019	NA	ND	NA		
13.	19.11.2020	0.206	0.733	0.021	01.11.2019	NA	ND	NA		
14.	20.11.2020	0.786	0.205	0.087	02.11.2019	NA	ND	NA		
15.	21.11.2020	1.233	0.342	0.160	03.11.2019	NA	0.097	NA		

N.B:-BDL-Below Detectable Limit, BDL Value for SO₂ ≤4 µg/m³, Pb ≤0.0022 µg/m³, NA-Not Analysed

Graph-2

Graph-3

Graph-4

8.4.2 Impact of Immersion of Idols in Water Bodies

Durga Puja is celebrated in massive scale in most of the cities of the State of Odisha. Generally the idols are immersed on a single day at the designated sites of the rivers flowing along the cities in confirmty to the Guidelines of CPCB. To minimize the impact of idol immersion on the water quality, the State Pollution Control Board, Odisha has taken following steps as recommended in the Guideline for idol immersion.

- Asked all the District Collectors and authorities of urban local bodies of the State prior to Ganesh
 Puja and Durga Puja to implement the Guidelines of Immersion in their areas of jurisdiction.
- Created public awareness through Public Notices on safe Idol immersion practices in Local Newspapers, Board's website and through public address system.
- Conducted several meetings with the local bodies/ authorities, Puja Committee Organizers to create awareness on ill impacts of Idol immersion in water bodies and Guidelines.
- Coordinated with the local bodies/ authorities for construction of temporary immersion ponds near rivers as prescribed in the Guidelines.

Public awareness through print media to observe pollution free Ganesh puja, Durga Puja, Laxmi Puja and Kali Puja

- Generally idols are immersed in flowing waters for which rivers are ideal places. As per the Guideline, temporary ponds having earthen bunds along the river bank are constructed or a part of the river bed is cordoned to demarcate it as idol immersion site. The bottom of the pond in either cases are lined with removable synthetic liner well in advance of the idol immersion. The said liner and the remnants of the idols are removed within 48 hours of idol immersion by the local bodies and disposed in the municipal dumpsites. The water of the temporary ponds is then treated with lime and allowed to settle before the treated water is ultimately discharged into rivers.
- In some urban local bodies, though temporary immersion ponds were not constructed specifically for idol immersion purposes, the remnants of idol immersion were removed by the local people within 48 hours of idol immersion and disposed at the municipal dumpsites.
- Water quality assessment of Kuakhai River and Daya River along Bhubanewar city, Kathajodi river along Cuttack city and Mangala river along Puri city was conducted.
- Water quality status was assessed with respect to the physico-chemical parameters as recommended in the Guideline, such as, pH, Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Conductivity (EC), Turbidity, Total Dissolved Solids (TDS), Total Solids (TS), and metals (cadmium, chromium, iron, lead, zinc and copper.
- Water quality status is evaluated by comparing with the tolerance limits for Class A (Drinking
 water source without conventional treatment but after disinfection) and Class C (Drinking water
 source with conventional treatment followed by disinfection) Inland surface water quality
 prescribed by CPCB. The variation in concentration of different parameters at the immersion
 sites were compared with the values at the upstream and downstream of immersion sites to
 assess the impact of idol immersion.

Observation from the water quality data

- pH of river water during the study period remained well within the tolerance limit of 6.5-8.5.
- Dissolved Oxygen content always remained above 4.0 mg/L which conformed Class C river quality.
- There was no significant change in total solid and total dissolved solid contents in river water quality in 'Pre' 'During' and 'Post-phases' of monitoring.
- BOD values also remained within the tolerance limit of 3.0 mg/L specified for Class C river.
 However, the BOD concentration in Kuakhai river at the downstream station of idol immersion pond during-immersion period exceeded the tolerance limit. But this was significantly reduced below the tolerance limit in Post-immersion monitoring.

- Dumping of puja materials and remnats into the rivers, disrupts the oxygen level of water body
 and therefore increase of BOD and COD values at the downstream of immersion site during immersion monitoring were observed. By the time of post-immersion monitoring, the river
 water got rejuvenated itself due to continuous flow of water, which was indicated by decreased
 BOD values and other parameters in the rivers.
- Concentration of cadmium at all locations during the period of study remained below detection limit i.e. 0.02 mg/L. However, cadmium concentration in Kathajodi river at the downstream of idol immersion pond during-immersion period exceeded the tolerance limit. But this was reduced to below detection limit in post-immersion monitoring.
- Concentration of lead, copper and hexavalent chromium remained below the respective detection limits such as 0.1 mg/L, 0.03 mg/L and 0.05 mg/L.
- Because of the preventive measures taken by the district administration not to allow the water
 of idol immersion ponds to flow into the river, water quality of downstream stations duringimmersion and Post-immersion periods mostly remained within the tolerance limits of the
 designated class use.
- From the study, it was be concluded that all the parameters specified for the study remained within the tolerance limit for designated class of the river i.e. Class-C (Drinking water source with conventional treatment followed by disinfection) even after immersion of idols except few cases. Concentration of heavy metals such as cadmium, chromium, lead, zinc and copper remained below the tolerance limits and there was no significant impact of heavy metal on water bodies due to immersion of idols. Further, immersion of idols in the temporary immersion ponds minimized the probability of contamination of the main course of river water.

Temporary arrangement for (dol immersion

immersion of Idals in temporary (dol immersion pands

Remnants of immersed materials in Idol
immersion ponds

Transport of Immersed materials to municipal solid waste disposal site

8.4.3 Impact of mass bathing during Kartika Purnima on Water quality of Mahanadi and Kathajodi river (Cuttack Stretch)

In view of prevailing COVID19 pandemic in 2020, Odisha Government had imposed restriction on mass gathering in public places and also banned congregation at river ghats and other water bodies for mass bathing and traditional celebration of Kartika Purnima i.e. on Dt. 30.11.2020. Therefore, Kartika Purnima 2020 was redused to a symbolic celebration. However, water quality of river Mahanadi and Kathajodi along the Cuttack city was monitored by the Board at the major bathing ghats on Pre- (27.11.2020), During- (30.11.2020) and Post-(10.12.2020) Kartika Purnima period. Water quality was assessed with respect to the physico-chemical parameters like pH, Dissolved oxygen (DO), Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and bacteriological parameters e.g. total coliform (TC) and fecal coliform (FC).

Comparison of the water quality data with the bathing water quality standard prescribed under IS: 2296 (1982) and organized bathing water quality standard laid down by MOEF & CC (MoEF Notification G.S.R. No. 742(E) Dt. 25th September, 2000), it was revealed that, pH remained within the permissible range 6.5-8.5 at all the monitored locations. Dissolved oxygen remained well above the permissible limit of 5.0 mg/L on all occasions. BOD at all monitored places remained within the prescribed limit of 3.0 mg/L. There was no significant variation in the bacteriological quality with respect to total coliform and fecal coliform at the bathing ghats of Mahanadi river and Kathajodi rivers on the days of monitoring. Water quality data with respect to BOD, TC and FC in Pre-, During- and post-Kartika Purnima period is presented in Table-8.13.

Table-8.13 Water quality with respect to BOD, TC and FC at the bathing ghats of Mahanadi river and Kathajodi rivers on Pre-, During- and Post-Kartika Purnima -2020

Sl. No.	Location	eation BOD (mg/L)		TO	TC (MPN/166ML)		FC (MPN/100ML)			
		Pre (27.11.2020)	During (30.11.2020)	Post (10.12.2020)	Pre (27.11.2020)	During (30.11.2020)	Post (10.12.2020)	Pre (27.11.2020)	During (30.11.2020)	Post (10.12.2020)
Maha	madi River			10.		30 3	3		37	
1	Mundali	<1.0	<1.0	<1.0	1700	2400	4900	1300	790	2200
2,	Chahata Ghat	1.2	2.8	<1.0	160000	92000	22000	92000	4900	7900
3.	Gadagadia Ghat	<1.0	<1.0	<1.0	54000	22000	35000	7000	1300	7900
4.	Zobra	<1.0	<1.0	1.2	17000	22000	54000	7900	11000	13000
5.	Kanheipur	1.0	<1.0	<1.0	7900	4600	3300	4900	1700	450
Kath	ajodi River					An annual and an annual and an				
6.	Naraj	1.2	<1.0	<1.0	170	790	3300	130	170	400
7.	Puri Ghat	<1.0	<1.0	<1.0	4900	3300	7000	1700	1300	1700
8.	Khon Nagar	2.4	1.4	1,4	1300	7000	490	490	1700	170
9	Urali	1.4	1.4	1.4	17000	7000	7900	3300	2200	2200
for 6 (IS-2	rance limit class B 296-1982) / Rule,		3.0			500			0 (Desirable)) (Permissible	

^{*} MoEF Notification G.S.R. No. 742(E) Dt. 25th September, 2000

8.5 OTHER ONGOING PROJECT

Survey and Monitoring of Ground and Surface Water Quality with respect to Fluoride Content around Phosphatic Fertilizer Units, Paradeep

The Board conducted a survey on ground water and surface water quality in and around phosphatic fertilizer plants of Paradeep e.g. M/s Indian Farmers Fertilizer Corporation (IFFCO) and M/s Paradeep Phosphates Ltd. (PPL). During 2020, surface water sample were collected from Atharabanki creek at different locations adjoining to these two fertilizer plants. Ground water samples were collected from the test wells of both the plants and from three locations outside the plant. Water quality monitoring was done on quarterly basis during the months of February, May, August and November.

The fluoride concentration in Atharabanki creek at the upstream of the fertilizer plants varies 2.12- 3.40 mg/L. As the flow of Atharabanki creek is regulated by the tidal condition of the sea, it is not unidirectional, and therefore, wide fluctuation in fluoride content is observed in Atharabanki creek water. The fluoride concentration in Atharabanki creek varies within 0.832-13.8 mg/L. The fluoride concentration in creek water at Bhimbhoi colony varied within 3.07-6.80 mg/L, near entrance gate to Paradeep Port Township varied within 2.61 – 13.8 mg/L, near conveyor belt of IFFCO varied within 4.0 – 5.94 mg/L. The fluoride concentration in the creek water near fishing jetty showed a variations within 0.72-0.832 mg/L. However, the water quality near fishing Jetty was greatly influenced by sea water.

Fluoride concentration in the surface run-off drain near Gypsum pond of M/s PPL near Shyamakoti bridge varied within 2.13-4.4 mg/L, whereas, the same in the surface run-off drain near Loknath colony varied within 0.471-0.780 mg/L.

The test wells around M/s IFFCO exhibited fluoride concentration within 0.02-1.37 mg/L, whereas, those around M/s PPL, it was within 0.337-5.51 mg/L.

Fluoride content in ground water samples collected from outside of plant areas i.e. at Badapadia, varied within 1.21-1.57 mg/L, whereas in Musadiha, the fluoride concentration varied within 0.345 - 0.39 mg/L and inside the Shiv temple, it was in the range of 0.83 - 1.46 mg/L. Fluoride content in gruond water monitored at public locations remained mostly within the acceptable limit of 1.5 mg/L.

8.6 LIBRARY AND INFORMATION SERVICE

Board's Central Library at Bhubaneswar acts as a document repository and referral centre for dissemination of information in the field of environmental science, engineering, legal and allied subjects. Apart from Board employees, the Library is also used by research scholars, students of different Universities and technical institutions in Orissa. The Library has a collection of Books, Reports, Audio Visual materials, Maps, Photographs, Topo sheets, River Basin Atlas and soft copies of various subjects of environmental science and

engineering during 2020-21 the library has received 19 Books, 65 Reports, 18 Journals, 11 Newspapers and 02 Magazines on environmental issues from various sources of information for reference of the users. Few outside scholars have been enrolled as library members on payment during the period. As usual of Reprograpphic Service to outside members have been provided on payment basis.

8.7 TRAINING /WORKSHOP /SEMINAR ATTENDED BY BOARD OFFICIALS

The Board has deputed its officials on various training programmes, seminars and workshops for learning and up-gradation of their knowledge and exposure to recent technological advancements in the field of pollution control and environment protection. Due to current COVID-19 pandemic situation all the trainings attended in virtual mode.

The list of officials along with name of training programmes / workshops / seminars attended during 2020-21 is given in Table - 8.14.

Table - 8.14 Training Programme attended by officials and organized / sponsored by of the Board

A. Training / Workshop / Seminar attended by officials of the Board

SI. No.	Name (Smt./Shri) & Designation	Date	Title of the Training/Workshop/ Seminar	Conducted by	Venue
1.	Er. Simanchal Dash, SEE(L-I) Head Office	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
2.	Fr. Sitikantha Sahu, SEE(L-II) Head Office	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
3.	Fr. Prasanti Swain, SEE(L-II) Head Office	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
4.	Er. Santosh Kumar Panda, EE Head Office	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
5.	Dr. (Mrs.) Usha Rani Pattnaik, ES Central Laboratory	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
6.	Dr. Amp Kumar Mallick, ES Regional Officer, Angul	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
7.	Er. Dillip Kumar Dash, EE Regional Officer, Paradeep	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
8.	Br. Babita Singh, BB, Regional Office, Rourkela	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
9.	Dr. Satya Narayan Nanda, AES Regional Office, Sambalpur	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Delhi- 110062	Online (Virtual Mode)
10.	Dr. Sharada Srinivas Pati, AES Central Laboratory	2 nd to 7 th November, 2020	Training course on "Making Data Meaningful"	Centre for Science and Environment, 41, Tughlakabad Institutional Area, New Defhi- 110062	Online (Virtual Mode)

St. No.	Name (Smt./Shri) & Designation	Date	Title of the Training/Workshop/ Seminar	Conducted by	Venue
11.	Dr. B. B. Dash, Regional Officer, SPC Board, Bhubaneswar	29 th December, 2020	Workshop / Webinar on Revised Guidelines for Idol Immersion	Central Pollution Control Board (CPCB), New Delhi	Online (Virtual Mode)
12.	Dr. Sohan Giri, Regional Officer, Cuttack	29 th December, 2020	Workshop / Webinar on Revised Guidelines for Idol Immersion	Central Pollution Control Board (CPCB), New Delhi	Online (Virtual Mode)
13.	Er. Bibechita Sarangi, DEE	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
14.	Er. Dibyalochan Mohapatra, DEE	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS - Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
15.	Er. Deepesh Kumar Biswal, AEE	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
16.	Er. Debadutta Mohanty, AEE	4 th to 17 th January, 2021	Training programme on "CHMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
17.	Er. Biswakanta Pradhan, AEE	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
18.	Er. Soumendra Nath Mohanty, AEE	4 th to 17 th Jamuary, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
19.	Er. Anil Kumar Barik, AEE	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
20.	Ashok Kumar Bhoi, DES	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
21.	Anusha Ekka, DES	January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
22.	Kanchn Bala Bihari, DES	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS - Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
23.	Leeta Soren, AES	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS — Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)

St. No.	Name (Smt./Shri) & Designation	Date	Title of the Training/Workshop/ Seminar	Conducted by	Venue
24.	Anshumala Kusum Minj, AES	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
25.	Bhima Charan Marandi, AES	Jamary, 2021	Training programme on "CEMS and CEQMS - Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
26.	Rashmi Rekha Pradhan, AES	January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
27.	Dr. Sangeeta Mishra, AES	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
28.	Sumitra Nayak, AES	4 th to 17 th January, 2021	Training programme on "CEMS and CEOMS - Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
29.	Dr. Sharada Shrinivas Pati, AES	4 th to 17 th January, 2021	Training programme on "CEMS and CEQMS – Technology Selection, its Installation, Data Handling and its Audit Methodology"	Centre for Science and Environment, New Delhi	Online (Virtual Mode)
30.	Hadibandhu Panigrahi, Env. Scientist	18 th – 20 th January, 2021	Training programme on "Epidemiological Study of Fluman Community towards Impact of Toxic Chemicals like Arsenic, Polycyclic Aromatic Hydrocarbon (PAH)"	TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi-110070 & sponsored by CPCB, Delhi	Online (Virtual Mode)
31.	Mitrasen Majhi, Env. Scientist, Regional Officer, Berhampur	18 th – 20 th Jamery, 2021	Training programme on "Epidemiological Study of Human Community towards Impact of Toxic Chemicals like Arsenic, Polycyclic Aromatic Hydrocarbon (PAH)"	TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi-110070 & sponsored by CPCB, Delhi	Online (Virtual Mode)
32.	Er. Deepak Kumar Sahoo, Dy. Env. Engineer, Regional Office, Rourkela	19 th = 21 st January, 2021	Training programme on "Air Pollution Control Devices & OCEMS for Various Sectors"	Engineering Staff College of India, Gachi Bowli, Old Bombay Road, Hyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
33.	Er. Chandra Sekhar Chauhan, Asst. Env. Engineer, Regional Office, Angul	19 th – 21 st January, 2021	Training programme on "Air Pollution Control Devices & OCEMS for Various Sectors"	Engineering Staff College of India, Gachi Bowli, Old Bombay Road, Hyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
34.	Leeta Soren, Dy. Env. Scientist	27 th – 29 th January, 2021	Training programme on "Detailed Insight into Management of Various Wastes like Hazardous Waste, E-Waste, Construction and Demolition Waste, Municipal Solid Waste and Biomedical Waste"	Engineering Staff College of India, Gachi Bowli, Old Bombay Road, Hyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
35.	Er. Biswakanta Pradhan. Asst. Bnv. Engineer, Regional Office, Sambalpur	27th = 29th January, 2021	Training programme on "Detailed Insight into Management of Various Wastes like Hazardous Waste, E-Waste, Construction and Demolition Waste, Municipal Solid Waste and Biomedical	Engineering Staff College of India, Gachi Bowli, Old Bombay Road, Eyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)

SL. No.	Name (Smt/Shri) & Designation	Date	Title of the Training/Workshop/ Seminar	Conducted by	Venue
36.	Bishi Keshan Nayak, Sr. Env. Scientist	28th - 30th January, 2021	Waste" Training programme on "Hazardous and Plastic Waste Inventory"	UN Environmental Programme Country Office, India 55, Lodhi Estate, New Delhi-110 003 & sponsored by CPCB, Delhi	Online (Virtual Mode)
37.	Er. Prafulla Chandra Rauta, Sr. Env. Engineer	28 th – 30 th January, 2021	Training programme on "Hazardous and Plastic Waste Inventory"	UN Environmental Programme Country Office, India 55, Lodhi Estate, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)
38.	Dr. Saswat Kumar Mohanty, Dy. Env. Scientist	3 rd – 4 th February, 2021	Training programme on "Advance Instrumental Analytical Techniques and Preventive Maintenance"	National Institute of Occupational Health, Poojanahalli Road, Kannamangala Post, Devanahalli, Bangalore & sponsored by CPCB, Delhi	Online (Virtual Mode)
39.	Mamata Behera, ASO, Central Laboratory	3 ¹⁶ – 4 ⁶ February, 2021	Training programme on "Advance Instrumental Analytical Techniques and Preventive Maintenance"	National Institute of Occupational Health, Poojanahalli Road, Kannamangala Post, Devanahalli, Bangalore & sponsored by CPCB, Delhi	Online (Virtual Mode)
40.	Er. Babita Singh, Env. Engineer, Regional Office, Rourkela	5th — 6th February, 2021	Training programme on "Operating Mechanism and Performance Evaluation of CBWTF"	Shri Guru Gobind Singhji Institute of Engineering & Technology, Vishmopuri, Nanded-431 606 (Maharashtra)	Online (Virtual Mode)
41.	Er. Debabrata Sethi, Env. Engineer, Regional Office, Berhampur	5th - 6th February, 2021	Training programme on "Operating Mechanism and Performance Evaluation of CBWTF"	Shri Guru Gobind Singhji Institute of Engineering & Technology, Vishmupuri, Nanded-431606,Maharashtra	Online (Virtual Mode)
42.	Er. Simanchal Dash, Sr. Env. Engineer	8th — 12th February, 2021	Training programme on "Environmental Data Interpretation, Compilation, Analysis, Presentation and Reporting – Hands-on Training and Case Study"	Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)
43.	Er. Rabi Narayan Prusty, Sr. Env. Engineer	8th — 12th February, 2021	Training programme on "Environmental Data Interpretation, Compilation, Analysis, Presentation and Reporting – Hands-on Training and Case Study"	Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)
44.	Dr. Sohan Giri, Env. Scientist, Regional Officer, Cuttack	8 th = 12 th February, 2021	Training programme on "Environmental Legislations, Interpretation, Enforcement, Legal and Statutory Requirements - Case Studies"	National Law School of India University, Nagarbhavi, Bangalore & sponsored by CPCB, Delhi	Online (Virtual Mode)
45.	Santosh Kumar Kuanr, Law Officer	8 th – 12 th February, 2021	Training programme on "Environmental Legislations, Interpretation, Enforcement, Legal and Statutory Requirements - Case Studies"	National Law School of India University, Nagarbhavi, Bangalore & sponsored by CPCB, Delhi	Online (Virtual Mode)
46.	Er. Prafulla Chandra Rauta, Sr. Env. Engineer	9 th – 11 th February, 2021	Training programme on "Aspects of Hazardons Waste TSDF from initiation till Commissioning and issues Pertaining to Compliance Monitoring"	International Institute of Waste Management, No.6, First Floor, Sankey Road, Lower Palace Orchards, Sadashivnagar, Bengaluru & sponsored by CPCB, Delhi	Online (Virtual Mode)
47.	Er. Pramod Kumar Behera, Env. Engineer, RO, Kalinganagar	9 th = 11 th February, 2021	Training programme on "Aspects of Hazardous Waste TSDF from initiation till Commissioning and issues Pertaining to Compliance Monitoring"	International Institute of Waste Management, No.6, First Floor, Sankey Road, Lower Palace Orchards, Sadashivnagar, Bengaluru & sponsored by CPCB, Delhi	Online (Virtual Mode)

SI. No.	Name (Smt./Shri) & Designation	Date	Title of the Training/Workshop/ Seminar	Conducted by	Venue
48.	Er. Sitikantha Sahu, Sr. Env. Engineer	9 th – 11 th February, 2021	Training programme on "Performance Evaluation of ETP/STP/CETPS"	Engineering Staff College of India, Gachi Bowli, Hyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
49.	Er. Santosh Kumar Panda, Env. Engineer	9th - 11th February, 2021	Training programme on "Performance Evaluation of ETP/STP/CETPS"	Engineering Staff College of India, Gachi Bowli, Hyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
50.	Bishi Keshan Nayak, Sr. Env. Scientist	15 th – 17 th February, 2021	Training programme on "Monitoring of Implementation Status of Extended Producer Responsibility under the E-Waste & Plastic Waste Management Rules"	Centre for Environmental Studies, Anna University, Chennai & sponsored by CPCB, Delhi	Online (Virtual Mode)
51.	Er. Ramesh Kumar Ekka, Dy. Env. Engineer, Regional Office, Sambalpur	15 th – 17 th February, 2021	Training programme on "Monitoring of Implementation Status of Extended Producer Responsibility under the E-Waste & Plastic Waste Management Rules"	Centre for Environmental Studies, Anna University, Chennai & sponsored by CPCB, Delhi	Online (Virtual Mode)
52.	Puskar Chandra Behera, Dy. Env. Scientist, Regional Officer, Keonjhar	17 th – 19 th February, 2021	Training programme on "Environmental Sustainability of Sugarcane Ethanol Industries"	National Sugar Institute, Kalyanpur, Kanpur-208 017 (Uttar Pradesh) & sponsored by CPCB, Delhi	Online (Virtual Mode)
53.	Er. Rakesh Kumar Mohanty, Dy. Env. Engineer, RO, Angul	17 th – 19 th February, 2021	Training programme on "Environmental Sustainability of Sugarcane Ethanol Industries"	National Sugar Institute, Kalyanpur, Kanpur-208 017 (Uttar Pradesh) & sponsored by CPCB, Delhi	Online (Virtual Mode)
54.	Smita Nayak, ASO, Central Lab	17th — 19th February, 2021	Training programme on "Environmental Monitoring - Sample Collection of Effluent, AAQM, Stack and Testing of Various Environmental Parameters like Air, Water and Noise in the Laboratory"	National Productivity Council, Dr. Ambedkar Institute of Productivity, 6, Asvin Dairy Road, Ambattur Industrial Estate (North), Chennal & sponsored by CPCB, Delhi	Online (Virtual Mode)
55.	Soumya Ranjan Mallick, Sr. Scientific Asst., Central Lab, Bhubaneswar	17 th – 19 th February, 2021	Training programme on "Environmental Monitoring - Sample Collection of Effluent, AAQM, Stack and Testing of Various Environmental Parameters like Air, Water and Noise in the Laboratory"	National Productivity Council, Dr. Ambedkar Institute of Productivity, 6, Aavin Dairy Road, Ambattur Industrial Estate (North), Chennai & sponsored by CPCB, Delhi	Online (Virtual Mode)
56.	Hemendra Nath Nayak, Env. Scientist, Regional Officer, Rourkela	17 th – 19 th , February, 2021	Training programme on "Occupational Health & Safety Management System (OHSMS) 45001: 2018"	National Institute of Occupational Health, P.B. No. 2031, Meghani Nagar, Ahmedabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
57.	Er. Narottam Behera, Env. Engineer, Regional Officer, Bhubaneswar	17 th – 19 th , February, 2021	Training programme on "Occupational Health & Safety Management System (OHSMS) 45001: 2018"	National Institute of Occupational Health, P.B. No. 2031, Meghani Nagar, Ahmedabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
58.	Prasant Kumar Kar, Regional Officer, Rayagada	24 th – 26 th February, 2021	Training programme on "Advanced Oxidation Treatment Technology - A Futuristic Way forward for Treatment of Recalcitrant Pollutants"	Centre for Environmental Studies, Anna University, Chennai & sponsored by CPCB, Delhi	Online (Virtual Mode)
59.	Er. Bibechita Sarangi, Dy. Eenv. Engineer	24 th – 26 th February, 2021	Training programme on "Advanced Oxidation Treatment Technology - A Futuristic Way forward for Treatment of Recalcitrant Pollutants"	Centre for Environmental Studies, Anna University, Chennai & sponsored by CPCB, Delhi	Online (Virtual Mode)

SI. No.	Name (Smt./Shri) & Designation	Date	Title of the Training/Workshop/ Seminar	Conducted by	Venue
60.	Dr. Prakash Kumar Mohapatra, Regional Officer, Rourkela	24 th - 25 th February, 2021	Training programme on "Urban Air Quality Management"	Centre for Env. Studies, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)
61.	Er. Rashmita Priyadarshini, Env. Engineer, Regional office, SPC Board, Cuttack	24 th = 25 th February, 2021	Training programme on "Urban Air Quality Management"	Centre for Env. Studies, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)
62.	Dr. Usha Rani Pattnalk, Env. Scientist, Central Laboratory	3 ^{ol} _ 5 th March, 2021	Training programme on "Analysis of Pesticides & Other Organic Chemicals in Environmental Samples"	CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow & sponsored by CPCB, Delhi	Online (Virtual Mode)
63.	Dr. Sharada Srimivas Pati, Asst. Env. Scientist. Central Laboratory	3rd _ 5rh March, 2021	Training programme on "Analysis of Pesticides & Other Organic Chemicals in Environmental Samples"	CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow & sponsored by CPCB, Delhi	Online (Virtual Mode)
64.	Sumitra Nayak, Asst. Env. Scientist, ICZMP	15th — 17th March, 2021	Training programme on "Sophisticated Instruments for Analysis of Toxic Heavy Metals in Environmental Samples and GC / GC - Ms Operation"	National Geophysical Research Institute, Uppal Road, Hyderabad & sponsored by CPCB, Delhi	Online (Virtual Mode)
65.	Sarat Kumar Mohanty, Sr. Scientific Asst., Central Laboratory	15 th – 17 th Miarch, 2021	Training programme on "Sophisticated Instruments for Analysis of Toxic Heavy Metals in Environmental Samples and GC / GC - Ms Operation"	National Geophysical Research Institute, Uppal Road, Hyderabad & sponsored by CPCB, Delhi	Online (Virmal Mode)
66.	Dr. Pramode Kumar Prusty, Sr. Env. Scientist	16 th March, 2021	Final Consultation Workshop	National Institute of Disaster Management, Ministry of Home Affairs, Govt. of India, New Delhi	Online (Virtual Mode)
67.	Dr. Anup Kumar Malfick, ES, Regional Officer, Angul	17 th = 19 th March, 2021	Training programme on "Control of Air Pollution, Source Apportionment Studies and Preparation of Emission Inventory"	Centre for Env. Studies, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)
68.	Er. Subhadarshini Das, Env. Engineer	17 th = 19 th March, 2021	Training programme on "Control of Air Pollution, Source Apportionment Studies and Preparation of Emission Inventory"	Centre for Env. Studies, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi & sponsored by CPCB, Delhi	Online (Virtual Mode)

B. Training / Workshop / Seminar Organised / Sponsored by SPC Board

St. No.	Training Programme	Duration	Venue	Organised / Sponsored by
1.	2nd National E-Conference on "Industrial Waste Management in COVID-19 & Industrial Waste Management Ecosystem in India"	21st October, 2020	E-Conference (Virtual Mode)	Indian Chamber of Commerce (ICC)Odisha Regional Office, In Front of Pal Heights, Jayadev Vihar, Bhubaneswar & SPC Board, Odisha, Bhubaneswar

8.15 Internship taken by Students from different Educational Institutions

SL No.	Name of the Students	Name of the Educational Institutions	Duration of the Internship	Internship Taken Under
1.	Shri Sriram Ballav Bhola	Siksha 'O' Amusandhan University, Bhubaneswar	01.03.2021 to 21.03.2021	Shri B. P. Pattajoshi, Legal Consultant
2.	Shri Prajwol Kumar Parida	Siksha 'O' Amusandhan University, Bhubaneswar	01.03.2021 to 21.03.2021	Shri B. P. Pattajoshi, Legal Consultant
3.	Shri Swagat Mohapatra	Siksha 'O' Amusandhan University, Bhubaneswar	01.03.2021 to 21.03.2021	Shri B. P. Pattajoshi, Legal Consultant

8.9 OTHER ACTIVITIES

Observation of Important Days

Observation of World Environment Day

The State Pollution Control Board, Odisha observed World Environment Day on 5th June, 2020 through its 12 Regional Offices. The global theme of the World Environment Day for the year 2020 was "Time for Nature". Due to the pandemic COVID-19 situation, the regular celebration activities like debate/quiz/rally/seminar/paining and essay competition etc. among schools and college students were not organized. However, awareness meetings involving different organizations through video conferencing and plantation programme were done in different industries as well as inside office premises of Regional Offices maintaining Covid protocol.

Celebrations

The State Pollution Control Board, Odisha could not observe its 37th Foundation Day, International Coastal Clean-up Day and National Pollution Prevention Day in 2020 due to the COVID-19 pandemic situation. The regular celebration / observation activities like debate / quiz / rally / seminar / painting and essay competition etc. among schools / college students were not organized. However, awareness meetings involving different organizations through video conferencing were organized.

8.10 AWARENESS ACTIVITES

- For creation of awareness amongst general public, the Board regularly publishes advertisements carrying messages on environmental issues in different periodicals / souvenirs / print media.
- The Board observed the World Environment Day on 5th June' 2020 through its 12 Regional Offices. The theme of the World Environment Day for the year 2020 was "Time for Nature". Due to the COVID-19 pandemic situation, the regular celebration activities were not organized. However, awareness meetings involving different organizations and industry houses through video conferencing and plantation programme were organised in different industrial premises as well as inside office premises of Regional Offices maintaining Covid protocol. Other activities like "International Coastal Clean-up Day" and "World Ozone Day" were also not observed by the Board due to pandemic situation.
- Public awareness on "Impact of bursting of fire crackers during Deepawali" and "Impact on immersion of idols on water quality of surface water bodies" were created through public notices in local news papers.

8.11 PUBLICATIONS

The Board has published two volumes of newsletters "Paribesh Samachar" during this period.

8,12 EMPANELLED ENVIRONMENTAL CONSULTANTS

During the financial year 2020-21 following 02 Nos. of Consultants were Empanelled with the Board. The details are stated below.

Table-8,16 Status of Environmental Consultants for the Year 2020-21

Sl. no	Name of the Consultant	Category	Validity Period
1	M/s Sai Biocare Pvt. Ltd Plot No 819, Garage Square, Old Town, Adjacent to Kalika Temple, Bhubaneswar- 751002 Phone No977660148 Email Id – lab@saibiocare.com	В	01.06.2020 - 31.05.2023

M/s Vimta Labs Ltd. 142, IDA, Phase- II, Cherlapally, Hyderabad – 500051 Phone No040-27264141 Email Id – janardahan@yimta.in	A	19.06.2020 to 18.06.2023
--	---	--------------------------

However, the Board, in its 121st Board meeting held on 15.10.2020 decided to dispense with the process of empanelment of Environmental consultant and other institutes.

ANNEXURE-II

RATE CHART FOR SAMPLING AND ANALYSIS OF ENVIRONMENTAL SAMPLES (Office Order No. 7828, dated 01.08.2019)

A. SAMPLING CHARGES

(I) Sampling charges for Ambient Air/ Fugitive emission samples

Sl. No.	Тур	Charges in Rs	
1.	Air	Menitoring	
	(a)	Sampling (upto each 8 hrs) for suspended particulate matter and gaseous pollutants	3500.00
	(b)	Sampling (24 hrs) for suspended particulate matter and gaseous pollutants	10500.00
	(c)	Sampling of volatile organic compounds (VOCs) / Benzene Toluene Xylene (BTX)	3500.00
	(d)	Sampling of Poly Aromatic Hydrocarbons (PAHs)	4400.00
	(e)	Sampling (24 hrs using PUF HVS) of ambient air for Dioxin-Furan (PCDDs-PCDFs) congeners	15000.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(II) Source Emission Monitoring / Sampling Charges

Sl. No.	Тур	e of Sampling	Charges in Rs.
1.	Source Emission Monitoring		
	(a)	Sampling/ measurement of velocity, flow rate, temperature and molecular weight of Flue Gas (each specific location/ each sample in duplicate for the mentioned parameter)	9600,00
	(b)	Sampling of SO ₂ / NO ₂	3500,00
	(c)	Sampling of Volatile Organic Compounds (VOCs / Benzene Toluene Xylene (BTX)	5300.00
	(d)	Sampling of Poly Aromatic Hydrocarbons (PAHs)	6200.00
	(e)	Sampling of emission from stationery source for Dioxin- Furan (PCDDs-PCDFs) congeners using Manual sampling Kit	25000.00

Note: (i) Transportation charges will be separate as per actual basis.

Sample analysis charges of respective parameters are separate as per list.

(III) Noise Monitoring

Sl. No.	Type of Sampling	Charges in Rs.
1.	Noise Monitoring	
	(a) First Monitoring	7000,00
	(b) Each Subsequent Monitoring within same premises	3500.00
	(c) For 08 hours Continuous Monitoring or more	18,000.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(IV) Sampling Charges for Water & Wastewater Samples

SI. No.	Type of sampling	Charges in Rs.
1.	GRAB SAMPLING:	XI
	1) Grab sampling/ samples/ place	960.00
	 For every additional Grab sampling / same place (at sampling) 	ame 440,00
2.	COMPOSITE SAMPLING:	
	 Composite sampling/source/place upto 8 hrs. 	1800.00
	-do- upto16 hrs.	3500,00
	-do- upto 24 hrs.	5300,00
	 For every additional composite sampling/same place but source upto 8 hrs. 	different 960.00
	-do- upto16 hrs.	2000.00
	-do- upto 24 hrs.	2900.00
3.	Flow rate measurement/ source -Once	700.00
	-do Every additional	270.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(V) Sampling charges for Soil samples

Type of Sampling	Charges in Rs.
Grab sampling/ sample/ place	1050.00
For additional Grab sampling / same place	530.00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

(VI) Hazardous Waste Sample collection charges at the premises of Industry/ Import site/ Disposal site

Charges in Rs.
1800,00

Note: (i) Transportation charges will be separate as per actual basis.

(ii) Sample analysis charges of respective parameters are separate as per list.

B. ANALYSIS CHARGES

L Analysis charges of Ambient Air/ Fugitive Emission Samples

Sl. No	Parameters (Air)	Analysis charges per sample in Rs.
1.	Ammonia	1050,00
2.	Analysis using dragger (per tube)	700.00
3.	Benzene, Tohiene, Xylene (BTX)	1800.00
4.	Carbon Monoxide	1050.00
5.	Chlorine	1050.00

SL No	Parameters (Air)	Analysis charges per sample in Rs.
6.	Fluoride (gaseous)	1050.00
7.	Fluoride (particulate)	1050.00
8.	Hydrogen Chloride	1050,00
9.	Hydrogen Sulphide	1050.00
10.	Lead & Other Metals (per metal)	As mentioned in respective group at clause 5.0
11.	NO ₂	1050,00
12.	Ozone	1800.00
13.	Poly Aromatic Hydrocarbons (PAHs)	As mentioned in respective group at clause 5,0
14.	Suspended Particulate Matter (SPM)	1050,00
15.	Particulate Matter (PM _{2.5})	1800.00
16.	Respirable Suspended Particulate Matter (PM ₁₀)	1050,00
17.	Sulphur Dioxide	1050.00
18.	Volatile Organic Carbon	3500,00
19.	Trace metals on air, filter paper using ED-XRF Aluminium, Antimony, Arsenic, Barium, Bromine, Cadmium, Calcium, Cesium, Chlorine, Chromium, Cobalt, Copper, Gallium, Germanium, Gold, Iodine, Iron, Lanthamum, Lead, Magnesium, Manganese, Molybdenum, Nickel, Palladium, Phosphorous, Potassium, Rubidium, Rutherfordium, Selenium, Silicon, Silver, Sodium, Strontium, Sulphur, Tellurium, Tin, Titanium, Tungsten, Vanadium, Ytterbium and Zinc	5300.00 Per filter paper
20.	Water extractable ions in air particulate matter using Ion Chromatograph (IC) i) Processing / pretreatment charge per sample (filter paper) ii) Cations (Na ⁺ , NH ₄ ⁺ , K ⁺ , Ca ⁺⁺ , & Mg ⁺⁺) and Anions (F, Br, Cl, NO ₃ ⁻ , NO ₂ ⁻ , SO ₄ ⁻² & PO ₄ ⁻³)	530.00 2100.00 (for 12 ions)
21.	Organic and Elemental Carbon (OC/EC) on quartz filter paper	3500,00
22	Sample processing and analysis for Dioxin-Furan (PCDDs-PCDFs) congeners (Isotope dilution method using GC-HRMS	75000.00

II. Analysis charges for Source Emission Parameters

SI. No.	Parameters	Analysis charges per sample in Rs.
1	Acid mist	1050.00
2	Ammonia	1050,00
3	Carbon Monoxide	1050,00
4	Chlorine	1050.00
5	Fluoride (Gaseous)	1050.00
6	Fluorides (Particulate)	1050.00
7	Hydrogen Chloride	1050.00
8	Hydrogen Sulphide	1050.00
9	Oxides of Nitrogen	1050.00
10	Oxygen	880.00
11	Polycyclic Aromatic Hydrocarbons (Particulate)	As mentioned in respective group at clause 5.0
12	Suspended particulate matter	1050,00
13	Sulphur Dioxide	1050.00
14	Benzene Toluene Xylene (BTX)	2700.00
15	Volatile Organic Compounds (VOC)	5300.00
16	Sample processing and analysis for Dioxin-Furan (PCDDs- PCDFs) congeners (Isotope dilution method using GC-HRMS	75000.00

III. Ambient Air Quality Monitoring using on-line monitoring instruments by Mobile Van

Parameters	Charges in Rs.
PM ₁₀ , PM _{2.5} , SO ₂ , NO _x , SPM, CO along with Meteorological data viz. temperature, Humidity, wind speed, wind direction	Rs.6200.00 per hour (minimum charges Rs.15,000/-) + Rs.50.00/km run of the van for 24 hours monitoring.

IV. Auto Exhaust Monitoring - One time checking of Vehicular Exhaust

Sl. No.	Type of vehicles	Charges in Rs.
1	Carbon Monoxide %	As per rate
2	Hydrocarbon, PPM	notified by
3	Smoke Density, HSU	transport department

V. Analysis Charges of Water and Wastewater Samples

SI. No	Parameters	Analysis charges per sample in Rs.
	PHYSICAL PARAMETER	RS
1.	Conductivity	110.00
2.	Odour	110.00
3.	Słudge Volume index (S.V.I)	350.00
4.	Solids (dissolved)	180.00
5.	Solids (fixed)	270.00
6.	Solid (Volatile)	270.00
7.	Suspended Solids	180.00
8.	Temperature	110.00
9.	Total Solids	180.00
10.	Turbidity	110.00
11.	Velocity of Flow (Current Meter)	350,00
12.	Velocity of Flow (other)	960.00
12.	CHEMICAL PARAMETE	
Inorg		aks
1.	Acidity	180.00
2.	Alkalinity	180.00
3.	Ammonical Nitrogen	350.00
4.	Bicarbonate	180,00
5.	Biochemical Oxygen Demand (BOD)	1050.00
6.	Bromide	180.00
7.	Calcium (Titrimetric)	180.00
8.	Carbon dioxide	180.00
9.	Carbonate	180.00
10.	Chloride	180.00
11.	Chlorine Demand Chlorine Residual	350,00 180.00
13,	Chemical Oxygen Demand (COD)	620,00
14.	Cyanide Cyanide	620,00
15.	Detergent	350,00
16.	Dissolved Oxygen (DO)	180.00
17.	Fluoride	350,00
18.	H. Acid	350.00
19.	Hardness (Calcium)	180,00
20.	Hardness (Total)	180.00
21.	Iodide	180.00
22,	Nitrate - Nitrogen	350,00
23.	Nitrite - Nitrogen	350.00
24.	Percent Sodium	1050,00
25.	Permanganate Value pH	350.00 110.00
27.	Phosphate (Ortho)	350,00
28.	Phosphate (Total)	620.00

SI. No	Parameters	Analysis charges per sample in Rs.
29.	Salinity	180,00
30.	Sodium Absorption Ratio (SAR)	1050.00
31.	Settleable Solids	180.00
32,	Silica	350,00
33.	Sulphate	270.00
34.	Sulphide	350,00
35.	Total Kjeldahl Nitrogen (TKN)	620.00
36.	Urea Nitrogen	620.00
37.	Cations (Na ⁺ , NH ₄ ⁺ , K ⁺ , Ca ⁺⁺ , & Mg ⁺⁺) and Anions (F, Br, Cl ⁻ , NO ₃ ⁻ , NO ₂ ⁻ , SO ₄ & PO ₄) in surface and ground water samples using Ion Chromatograph	2100,00 (for 12 ions)
Meta		
	Processing / pre treatment charge per sample	880.00
1.	Aluminium	530.00
2.	Antimony	530.00
3.	Arsenic	530.00
4.	Barium	530,00
5.	Beryllium	530.00
6.	Boron	530,00
7.	Cadmium	530.00
8.	Chromium Hexavalent	350.00
9.	Chromium Total	530,00
10.	Cobalt	530.00
11.	Copper	530.00
12.	Iron	530,00
13.	Lead	530.00
14.	Magnesium	350.00
15.	Manganese	530.00
16.	Mercury (Processing and Analysis)	1400.00
17.	Molybdenum	530.00
18.	Nickel	530.00
19.	Potassium	350.00
20.	Tin	530,00
21.	Selenium	530,00
22.	Silver	530,00
23.	Sodium	350.00
24.	Strontium	530.00
25.	Vanadium	530,00
26,	Zinc	530,00
3	Organics	
Orga	no Chlorine Pesticides (OCPs)	
	Processing / pretreatment charge per sample	1800.00
1.	Aldrine	700.00
2.	Dicofol	700.00

Sl. No	Parameters	Analysis charges per sample in Rs.	
3	DIeldrin	700.00	
4	Endosulfan-I	700,00	
5	Endosulfan-II	700,00	
6	Endosulfan-Sulfate	700,00	
7	Heptachlor	700.00	
8	Hexachlorobenzene (HCB)	700.00	
9	Methoxychlor	700.00	
10	o,p DDT	700.00	
11	p,p'- DDD	700.00	
12	p,p'- DDE	700,00	
13	p'p DDT	700,00	
14	α-НСН	700.00	
15	β-НСН	700.00	
16	у-НСН	700.00	
17	8-нсн	700.00	
Orga	no Phosphorous Pesticides (OPPs)		
	Processing / pre treatment charge per sample	1800.00	
18	Chlorpyriphos	700.00	
19	Dimethoate	700,00	
20	Ethion	700.00	
21	Malathion	700.00	
22	Monocrotophos	700.00	
23	Parathion-methyl	700.00	
24	Phorate	700.00	
25	Phosphamidon	700.00	
26	Profenophos	700,00	
27	Quinalphos	700,00	
Synt	hetic Pyrethroids (SPs)		
	Processing / pre treatment charge per sample	1800.00	
28	Deltamethrin	700.00	
29	Fenpropethrin	700.00	
30	Fenvalerate	700.00	
31	α-Cypermethrin	700,00	
32	β-Cyfluthrin	700,00	
33	y-Cyhalothrin	700,00	
	icides		
	Processing / pre treatment charge per sample	1800.00	
34	Alachlor	700.00	
35	Butachlor	700.00	
36	Fluchloralin	700,00	
37	Pendimethalin	700,00	
	cyclic Aromatic Hydrocarbons (PAHs)		
	Processing / pre treatment charge per sample	1800.00	
38	Acenaphthene	700.00	
39		700.00	
59	Acenaphthylene	700.00	

Sl. No	Parameters	Analysis charges per sample in Rs.	
40	Anthracene	700.00	
41	Benzo(a)anthracene	700.00	
42	Benzo(a)Pyrene	700.00	
43	Benzo(b)fluoranthene	700.00	
44	Benzo(e)Pyrene	700.00	
45	Benzo(g,h,i) Perylene	700.00	
	Benzo(k)fluoranthene	700.00	
47	Chrysene	700.00	
	Dibenzo(a,h)anthracene	700.00	
49	Fluoranthene	700.00	
50	Fhuorene	700.00	
51	Indeno (1,2,3-cd)pyrene	700.00	
	Naphthalene	700.00	
	Perylene	700.00	
54	Phenanthrene	700.00	
55	Pyrene	700.00	
	orinated Biphenyls (PCBs)		
	Processing / pre treatment charge per sample	1800.00	
	Aroclor 1221	700.00	
57	Aroclor 1016	700.00	
58	Aroclor 1232	700.00	
59	Aroclor 1242	700.00	
60	Aroclor 1248	700.00	
61	Aroclor 1254	700.00	
50.000 (1.00)	Aroclor 1260	700.00	
	omethane (THM)	U 100 - 100	
	Processing / pre treatment charge per sample	1400.00	
63	Bromodichloromethane	700.00	
64	Bromoform	700.00	
	Chloroform	700.00	
66	Dibromochloromethane	700,00	
Other (Organic Parameters	ui	
67	Adsorbable Organic halogens (AOX)	3500.00	
	Tanin/ Lignin	620.00	
69	Oil and Grease	350,00	
- 1	Phenol	350.00	
71	Total Organic carbon (TOC)	880.00	
72	Volatile organic acids	620,00	
	BIOLOGICAL TEST		
1.	Bacteriological Sample Collection	350.00	

Sl. No	Parameters	Analysis charges per sample in Rs.
2.	Benthic Organism Identification and Count (each sample)	1050,00
3.	Benthic Organism Sample collection	1800,00
4.	Chlorophyll Estimation	1050,00
5.	E. Coli (MFT technique)	700.00
6.	E. Coli (MPN technique)	620.00
7.	Fecal Coliform (MFT technique)	700.00
8.	Fecal Coliform (MPN technique)	620.00
9.	Fecal Streptococci (MFT technique)	790.00
10.	Fecal Streptococci (MPN technique)	700.00
11.	Plankton (sample collection)	440.00
12.	Plankton (Phytoplankton) count	1050,00
13.	Plankton (Zooplankton) count	1050,00
14.	Standard Plate Count	350.00
15.	Total Coliform (MFT technique)	700.00
16.	Total Coliform (MPN technique)	620.00
17.	Total Plate Count	620.00
18.	Toxicological Bio-assay (LC50)	4900,00
19.	Toxicological –Dimensionless toxicity test	2800.00

Note:

VI. Analysis charges of Soil/ Sludge/ Sediment/ Solid waste/ Solid samples

SI. No.	Parameters	Analysis charges per test in Rs.	
1	Ammonia	530.00	
2	Bicarbonate	350.00	
3	Boron	700.00	
4	Calcium	270.00	
5	Calcium Carbonate	620,00	
6	Cation Exchange Capacity (CEC)	700.00	
7	Chloride	270.00	
8	Colour	175.00	
9	Electrical Conductivity (EC)	175.00	
10	Exchangeable Sodium Percentage (ESP)	960.00	
11	Gypsum requirement	620,00	
12	H. Acid	700,00	
13	Heavy metal	As mention in respective group at clause 5.0	
14	Trace metals using ED-XRF Aluminium, Antimony, Arsenic, Barium, Bromine, Cadmium,	7000.00	

Sampling charges for water and waste water samples are separate as specified in Clause A(IV), but subject to minimum of Rs.700/- irrespective of number of samples.

ii. Transportation charges are separate on actual basis.

Sl. No.	Parameters	Analysis charges per test in Rs.
	Calcium, Cesium, Chlorine, Chromium, Cobalt, Copper, Gallium, Germanium, Gold, Iodine, Iron, Lanthanum, Lead, Magnesium, Manganese, Molybdenum, Nickel, Palladium, Phosphorous, Potassium, Rubidium, Rutherfordium, Selenium, Silicon, Silver, Sodium, Strontium, Sulphur, Tellurium, Tin, Titanium, Tungsten, Vanadium, Ytterbium and Zinc per sample	
15	Magnesium	530.00
16.	Mechanical Soil analysis(soil texture)	270,00
17	Nitrate	530,00
18	Nitrite	530.00
19	Nitrogen available	620,00
20	Organic Carbon/ Matter (chemical method)	620.00
21	Polycyclic Aromatic Hydrocarbons (PAHs)	As mention in respective group at clause 5.0
22	Polychlorinated Biphenyls (PCBs)	As mention in respective group at clause 5.0
23	Pesticides	As mention in respective group at clause 5.0
24	pH	175.00
25	Phosphorous (available)	700.00
26	Phosphate(ortho)	530.00
27	Phosphate(total)	700,00
28	Potash(Available)	350.00
29	Potassium	530.00
30	Sodium Absorption Ratio (SAR) in Soil extract	1140.00
31	Sodium	530.00
32	Soil Moisture	175,00
33	Sulphate	350.00
34	Sulphur	620.00
35	Total Kjehldhal Nitrogen (TKN)	700,00
36	TOC	960.00
37	Total Water Soluble Salts	350.00
38	Water Holding Capacity	175.00
39	Sample processing and analysis for Dioxin-Furan (PCDDs- PCDFs) congeners (Isotope dilution method using GC- HRMS)	75000.00

VIII. Analysis charges for Hazardous Waste samples

Sl. No.	Parameters	Analysis Charges per test in Rs.
1.	Preparation of Leachate (TCLP extract / Water Extract)	1750.00
2.	Determination of various parameters in Leachate	As mention in respective group at clause 5.0
3.	Flash point/ Ignitibility	960.00
4.	Reactivity	960,00
5.	Corrosivity	960.00
6.	Measurement of Toxicity	
	- LC ₅₀	4900,00
	- Dimensionless Toxicity	2890.00
7.	Total Organic Carbon	880.00
8,	Adsorbable organic Halogen (AOx)	3500,00

VIII. AQC Participation Fees:

To be charged by the Board from respective recognized laboratories for Analytical Quality Control Exercise (AQC) samples.

1	Laboratories of Govt./Semi-Govt.	/	Public	sector	18000.00
	undertaken/Autonomous bodies				
2	Private Sector laboratories				27000.00

ANNEXURE-III

Staff Strength

Sl. No.	Name of the Post	No. of Post Sanctioned	No. of Post filled up	Post lying vacant
(A)	Cadre of Scientist			
1		2	0	2
2		3	0	3
3		3	2	1
4			17	
5		48	4	20
6			7	1 108%
	Total	56	30	26
(B)	Codve of Engineer			
7		2	2	0
8		3	3	0
9		3	3	0
10			14	
11		46	5	13
12		40	14	1
- 12	Total	54	41	13
(C)	Cadre of Laboratory Officials		1 7	
13		7	3	2
14		15	7	8
. 14	Senior Scientific Assassant Total	22	12	10
(Dr)	Administrative Cadre	44	- 14	10
(D)	Administrative Caure Administrative Officer	1	0	1
	Additional Administrative Officer	1		
		1	1	0
17		2	1	1
18	A STATE OF THE PARTY OF THE PAR	8	8	0
	Accountant	5	0	5
	Senior Assistant	13	10	3
21	Junior Assistant	18	7	11
	Total	48	27	21
(E)	Legal Personnel Cadre			
22		1	0	1
23	and the first of t	1	1	0
	Law Officer	1	0	1
25		1	0	1
	Total	4	1	3
(F)	Stenographer Cadres			
26		1	1	0
27		2	2	0
28		8	7	1
29		9	0	9
30	Junior Stenographer	7	1	6
il.	Total	27	11	16
(G)	Others			
31	Asst. Librarian	1	1	0
	Sr. Typist	2	2	0
	Jr. Typist	8	5	3
	Store Keeper	Î	0	1
35		0	0	0
	Sr. Driver	3	3	0
	Driver	9	5	4
	Record Supplier	í	í	0
	Diarist.	- i	1	0
	Xerox Asst	î	0	1
	Daftary	î	1	0
	Lift Operator	1	0	1
42	Laboratory Attendant	10	7	3
	Library Attendant	1	1	0
	TresmySarkar	1	1	0
	Zamadar	1	1	0
47		21	16	5
48	The state of the s	2	1	1
49		5	3	2
	Sub-Total	76	49	21
	GRAND TOTAL (A+B+C+D+E+F+G)	281	171	110

STATE POLLUTION CONTROL BOARD, ODISHA

PARIBESH BHAWAN, A/118, NILAKANTHA NAGAR, UNIT-VIII, BHUBANESWAR - 751012